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Abstract

Synthetic social network generators are useful for a variety
of purposes, including benchmarking algorithms, modeling
human interactions within agent-based simulations, and de-
bugging code. Despite the increased availability of social
media data, collecting data directly from these networks is
not always feasible due to privacy concerns. Often data ac-
cess is restricted to “silos” of analysts with privileged access.
Lack of access to the original dataset increases the challenge
of debugging the network analysis software. To combat this
problem, this paper introduces a multi-purpose synthetic
network generator designed for cloning the network statis-
tics of an existing dataset. Our network generator sup-
ports the synthetic generation of two properties commonly
present in real-world networks: node features and multi-
ple link types. We describe common usage cases for our
software and provide an evaluation on its performance on
recreating the original network.

1 Introduction

Online social networking applications, such as Facebook,
Twitter, and YouTube, have rapidly increased in popular-
ity, due to their ability to offer compelling visual commu-
nication platforms. Data from these services has enabled
interdisciplinary researchers to study human behavior at
an unprecedented scale. Yet even in this era of “big data”,
the research questions that we can address are often sharply
constrained by data availability. Access to data is often lim-
ited for privacy reasons; this jeopardizes the reproducibil-
ity of experiments conducted by one research group on a
privately held dataset. Synthetic network generators can
provide a common benchmark allowing multiple groups to
evaluate their research on the same dataset. They facili-
tate the rapid prototyping of network analysis software, by
simplifying the process of testing the algorithms on a broad
spectrum of networks. However, one question that often
arises is how similar are synthetically-generated networks
to the original networks extracted from social media data?

One modeling approach is to create a generator that re-
produces properties commonly found in human networks,
such as homophily, scale-free structure, and dyadic closure.
However, the real data is often messy, possessing isolate
nodes, unbalanced class distributions, and strange degree
distributions. Thus network analysis algorithms which per-

form well on synthetically generated networks, may perform
poorly when deployed in the actual application. In this pa-
per, we propose that the best approach to preserve both
privacy and verisimilitude is to clone the original network.
In this usage scenario, companies release limited statistics
about the network characteristics, and the generator creates
a network that matches as many of those statistics as pos-
sible. Although the adjacency matrix of the final network
is significantly different from that of the original network,
preserving the network statistics may lead to comparable
performance of algorithms such as community detection and
link prediction on both the original and synthetically gen-
erated datasets.

A second issue which commonly arises with publicly avail-
able datasets is that missing data elements restrict the ap-
plicability of the data and hinder the development of al-
gorithms that are substantially different from the original
authors’. Many network datasets consist solely of the adja-
cency matrix for a single time slice. A standard procedure
is to clean datasets in order to create a single, large con-
nected component. However, it can be useful to consider
the node features as well, which are often omitted from
standard datasets; for instance, collective classification al-
gorithms, such as ICA [16], make extensive use of the node
features when predicting the labels of neighboring nodes.
In reality, people are connected by multiplex networks, in
which each link type represents a different form of social
interaction (e.g., messaging, common interests, geographic
neighborhood); unfortunately there is a dearth of publicly
available multiplex datasets, making it difficult to evaluate
algorithms that leverage different link types.

Hence synthetic network generators that can simulate hu-
man social networks serve as a valuable complement to the
real social media datasets. In this paper, we introduce a
network generator that supports both the use of node-level
features and different link types. Our generator uses prefer-
ential attachment and link homophily to select link targets,
and stochastic optimization to tweak the feature distribu-
tions to match the original dataset. We envision three dif-
ferent usage cases for our generator:

• cloning privately-held datasets for debugging purposes;
• simulating realistic human populations within agent-

based simulations;
• benchmarking collective classification, link prediction,

and community detection algorithms on multiplex net-
works.



Moreover, our synthetic network generator was designed to
be easily extensible to duplicate other network properties by
simply modifying the fitness function to penalize discrepan-
cies in other network statistics. The next section presents
an overview of related work on synthetic network genera-
tors.

2 Related Work

Synthetic network generators can be broadly categorized as
being statistical [5, 25] or agent-based [3, 2]. Statistical ap-
proaches focus on reproducing aspects of the network statis-
tics, therefore they are good at preserving these character-
istics of the original datasets. Note that these generators
do not offer the same dataset cloning functionality as our
proposed method, but simply have parameters that can be
tweaked by the experimenter. One weakness is that these
models may focus on a single graph property, while neglect-
ing other patterns in the network structure. Though these
statistical models are good at reproducing the end result of
repeated social interactions, they fail to simulate the actual
social processes [2]. In agent-based network generators, the
networks are constructed by directly simulating the agents’
social choices. Agent-based models tend to be very domain
specific and are not easily modified for other problems; for
instance Carley et al. [3] created an agent-based model for
simulating urban disease spread after bioattacks.

2.1 Classical Models

The focus of this paper is simulating human social networks
(e.g., [26]), but there is also an extensive literature on con-
structing other types of networks including biological [19]
and computer networks [10]. First we review three classical
models that have been used as the basis for many applica-
tions.

The earliest work on graph generators was done by Erdös
and Rényi in 1960 [5]. The ER model can be used to gen-
erate random graphs according to the following procedure.
The network starts with N nodes, and each pair of nodes is
connected with probability p. When p has a small value, the
generated graphs are composed of small equally-sized com-
ponents with few edges. A high value of p creates graphs
with a huge component with size O(N). The diameter of
this model grows slowly as the network increases in size,
since the diameter is concentrated around log N

log z , where z is
the average degree of the nodes in the graph.

Human networks often exhibit small world characteris-
tics, as illustrated by the famous six degrees of separation
experiment [22]. Watts and Stogatz proposed a random
graph generator for creating small world graphs with high
clustering coefficients and small diameters [25]. The net-
work generation process is initialized with a ring lattice
containing N nodes, where each node has k neighbors. For
every node, edges are rewired with probability p to a target
node, selected uniformly at random. During this process,
self-connection and edge duplication is forbidden.

One issue with this procedure is that the degree distri-
bution of Watts-Strogatz graphs remains very close to the
initial condition, with every node possessing k neighbors.

This is very different from human social networks, that
commonly exhibit power law degree distributions. These
networks are a result of the Matthew effect in which “the
rich get richer”—high degree nodes are more likely than
low degree nodes to gain connections over time. In 1999,
Barabási and Albert proposed a model to generate scale-
free graphs that have power law degree distributions [1].
The network structure is formed by two processes: 1) grad-
ually growing the network over time and 2) preferentially
attaching links to high degree nodes. Like many synthetic
network generators, our work includes a preferential attach-
ment mechanism to create a power law degree distribution.

2.2 Newer Models

One weakness common to all the classical models is that
they lack explicit mechanisms for creating community
structures within the graphs, which are often present in
graphs extracted from social media data. The R-MAT [4]
model can be used to create graphs with community struc-
ture, power-law degree distributions, and a small diameter.
Rather than viewing graph generation as a random rewiring
process, it can modeled with a matrix recursion procedure
in which the adjacency matrix is recursively subdivided and
edges are distributed across the partitions.

Following the same recursion idea, Leskovec et al. [13]
use Kronecker multiplication to generate self-similar graphs.
The network starts with an initial graph G1 that contains
N1 nodes and E1 edges. Using matrix recursion, larger
successive graphs G2, G3. . .Gn are generated. The kth

graph Gk contains Nk = Nk
1 nodes. Many graphs often

densify over time, exhibiting a growth in the number of
edges that is superlinear to the number of nodes [14]. Kro-
necker multiplication produces graphs with a fixed diameter
and a densification power law degree distribution with expo-

nent k = log(E1)
log(N1) . The graph generation process introduces

a staircase effect in the nodes’ degrees, and each commu-
nity consists of smaller nested communities that are formed
through expansion and recursion.

Due to its ease of use, the most popular benchmark for
evaluating community detection algorithms is the LFR gen-
erator, an extension of the Girvan-Newman model devel-
oped by Lancichinetti et al. [12]. The LFR model is a
scalable and efficient model that can create networks with
106 nodes in linear execution time. LFR networks follow
a power law degree distribution and can possess heteroge-
neous community sizes. A mixing parameter governs the
amount of connections between different communities and
can be used to create more challenging networks for com-
munity detection algorithms.

All of the synthetic network generators described in this
section are parameterized, allowing different graphs to be
generated by modifying the parameters. However, it is left
to the experimenter to determine appropriate parameters
by trial and error. Different than these generators, the aim
of our work is to create a generator that can autonomously
reproduce the characteristics of specific datasets. Moreover,
we wanted our generator to be able to model two aspects of
real-world social media datasets: 1) node level features and
2) different link types.



2.3 Baseline

We selected the Wang et al. [23] generator as a basis for
generating the network structure of our model. The Wang
et al. generator, extends on previous work by [20], and has
been used as a benchmark for evaluating trust prediction
and collective classification algorithms. Similar to the BA
model, the Wang et al. generator uses both growth and
preferential attachment processes for network creation. The
network starts with a small number of nodes, and new nodes
are added until the network reaches the maximum number
of nodes specified by the user. It has two basic parameters:
one governing homophily (dh) and the other for controlling
link density (ld). Homophily is a property often exhibited
by human social networks such that “birds of a feature flock
together” [17]. A high homophily value indicates that links
are more likely to be formed between nodes with the same
label; these labels can be viewed as being equivalent to com-
munity membership. The Wang et al. generator supports
the creation of binary, rather than continuous, node features
that are designed to model personal attributes.

This generator yields scale-free networks with some com-
munity structure, since nodes with similar labels are more
likely to be connected when the homophily parameter is
high. Our proposed network generators improve on the
Wang et al. generator by adding the following functionality:

• continuous node features;
• multiple link types;
• stochastic optimization procedures for tuning the node

features and link formation to match distributions from
an existing social media dataset.

3 Method

This section introduces our proposed methods for cloning
social networks. First, we describe the Attribute Synthetic
Generator (ASG), a network generator for reproducing the
node feature distribution of standard networks and rewiring
the network to preferentially connect nodes that exhibit a
high feature similarity. Then we describe our Multi-Link
Generator (MLG), which uses link co-occurrence statistics
from the original dataset to create a multiplex network.1

3.1 Attribute Synthetic Generator (ASG)

Unlike previous work, the Attribute Synthetic Generator
aims to recreate the node level features of the network. In
social media datasets, nodes represent users, and node fea-
tures can be used to denote user profile values. For example,
in a dataset extracted from a massively multiplayer online
game, nodes would represent players or their avatars, links
would represent in-game message exchanges, and node fea-
tures could be used to designate the avatar’s combat or
crafting skills. Social media datasets can exhibit profile
homophily, an increased likelihood of connection between
users with similar profiles. To model this effect, we add
extra connections between users with similar node profiles.

Figure 1 depicts the architecture of the Attribute Syn-
thetic Generator. The core of ASG is similar to the Wang

1Code available at: github.com/AwradAli/Synthetic-Generators.
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Figure 1: Attribute Synthetic Generator (ASG)

et al. generator, however links are formed based on feature
similarity, in addition to label homophily and preferential
attachment. The network is initialized with a group of three
nodes, and new nodes and links are added to the network
based on the following parameters: link density (α), ho-
mophily (dh), and feature similarity (fs). As new nodes
are created, their labels are assigned based on the prior la-
bel distribution of the social media dataset. ASG includes
the following:

• dynamic label homophily: as the network grows,
the homophily increases according to the formula dh =
i× 0.05, where i is the maximum node index, until the
label homophily reaches a maximum predefined value.

• attribute assignment and optimization: node fea-
ture attributes are initially randomly assigned and then
modified to fit the statistics of the social media dataset;

• link formation based on feature similarity: to
create feature homophily, additional links are created
between nodes with similar feature vectors according
to the fs parameter.

Algorithm 1 shows the pseudocode of our synthetic network
generator, where N is the number of nodes, numCom is
the number of labels (communities), i is the current node
index, dh is the homophily value, α is the link density, fs is
the feature homophily, and targetStats contains the targeted
statistics from the social media dataset. The output consists
of Net, a N by N adjacency matrix, Label, a N length vector
of label assignments, and Attributes, a NxA matrix, where
A is the length of the attribute vector.

3.1.1 Network Growth

The network growth is based on the link density parameter
α, which governs whether nodes or links are added. Adding
nodes decreases the density of the network and adding links



Algorithm 1 Attribute Synthetic Generator (ASG)

1: Input: N, numCom, α, dh, fs, targetStats
2: Output: Net, Labels, Attributes
3: while i < N do
4: r = random number between (0,1)
5: if i ≤ 2 then
6: addNodes(Net,i,numCom,Labels,dh)
7: i = i + 1
8: else
9: if r ≤ α then

10: connectNode(Net,i,Labels,dh)
11: else
12: addNodes(Net,i,numCom,Labels,dh)
13: i = i + 1
14: end if
15: end if
16: end while
17: while i ≤ N do
18: Attributes = genAttr(i,targetStats,Net)
19: end while
20: AddSimilarConnections(Net,Attributes,fs)

increases the density. During the growth phase, links are
added based on the current label homophily (dh) and a
preferential attachment model; this growth process results
in links are added to high degree nodes with the same label.

3.1.2 Attribute Assignment

After the network has reached the same number of nodes as
the original social media dataset, the growth phase termi-
nates and attribute assignment begins. Each node initially
receives a random attribute assignment ranging from [0-8]
for each possible attribute in the node feature vector. An
assignment of zero indicates that the node does not possess
that attribute. In our example MMOG dataset, attributes
represent crafting, movement, and combat skills possessed
by the player avatar. The initial assignments are shifted by
−4 and treated as Z-scores, assuming a normal distribution
(µ = 0 and σ = 1) with Z values (Zε[−4, 4]). The attribute
value is calculated as:

M = µ+ Zσ (1)

where M is the generated attribute value after normaliza-
tion and σ and µ are target standard deviation and mean
respectively.

3.1.3 Optimizing Attribute Assignments

After an initial assignment has been made, a stochastic op-
timization process is used to move the initial assignments
closer to the target distribution extracted from social media
dataset. Table 1 shows an example distribution of node at-
tributes collected from a massively-multiplayer online game
(Game X).

The fitness function for the stochastic optimization is the
average correlation coefficient between the target statistics

and our generated statistics:

r =
n(
∑
xy) − (

∑
x(
∑
y)√

[n
∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(2)

where x is the target statistics, y is the current network
statistics, n is the number of elements and r is the aver-
age correlation coefficient. The fitness function measures
the similarity between our generated attributes and those
of the target social media dataset. To tune the generated
attributes to match the target social media dataset, we eval-
uated the performance of two stochastic techniques: particle
swarm optimization [9] and genetic algorithms [8].

3.1.4 Particle Swarm Optimization

The Particle Swarm Optimization algorithm (PSO) intro-
duced by Kennedy [9] is a stochastic optimization technique
for maximizing the quality of a problem solution based on
a fitness function; prior work [15] has shown that PSO per-
forms well on network optimization problems. The algo-
rithm starts by generating a random set of possible solu-
tions (particles); particles have a velocity which governs the
exploration of alternative configurations. Particles update
their individual knowledge and global experience as better
solutions are discovered. Individual particle knowledge is
responsible for exploring the search space, while the global
experience is used to exploit the best known solution. The
relative weighting of these two components is determined
by setting the coefficients.

Pseudo code for PSO is shown in Algorithm 2. P is the
set of particles (agents). Gb is the global knowledge (explo-
ration) which is initialized to be the best individual î. The
î is initialized as the current particle P. The relative con-
tributions of global and individual knowledge are weighted
by the constant coefficients, c1 and c2. F is the fitness,
the individual best fitness is denoted by Fî, and the global
fitness is FGb.

3.1.5 Genetic Algorithm

We also experimented with using genetic algorithms [8] to
find the best feature allocation to match the target statistics
since it has been used widely as an optimization technique,
such as in [7, 11, 6]. Genetic algorithms (GA) are inspired
from biological evolutionary processes; the basic idea is to
have a population of individuals who are selected to form
the next generation according to a fitness function. Opera-
tions such as crossover and mutation are used to maintain
diversity in the generated individuals (children).

In our work, we used tournament selection [18] to select
the best individuals among the population based on their
fitness function. For the crossover operation, we used uni-
form crossover [21]. The crossover points in the uniform
crossover are based on the crossover ratio or mask that in-
dicates which individual (parent) will transfer its chromo-
somes to the generated children. The user needs to specify
the mutation rate that regulates the percentage of the pop-
ulation that will be mutated. We generate a random value
(mutation step) that produces both positive and negative
numbers randomly. The mutation step will modify all the



Table 1: Target statistics for example MMOG dataset

Skills 1st Quartile 3rd Quartile Median Max Skewness Std Deviation Actual Mean
Economy1 10.24 20.01 14.18 46.56 0.87 5.62 15.67
Economy2 10 15 10.24 43.64 1.43 2.58 11.94
Economy3 10 14.60 10.42 34.40 1.17 4.05 12.88
Economy4 10.72 17.49 15 81.36 1.43 5.11 15.24
Movement1 10 10.94 10 47.01 2.90 2.65 11.31
Movement2 11.25 27.95 16.60 95.21 1.58 15.76 22.95
Combat1 10.42 24.18 15.46 44.01 0.93 8.80 18.52
Combat2 11.21 27.32 20 95.11 1.49 14.99 23.15
Combat3 11.24 31.89 19.02 96.55 1.26 16.94 25.19
Combat4 10 15 10 76.14 4.26 5.18 12.51

Algorithm 2 Particle Swarm Optimization (PSO)

1: Input: Attributes, TargetStats, c1, c2
2: Output: TunedAttributes
3: MaxAgents = 30
4: MaxGeneration = 200
5: FGb = 0
6: for agent ≤ MaxAgents do
7: P = random number between(1,8)
8: Calculate F(agent) according to Equation 2
9: î(agent) = P(agent)

10: Fî(agent) = F(agent)
11: end for
12: Gb = î(agent(1))
13: FGb = Fî(agent(1))

14: for generation ≤ MaxGeneration do
15: for agent ≤ MaxAgents do
16: V(agent) = c1 · (P(agent) - î(agent))
17: V(agent) = V(agent)+ c2 · (P(agent)- Gb)
18: P(agent)= P(agent) · V(agent)
19: Calculate F(agent) according to Equation 2
20: if F(agent) > Fî(agent) then

21: î(agent) = P(agent)
22: Fî(agent) = F(agent)

23: if F(agent) > FGb then
24: Gb = P(agent)
25: FGb = F(agent)
26: end if
27: end if
28: end for
29: Attributes = Gb
30: end for

genes in the selected child (its attributes), i.e., the mutation
step value will be added or deleted from all the attributes
that belong to that individual (child). Algorithm 3 shows
the pseudocode of GA algorithm. The notations are as fol-
lows: pop refers to the population size, F refers to the fitness
function, p1 and p2 refers to parent1 and parent2 respec-
tively, ch1 and ch2 are child1 and child2. Finally, i is the
current individual.

3.1.6 Adding Links based on Feature Similarity

The tuned attributes are then used to add additional links
to the network based on the feature similarity parameter,
fs. We measure the similarity between the nodes by calcu-
lating the correlation between them using Equation 2. The

Algorithm 3 Genetic Algorithm (GA)

1: Input: Attributes, targetStats,
2: Output: TunedAttributes
3: pop = 100 of size (No.nodes × No. Attributes)
4: MaxGeneration = 200
5: Calculate F(pop)
6: for generation ≤ MaxGeneration do
7: for i ≤ pop do
8: r = random number
9: if r < 0.5 then

10: Tournament Selection p1, p2
11: Xover ch1, ch2
12: Mutate ch1, ch2
13: if F(i) < F(ch1) then
14: i = ch1
15: else
16: if F(i) < F(ch2) then
17: i = ch2
18: end if
19: end if
20: end if
21: end for
22: end for

higher the fs parameter is, the more links are generated,
based on the node similarity function. To generate a link,
we select a source node randomly and connect it to the most
similar node, its nearest neighbor in feature space.

3.2 Multi-Link Generator (MLG)

To handle multiplex networks, we also need to match the
co-occurrence statistics of the links in the original social me-
dia dataset. We extract the frequency of each link type and
also a 2D matrix that models the co-occurrence frequency
of pairs of link types. MLG uses the same network growth
process as ASG. Based on the link density parameter (α),
either a new node is generated with a label based on the
label distribution of the target dataset or a new link is cre-
ated between two existing nodes. The link selection process
occurs as follows:

• Selecting the node anchors: The first node is cho-
sen at random from the existing node pool while the
second node is selected based on a combination of label
homophily and degree, using the same procedure as the
ASG generator.

• Determining the main link type: After selecting
the two nodes that will be connected, the main link



type is determined by sampling the prior distribution
of link types in the social media dataset.

• Selecting the secondary links: The existence and
type of a secondary link is based on the co-occurrence
matrix.

Note that although this process never creates more than one
or two links in a single pass, node pairs can be connected
by more than two link types if they are selected again at a
later iteration.

4 Evaluation

Evaluating synthetic network generators is difficult since
performance tends to be application specific; if a generator
does a good job modeling the elements of interest, then it is
less important whether it reproduces other network charac-
teristics. This section presents an evaluation of the perfor-
mance of our synthetic network generators (ASG and MLG)
vs. the Wang et al. generator to show the specific benefits
of our proposed improvements. We compare the following
network statistics: node degree distribution, network diam-
eter, path length, and clustering coefficient. Experiments
were conducted using the best shared parameters for both
generators (α of 0.3, dh of 0.8).

4.1 Social Media Datasets

To evaluate our work, we cloned the following datasets:
DBLP-A: This dataset is a collaboration network that

includes information about 10,708 authors in 6 different
computer science disciplines (Databases, Data Mining, Ar-
tificial Intelligence, Information Retrieval, Computer Vision
and Machine Learning) who published papers between 2006
and 2008 [24]. In this network, the nodes represent the
authors, and two authors are linked to each other if they
co-authored at least one paper. This dataset was used to
evaluate the performance of ASG.

Travian: This dataset was extracted from players par-
ticipating in a massively multiplayer online game from the
real-time strategy genre. This network has 7601 nodes, two
link types (attack and message), and multiple time slices.
This dataset was used to evaluate the performance of MLG.

GameX: This dataset was extracted by observing game-
play between 3453 players in a massively multiplayer on-
line game. This network contains multiple snapshots and
also two link types, message and attack. Nodes have at-
tributes representing crafting, movement, and combat skills
possessed by the player avatar.

4.2 Results

Figure 2 shows the running time for several commonly used
synthetic generators (LFR, GN, Random graph, and Wang
et al. generator) compared to our ASG generator. For our
ASG generator, we provide two experiments: in the first one
we use the particle swarm optimization (PSO) algorithm to
tune the node feature distribution while in the second ex-
periment, a genetic algorithm (GA) is used for modifying
the attributes. All the results are reported over an average
of three runs. Neither version of ASG shows exponential

Figure 2: Running time of different approaches

Figure 3: Fitness improvement of PSO (error bars mark the
standard deviation between runs)

growth in running time, despite the complexity in the net-
work generation process. The running time of ASG with
PSO is practically identical to the Wang et al. generator.
Thus, in all the experiments, we use PSO as our tuning
algorithm since it is faster.

Figure 3 and Figure 4 show fitness function performance
improvement over successive generations with the PSO
and GA algorithms respectively for 100 nodes. It clearly
asymptotes before the 200 generation termination point and
achieves a high correlation coefficient with the target feature
statistics for both algorithms. Since there was little differ-
ence between the results, we opted to use particle swarm
optimization since it is faster.

Table 2 shows the network statistics comparison for the

Figure 4: Fitness improvement of GA (error bars mark the
standard deviation between runs)



Table 2: Network statistics comparison (DBLP-A)

Statistic DBLP-A ASG Wang et al. Generator
# of nodes 10,708 10,708 10,708
# of links 28,000 26,180 ± 86.6 15,292 ± 41.8
Network Diameter 17 10.3 ± 1.1 14.0 ± 1.0
Average Degree 5.23 4.9 ± 0.26 2.9 ± 0.01
Average Clustering Coefficient 0.7 0.01 ± 0.01 0.01 ± 0.001
Avg. Path Length 6.235 5.6 ± 0.68 5.6 ± 0.04

Figure 5: Node degree distributions from DBLP-A, ASG,
and Wang et al. networks

DBLP-A dataset; we compare how well the synthetic net-
works generated by our proposed method (ASG) match the
real dataset and the networks generated by the original
Wang et al. generator. The table shows that our modifica-
tions to the Wang et al. generator result in a more similar
synthetic network, in terms of link number and average de-
gree. The main weakness with both our generator and the
Wang et al. generator is that they do a poor job in duplicat-
ing the clustering coefficient of the original network, since
they lack a procedure for rewiring the network to increase
dyadic closure.

Figure 5 depicts the degree distribution for the three
networks (DBLP-A, ASG and Wang et al.). As shown in
this figure, ASG models the node degree distribution in the
DBLP-A network better than the original Wang et al. syn-
thetic network generator. We zoomed this figure to show
the similarity between the real DBLP-A and our ASG as
shown in Figure 6. We also fit a power law function to the
data from the three networks (Table 3) to determine the
exponent and the R2 (a measure of the goodness of fitting
the graph to the power law curve); ASG simultaneously
matches the exponent well while achieving a good fit.

Table 3: Power law distribution fit

Model Power Law Exponent R2

DBLP-A 0.073 0.6623
ASG 0.078 0.6442
Wang et al. network 0.052 0.5431

Tables 4 and 5 provide the statistics summary for both
Game X and our MLG networks. For generating the syn-
thetic networks, we set α (link density) to a high value
(0.9). Here, MLG synthetic networks have almost the same
diameter and the average path length compared to the cor-

Figure 6: Node degree distributions from DBLP-A, ASG,
and Wang et al. networks after zooming

responding Game X networks. Although the number of
edges for both links in our network are different from the
real ones but it is important to notice that our network can
have more edges in the message network as opposed to the
attack network. Figures 7, 8, 9 and 10 visualize the node de-
gree distribution. In these figures, our networks have fewer
nodes with high and low degrees than the Game X network.

Figure 7: Node degree distributions for the message net-
work from Game X (day 10) and the corresponding MLG
synthetic network

Table 6 shows the network statistics from the Travian
game network and the synthetic network created by MLG;
none of the other generators we evaluated were capable of
duplicating a multiplex network. Our generator performs
well at matching the average diameter and the average path
length of the Travian networks across both link types.



Table 4: Network statistics comparison (Game X, day 10)

Data for day 10 GameX-message MLG-message GameX-attack MLG-attack
# of nodes 3453 3453 3453 3453
# of links 63,327 39,908.3 ± 826.2 5,908 14,280 ± 411.8
Network Diameter 9 9.33± 0.577 15 14.6 ± 0.58
Average Degree 36.679 11.56± 0.24 3.421 4.136± 0.12
Avg. Path Length 3.79 3.77± 0.019 5.688 5.17± 0.06

Table 5: Network statistics comparison (Game X, day 40)

Data for day 40 GameX-message MLG-message GameX-attack MLG-attack
# of nodes 3812 3812 3812 3812
# of links 72,711 49,506.7± 909.3 4,923 10,546.7 ± 438.4
Network Diameter 9 9± 0 22 16.33± 0.578
Average Degree 38.15 12.99± 0.24 2.58 2.87± 0.29
Avg. Path Length 3.827 3.71± 0.03 6.4 6.09± 0.08

Figure 8: Node degree distributions for the attack network
from Game X (day 10) and the corresponding MLG syn-
thetic network

Figure 9: Node degree distributions for the attack network
from Game X (day 40) and the corresponding MLG syn-
thetic network

5 Conclusion

This paper introduces two new synthetic network generators
for cloning social media datasets from a limited set of statis-
tics. Introducing this cloning functionality to network gen-
erators is an important step toward preserving user privacy
when debugging network analysis software. Additionally
our network generators support the creation of continuous
node features and multiple link types, which are commonly

Figure 10: Node degree distributions for the message net-
work from Game X (day 40) and the corresponding MLG
synthetic network

found in real-world human networks. Our proposed gener-
ator, ASG, uses a stochastic optimization procedure (PSO)
to tune the node features to match the target dataset and
modifies the network structure to link nodes with similar
features. Our results show that the proposed improvements
improve the generators’ ability to match the network statis-
tics of the original dataset. In future work, we plan to in-
troduce dyadic closure to our generator; we believe that
this will enable the generator to more accurately match the
clustering coefficient.
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Table 6: Network statistics comparison (Travian)

Travian-message MLG-message Travian-attack MLG-attack
# of nodes 7476 7476 7476 7476
# of links 37,904 13,996 ± 1751.8 77,167 65,242 ± 1549.2
Network Diameter 14 11.3 ± 0.6 23 23.3 ± 3.8
Average Degree 7.34 8.7± 0.2 10.15 1.87 ± 0.2
Avg. Path Length 4.07 4.4 ± 0.04 7.63 7.67 ± 0.4
Avg. Clustering Coefficient 0.21 0.004 ± 0.003 0.13 0.001 ± 0
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