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Abstract

Human societies are inherently complex and highly dynamic, resulting in
rapidly changing social networks, containing multiple types of dyadic inter-
actions. Analyzing these time-varying multiplex networks with approaches
developed for static, single layer networks often produces poor results. To
address this issue, our approach is to explicitly learn the dynamics of these
complex networks. Our research focuses on two problems: 1) analyzing the ef-
fects of aggression and cooperation on the network structure and 2) modeling
link formation patterns across network layers.

To study these problems, we created a rich dataset extracted from observing
social interactions in the massively multiplayer online game Travian. Most
online social media platforms are optimized to support a limited range of social
interactions, primarily focusing on communication and information sharing. In
contrast, relations in massively-multiplayer online games (MMOGs) are often
formed during the course of gameplay and evolve as the game progresses.
To analyze the players’ behavior, we constructed multiplex networks with link
types for attack, communication, and trading. In this chapter, we illustrate the
versatility of the Travian dataset with case studies of how to analyze different
aspects of social network dynamics.
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Figure 1.1 A dynamic multiplex network with changing community
structure. Each person is associated with a node in a network. The
network structure is dynamic and changes over time as new users
join and social connections are formed. Adding multiple layers to the
network allows a variety of interactions to be represented within the
same network. Users self-organize into communities based on shared
interests that also change over time.

1.1 Introduction

The natural flux of people’s changing social ties and interests generates
a dynamic social network. This network can be observed by captur-
ing daily or weekly snapshots of user activities in massively multiplayer
online games (MMOGs), allowing these environments to serve as “lab-
oratories” for studying large-scale human behaviors. It is informative
to visualize this data as a set of graphs for each time period, where
vertices correspond to users and edges represent interactions. Multiple
types of dyadic associations can be represented by encoding the data
as a multiplex network, where the links at each layer represent a dif-
ferent type of interaction between the same set of nodes. Often these
network layers coevolve, due to interdependencies between the social
processes represented by different layers. The main goal of our research
is to study large-scale human behaviors in coevolving multiplex networks
(Figure 1.1). Due to the lack of good standardized datasets, there has
been relatively little research on dynamic multiplex networks, as com-
pared to static single layer ones. Our research has been conducted using
a dynamic multiplex network dataset collected from the Travian mas-
sively multiplayer online game.

Massively multiplayer online games (MMOGs) are highly graphical 2-
or 3-D videogames played online, allowing individuals to interact not
only with the gaming software (the designed environment of the game
and the computer-controlled characters within it) but with other play-
ers as well. These virtual environments are persistent social and material
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worlds where players are usually free to do as they desire. They are no-
torious for their peculiar combination of designed “escapist fantasy” yet
emergent “social realism” (Kolbert, 2001): in a setting of wizards and
elves, princes and knights, people save for homes, create basket indices
of the trading market, build relationships of status and solidarity, and
worry about crime. Given their increasing domination of the entertain-
ment industry, widespread and growing popularity with people of all
age groups, ethnicities, and economic classes, and purported addictive
quality for those who plug in, MMOGs are quickly becoming a key form
of entertainment and a major mechanism of socialization for young and
old alike; they are ripe for cultural/cognitive analysis of the social and
material practices attending them.

Most online social media platforms are optimized to support a limited
range of social interactions, primarily focusing on communication and
information sharing. In contrast, relations in massively-multiplayer on-
line games are often formed during the course of gameplay and evolve as
the game progresses. Even though these relationships are conducted in a
virtual world, they are cognitively comparable to real-world friendships
or co-worker relationships (Yee, 2006). The amount and richness of so-
cial intercourse makes it possible to observe a broader gamut of human
experiences within MMOGs such as World of Warcraft (Thurau and
Bauckhage, 2010), Sony EverQuest II (Roy et al., 2013; Keegan et al.,
2010), and Travian (Korsgaard et al., 2010; Wigand et al., 2012) than can
be done with other data sources. They have been particularly valuable
for studying groups, teams, and organizations, since banding together
yields economic and combat advantages in most games. Geographically-
separated players must work together to achieve shared goals using a
similar combination of email, chat, and videoconferencing as remote
employees, hence game guilds can be viewed as analogous to virtual
workplace organizations (Korsgaard et al., 2010; Wigand, 2017). By ob-
serving the changing social interactions within the Travian MMOG, we
have been able to model the evolution of the social network and its
constituent communities while comparing the model predictions against
ground truth information collected from player logs. Moreover it is pos-
sible to study the concurrence of different types of social interactions
within multiplex networks. This chapter presents an overview of our re-
search on link prediction and community detection within the Travian
MMOG.
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1.2 Travian MMOG

Travian is a popular browser-based real-time strategy game with more
than 5 million players. Games can be played in over 40 different lan-
guages on more than 300 game servers worldwide. Playing with up to
20,000 users on one server with scarce resources, actors soon find them-
selves in a social dilemma (Dawes, 1980), which is typical for organi-
zations, project teams and economies where parties need to both coor-
dinate and compete with one another. Participants start the game as
chieftains of their own villages and can choose to be a member of one of
three tribes (Gaul, Roman, or Teuton). Each of these three tribes has its
own advantages and disadvantages. For instance, Teutons produce the
cheapest military units and are the best raiders, whereas Gauls are the
best at living in peace and have fast units and merchants. Players seek
to improve their production capacity and construct military units in or-
der to expand their territory through a combination of colonization and
conquest. Each game cycle lasts a fixed period (a few months) during
which time the players vie to create the first civilization to complete con-
struction on one of the Wonders of the World. In the race to dominate,
actors form alliances of up to 60 members under a leader or a leader-
ship team. Alliances are equipped with a shared forum, a chat room and
an in-game messaging system. Similar to the real world, teamwork and
negotiation skills play a crucial role in game success.

Conflicts in Travian can be divided into two categories: attacks and
raids. The goal of an attack is to destroy its target, whereas raids are
meant to gather bounty and are much less vicious. The armies will do
battle until at least one side is reduced in strength by 50%, and there-
fore the loss on both sides is usually smaller. A trade is an exchange
of different resources (gold, wood, clay, wheat) necessary to upgrade a
village’s buildings. In Travian, villages may trade their resources with
other villages if both villages have a marketplace. Travian has an in-game
messaging system (IGM) for player communication. IGMs can also in-
clude broadcast messages, i.e. messages sent to all players by the game
moderators. Note these messages were not included in our experiments
as their volume could introduce bias in the results. For our analysis, we
used data collected from a server in Germany specifically designed for
research purposes. The data set contains a variety of tables including
logs and reports from different actions of users. To study the dynamics
of social processes within the game, we structured the multiplex network
into raid, trade, and communication layers.
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1.3 Network Analysis

Network structure analysis has become an increasingly important as-
pect of understanding user behavior on social media platforms. This
methodology places relations and links among entities, or people, at
the center of investigation. In the last decade, much research has been
performed on characterizing the dynamics of complex systems and ex-
tracting non-trivial properties using massive network data from social,
biological, and technological sources. Example applications include: pre-
dicting future links among the actors of a network (Liben-Nowell and
Kleinberg, 2007; Bringmann et al., 2010), detecting and studying the
structure of communities (Alvari et al., 2016) and mining common user
behavior patterns (Benevenuto et al., 2009; Cook et al., 2010).

Many studies on online social networks, the WWW, and biological net-
works have focused on the macroscopic properties of static networks (Falout-
sos et al., 1999; Albert and Barabási, 2002; Broder et al., 2000; Strogatz,
2001). However, social networks are not static. They are dynamic struc-
tures that evolve over time either by the addition of new vertices or by
new connecting edges. Thus, modeling network dynamics is important
and the focus of a number of research efforts (Backstrom et al., 2006;
Barabási and Albert, 1999; Leskovec et al., 2008). Also in the real world,
networks are often multiplex, containing multiple types of relationships;
in some cases, aggregating different interaction types loses information
about the structure and function of the original system (Kurant and Thi-
ran, 2006; Buldyrev et al., 2010). For instance, the same set of individuals
in a social system can be connected through friendship, collaboration,
communication and co-location relationships; in massively multiplayer
online games, players have a variety of interactions such as trading, mes-
saging and attacking. In these systems, each type of relationship may
have a different semantic meaning, relevance, importance, and cost, so
that treating all the links as being equivalent discards key information.
Multiplex networks serve as a better description of these systems; each
node appears in a set of different layers, and each layer describes all the
edges of a given type.

Recently, a considerable amount of effort has been devoted to the
characterization and modeling of multiplex networks, with the aim of
creating a consistent mathematical framework to study, understand and
reproduce the structure of these systems. For instance, it is feasible to
model multiplex networks using a statistical mechanics approach (Bian-
coni, 2013). Another alternative is to simply extend classical network
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metrics to handle multiple layers (Sole-Ribalta et al., 2013; De Domenico
et al., 2013a) and to model the growth of systems of this kind (Nicosia
et al., 2013). An active research area is characterizing the dynamics and
the emergent properties of multilayer systems, especially with respect to
contagious properties (Saumell-Mendiola et al., 2012), information prop-
agation (Buono et al., 2014; Min and Goh, 2013), cooperation (Gómez-
Gardenes et al., 2012), diffusion processes (Gomez et al., 2013) and ran-
dom walks (De Domenico et al., 2013b). The subsequent sections of the
chapter chronicle a set of studies that we completed using multiplex net-
works extracted from the Travian MMOG, and the algorithms that we
developed for modeling the evolution of communities and the dynamics
of link formation.

1.4 Analyzing the Effects of Aggression on Network
Structure

MMOGs have been a fertile testing ground for many types of human
studies, enabling scientists to overcome key difficulties in studying social
dynamics by providing an experimental platform for collecting high res-
olution data over longer time period (Thurau and Bauckhage, 2010; Ko-
rsgaard et al., 2010; Wigand et al., 2012; Roy et al., 2013). One research
question of interest is how conflict shapes the underlying social network;
in MMOGs, conflict and cooperation are inextricably linked since many
attacks are launched by coalitions of players to gain resources, control
territory, or subjugate enemies. It is easier to study aggression in virtual
worlds since it is both more common and simpler to quantify.

In real-life there are myriad potential motivations for choosing to fight.
Humphreys and Weinstein (2008) categorized key determinants of par-
ticipation in conflicts as being long-term grievances (i.e. economic or
political disenfranchisement), selective incentives (money or safety), and
community cohesion. Community cohesion predicts that a person is more
likely to join the conflict if they are members of a tightly-knit community
and their friends have already joined. This factor is the most relevant to
fighting within MMOGs. Not only are there conflicts between guilds and
alliances, but pick-up groups may spontaneously form to tackle larger
challenges such as boss fights (Bennerstedt et al., 2012).

In Travian, attacking (raiding) is one of the easiest pathways for gain-
ing the necessary resources for growing one’s civilization, and players
need to rush to grow their civilizations within a short period of time.
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Table 1.1 Travian attack, message, and trade network statistics.

Parameter/Network Attack Message Trade
# of Vertices 4418 3092 2649
Frequency 633105 451669 271039
Diameter 17 9 10
Avg. Path Length 5.312 3.471 2.849
Avg. Degree 7.998 14.591 32.828
Avg. Clustering Coefficient 0.065 0.319 0.154

Here we study 1) how the structure of the attack layer differs from the
communication and trade layers and 2) how communication, trade, and
geographic connections affect the likelihood of two players engaging in
hostilities. For this study, we used data from one Travian game cycle
played on a high speed server in an expedited game (a period of 144
days). Our analysis was conducted on a 30 day period in the middle of
the game cycle. This period has fewer transient bursts of activity and a
more stable network than the early period (which has many less com-
mitted players who drop out) and the late period where the focus is on
the Wonder of the World construction.

Table 1.1 shows the statistics for attack, trade, and message networks
during the time period selected for this analysis. In these networks, each
node represents an individual player, and directed edges represent at-
tacks, trades, and messages between players. The attack graph in Tra-
vian has a higher diameter, lower average degree, and lower clustering
coefficient than either the message or trade graphs.

The degree distributions of attack, messages, and trades conform to
a power law distribution (Figure 1.2). Clauset et al. (2009) proposed
a robust estimating technique to estimate the parameters of a power
law; to verify the distributions, we used this method which employs a
maximum likelihood estimator. This model calculates the goodness-of-
fit between the data and the power law. If the resulting value is greater
than 0.1 the power law is a plausible hypothesis for the data, otherwise
it is rejected.

Assortativity is a preference for a network’s nodes to attach to others
that are similar in some way. Though the specific measure of similarity
may vary, network theorists often examine assortativity in terms of a
node’s degree. Correlations between nodes of similar degree are found
in the mixing patterns of many observable networks. For instance, in
social networks, highly connected nodes tend to be connected with other
high degree nodes. This tendency is referred to as assortative mixing, or
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(a)

(b)

(c)

Figure 1.2 Degree distribution (log-log scale) for (a) attack, (b) mes-
sage, and (c) trade networks

assortativity. On the other hand, technological and biological networks
typically show disassortative mixing, or dissortativity, as high degree
nodes tend to attach to low degree nodes (Newman, 2002).

For Travian, as shown in Figure 1.3, while the message network dis-
plays disassortative mixing, attack and trade networks tend to show a
non-assortative mixing. This suggests that players who send more mes-
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(a)

Figure 1.3 Travian node degree assortativity

(a)

Figure 1.4 Probability of attacks occurring between a pair of users
vs. the number of messages they have exchanged (P(Attack and Mes-
sage=x))

sages are in contact with others who rarely send messages; communica-
tion in Travian often flows from alliance leaders outward to the other
alliance members, reflective of a spoke-hub communication structure. In
contrast, the degree of the members appears to be an unimportant con-
sideration in dictating connectivity in the attack and trade networks.
Non-assortative networks may arise either because the networks possess
a balanced number of assortative and disassortative links or because a
greater number of links in one direction is counterbalanced by a greater
weight in the other (Piraveenan et al., 2012).

Attacks in Travian are generally inversely proportional to other types
of activity. In Travian, in 41% of cases, players do not attack other play-
ers with whom they have been in contact at least once (Figure 1.4).
A large number of players do not attack players with whom they have
traded resources. As shown in Figure 1.5, 28% of the attacks in Travian
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(a)

Figure 1.5 Probability of attacks occurring between a pair of users
vs. the number of trades they have made (P(Attack and Message=x))

occurred between two players without any trade history. Trading with
other players indicates that they have desirable resources, making them
worth attacking, and after only one trade, the players are unlikely to
have established the sense of trust that may deter an attack. We believe
that in some cases players who have never traded together or exchanged
messages are geographically separated; hence they are less likely to at-
tack each other because they are unaware of each other’s existence. To
test this hypothesis, we analyzed the probability of attack based on the
distance between player territories in Travian (Figure 1.6). To estimate
distance, we calculated the territory centroids by averaging the latitudes
and longitudes of the villages. Then, standard Euclidean distance was
used to measure the distance between each pair of players in the attack
network. Our analysis shows that attacks between immediate neighbors
are frequent. Attacks with close (but not immediate) neighbors are com-
mon, followed by a decay in attack activity with distance. Attacks are
generally rare between alliance and guild members, indicating a strong
level of trust in those relationships. In Travian, 4% of the attack edges
are between two players within the same alliance.

Similar to real-life, social structures play a significant role in the like-
lihood of inter-player conflict. In summary, our analysis reveals the fol-
lowing:
1 The attack network has a higher diameter, lower average degree, and

lower clustering coefficient than either the message or the trade net-
works.

2 All networks have similar power law degree distributions, but dif-
ferent degree assortativity. The Travian attack network shows non-
assortative mixing.
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Figure 1.6 Probability of attacks based on players’ distance from each
other

3 The general trend is that attacks are inversely proportional to mes-
sage frequency, trade frequency, and distance, with some specific ex-
ceptions. Players rarely attack fellow alliance or guild members.

1.5 Modeling the Evolution of Alliance Structures

In addition to facilitating our understanding of aggression, Travian is
also an interesting testbed for studying cooperation, since forming a
strong alliance is an important stepping stone towards achieving the fi-
nal objective of creating the Wonder of the World. Here we analyze how
alliances change and evolve during the course of the Travian game cycle.
Although lacking in formal alliances, most real-world social networks
are inherently dynamic and are composed of communities that are con-
stantly changing in membership. As a result, recent years have witnessed
increased attention toward the challenging problem of detecting evolv-
ing communities. As the network changes, user communities evolve and
can grow, shrink, or disappear. Intuitively we expect more edges inside
the community compared to its outside, i.e. intra-connections tend to be
more common than inter-connections. Community detection can help us
understand the hidden social structure of the user populations, but the
dynamic aspect of networks can pose problems for standard algorithms.

Formally, given snapshots T = {T t | 8t, t = 1, ...,M} of a dynamic
network and their corresponding underlying graphs Gt

= (V t, Et

), with
nt

= |V t| vertices and mt

= |Et| edges, where t=1,...,M, we aim to
detect community structure C = {Ct | 8t, t = 1, ...,M} of the network.
The process of community detection is treated as an iterative game per-
formed in a dynamic multi-agent environment in which each node of
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Figure 1.7 Change in average utility summed over all nodes vs. iter-
ation for the Travian-Trades dataset (one snapshot with 964 nodes).
The algorithm converges after 6680 iterations which requires 2.8 sec-
onds to complete.

the underlying graph is a selfish agent who decides to maximize its to-
tal utility u

i

. For every snapshot of the network, a set of agents, one
representing each node in the graph, is created to play the community
formation game. The community structure is initialized either with a
set of singleton communities or with communities passed from previous
snapshots. During game play, an agent is randomly selected (without
replacement) from the pool; it selects an action (join, leave, switch, or
no op) by calculating the action that yields the highest utility. After the
agent plays, the community structure is updated. The game is played
until the number of agents changing communities between permutations
falls below the threshold, or the maximum iteration is reached. Fig-
ure 1.7 shows an example of the convergence in utility vs. iteration. The
algorithm maintains a candidate set of multiple community assignments
per agent until the last iteration and then selects the assignment with
the highest utility function as the final disjoint partition. Our method,
D-GT (Dynamic Game Theoretic community detection, originally in-
troduced in (Alvari et al., 2011)), outperforms several other state of the
art methods for detecting changing alliances within the Travian game.
We also created a version of the algorithm, D-GTG (D-GT with passing
Ground Truth) to handle cases where the alliance structure is partially
known. For instance, MMOG guilds and alliances often have a leadership
council that is openly publicized or easily inferred based on the content
of chat messages. D-GTG leverages this information by using a select
seed group of ground truth communities with predefined size to initialize
the algorithm.
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Table 1.2 Dataset Summary
Data Messages Trades

Min # of nodes 1,373 964
Max # of nodes 2,100 1,336
Min # of edges 8,511 8,080
Max # of edges 19,242 10,221
# of snapshots 30 30

Figure 1.8 The structural changes in the Travian Trades dataset over
30 snapshots.

1.5.1 Evaluation

For this evaluation, we used two layers of Travian multiplex network:
Messages and Trades. Travian has an in-game messaging system (IGM)
for player communication which was used to create our Messages net-
work. Each player can submit a request to trade a specific resource. If
another player finds this request interesting, he/she can accept it and
the trade will occur; this data was used to build the Trade network.
About 70% of messages are exchanged between users in the same al-
liance (community) making it more predictive of community structure
than the Trades network since only 30% of edges in this network rep-
resent trades occurred between players within the same alliance. The
structural changes in both Travian datasets are shown in Figures 1.8
and 1.9; statistics are provided in Table 1.2. Modeling the evolution of
alliances is harder during periods of significant structural change, when
large numbers of edges are being added and deleted.

Figure 1.9 The structural changes in the Travian Messages dataset
over 30 snapshots.
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We compare D-GT with the following community detection baselines:

• LabelRankT (Xie et al., 2013). LabelRankT functions according
to the generalized LabelRank, in which each node requires only local
information during label propagation processing. Several parameters
must be set before running the algorithm on the data; we used the
best performing values reported in the original paper.

• iLCD (Cazabet et al., 2010). iLCD is another well known com-
munity detection approach for dynamic social networks which works
by first adding edges and then merging the similar ones. It takes the
dynamics of the network into account.

• OSLOM (Lancichinetti et al., 2011). The Order Statistics Local
Optimization Method (OSLOM) is a versatile community detection
algorithm that can handle most types of graph properties including
edge directions and weights, overlapping communities, hierarchies and
community dynamics. It is based on the local optimization of a fitness
function expressing the statistical significance of clusters with respect
to random fluctuations.

• InfoMap (Rosvall and Bergstrom, 2008). InfoMap is a static
community detection method that calculates the probability flow of
random walks and decomposes the network into modules by compress-
ing a description of the flows. Since this is a static algorithm, we run
it separately on each snapshot.

• Louvain (Blondel et al., 2008). The Louvain method is a static
community detection approach designed to optimize modularity us-
ing heuristics. Small communities are found by optimizing modularity
locally for all nodes. Then each community is grouped into a single
node, and the first step is repeated. We run this algorithm separately
on every network snapshot.

Algorithms were evaluated together on a system with 12G of RAM and
an Intel CPU 2.53 GHz, and all reported results were averaged over ten
repetitions. The best way to measure the performance of a community
detection algorithm is to determine how similar the partition delivered
by the algorithm is to the desired partition, assuming ground truth infor-
mation about the community membership exists. Out of several existing
measures (Fortunato, 2010), we selected the standard version of normal-
ized mutual information (NMI) (Danon et al., 2005), which is computed
as follows:



1.5 Modeling the Evolution of Alliance Structures 15

I
norm

(X,Y) =

2I(X,Y )

H(X) +H(Y )

,

(1.1)

where I(X,Y ) is mutual information between two random variables X

and Y (i.e. two community partitions) (MacKay, 2003):

I(X,Y) =

X

x

X

y

P (x, y) log
P (x, y)

P (x)P (y)
,

(1.2)

Here P (x) indicates the probability that X = x and joint probability
P (x, y) equals to P (X = x, Y = y). H(X) and H(Y ) are the entropies
of X and Y , respectively. NMI lies in the range [0,1], equaling one when
two partitions X and Y are exactly identical and zero when they are
totally independent.

Figure 1.10 shows the average performance of D-GT vs. OSLOM,
LabelRankT, iLCD, InfoMap and Louvain. Unlike many social media
datasets, the Travian dataset contains ground truth alliance member-
ship information that can be used to calculate the NMI. D-GT outper-
forms all other methods (p < 0.01) on this metric. Figure 1.11 shows
D-GT’s performance at predicting the number of alliances, as measured
by summed absolute difference between predicted and actual community
numbers (lower is better). Note that it is possible to do acceptably well
on the NMI metric while still incorrectly estimating the actual num-
ber of communities in the dataset. OSLOM also scores well on both
metrics (NMI and number of communities). Additionally, it is useful to
examine how the number of predicted communities varies between con-
secutive snapshots. In most cases, the number of communities should
remain relatively stable, since the structure of real-world communities
rarely changes completely in short period of time. This is definitely true
in Travian, where the number of alliances changes relatively slowly. Fig-
ure 1.12 shows the number of predicted communities vs. time on the
Travian (Trades) dataset; all of the methods make more consistent pre-
dictions over time than LabelRankT.

In some scenarios, it is plausible that the community membership
of a small number of agents is known in advance, and the community
detection procedure should leverage this information. To handle this
problem, we developed a variant (D-GTG: D-GT with passing Ground
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Figure 1.10 Normalized mutual information (NMI) evaluation met-
ric on the two Travian datasets with ground truth community mem-
bership information; results are averaged over all snapshots. D-GT,
LabelRankT, OSLOM, iLCD, InfoMap and Louvain.

Figure 1.11 Absolute difference between the predicted number of
communities and the actual number for the two Travian datasets.
D-GT and OSLOM achieve the best performance overall at correctly
predicting the number of alliances.

Truth). Fig. 1.13 shows the performance improvements from increasing
the size of the seed groups from 0–20% of the total number of agents for
the Travian (Messages) dataset, and Fig. 1.14 shows the performance
increase for Travian (Trades). Note that extracting community mem-
bership information from the network structure of Travian (Trades) is
a difficult problem because only 30% of the edges in Travian (Trades)
occur between players within the same alliance (community). Also the
dataset has a high number of isolated nodes; about 50% of the nodes do
not belong to any alliance.

In summary, our results demonstrate that D-GT can accurately track
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Figure 1.12 Number of predicted communities vs. time for the Tra-
vian (Trades) dataset. LabelRankT’s predicted number of commu-
nities varies drastically between time steps, whereas all other algo-
rithms make more consistent predictions.

Figure 1.13 D-GTG NMI vs. seed group size on Travian (Messages)

the evolution of alliance structure. For this task, it outperforms other dy-
namic community detection methods including LabelRankT, iLCD, and
OSLOM. In cases where the community membership of a small number

Figure 1.14 D-GTG NMI vs. seed group size on Travian (Trades)
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Figure 1.15 Evolution of a network over time. Black nodes have
higher rates of link formation. This behavior can only be captured
by taking temporal information into account; RPM identifies these
nodes through the use of time series.

of players (e.g. the guild leadership) is known D-GTG can leverage this
information to improve the NMI score.

1.6 Rate Prediction Model for Link Formation

Many social networks are constantly in flux, with new edges and vertices
being added or deleted daily. Fully modeling the dynamics that drive the
evolution of a social network is a complex problem, due to the large num-
ber of individual and dyadic factors associated with link formation. Here
we focus on predicting one crucial variable–the rate of network change.
Not only do different networks change at different rates, but individ-
uals within a network can have disparate tempos of social interaction.
This section describes how modeling this aspect of network dynamics can
ameliorate performance on link prediction tasks. We introduce a new su-
pervised link prediction framework, RPM (Rate Prediction Model). In
addition to network similarity measures, RPM uses the predicted rate
of link modifications, modeled using time series data.

1.6.1 Problem Formulation

The problem of link prediction in dynamic networks is defined as: Let
graph G be the social network of interest denoted as (V,E), where V is
the set of nodes and E 2 V ⇥ V is the set of (directed or undirected)
interactions. Let G

t

be the subgraph of G containing the nodes and edges
recorded at time t. In turn, let G

t+1 be the subgraph of G observed at
time t + 1. Using network structure up to time t, our goal is then to
predict future structure of the network at time t+ 1.
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1.6.2 Background

Link prediction approaches commonly rely on measuring topological sim-
ilarity between unconnected nodes (Al Hasan and Zaki, 2011; Getoor and
Diehl, 2005; Wang et al., 2007). It is a task well suited for supervised
binary classification since it is easy to create a labeled dataset of node
pairs; however, the datasets tend to be extremely unbalanced with a
preponderance of negative examples where links were not formed. Topo-
logical metrics are used to score node pairs at time t in order to predict
whether a link will occur at a later time t0(t0 > t). However, even though
these metrics are good indicators of future network connections, they are
less accurate at predicting when the changes will occur (the exact value
of t0). To overcome this limitation, we explicitly learn link formation
rates for all nodes in the network; first, a time series is constructed for
each node pair from historic data and then a forecasting model is ap-
plied to predict future values. The output of the forecasting model is
used to augment topological similarity metrics within a supervised link
prediction framework. Prior work has demonstrated the general util-
ity of modeling time for link prediction (e.g., (Huang and Lin, 2009;
Berlingerio et al., 2009; Potgieter et al., 2009)); our results show that
our specific method of rate modeling outperforms the use of other types
of time series. Networks formed from different types of social processes
(e.g., trades vs. communication) may vary in their dynamics, but our
experiments show that RPM outperforms other standard approaches on
multiple types of datasets.

1.6.3 Time Series

To construct the time series, the network G observed at time t must
be split into several time-sliced snapshots, that is, states of the network
at different times in the past. Afterwards, a window of prediction is
defined, representing how further in the future we want to make the
prediction. Then, consecutive snapshots are grouped in small sets called
frames. Frames contain as many snapshots as the length of the window
of prediction. These frames compose what is called Framed Time-Sliced
Network Structure (S) (Soares and Prudêncio, 2012). Let G

t

be the
graph representation of a network at time t. Let [G1, G2, ..., GT

] be the
frame formed by the union of the graphs from time 1 to T . Let n be the
number of periods (frames) in the series. And let w be the window of
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prediction. Formally, S can be defined as:

S = {[G1, ..., Gw

], [G
w+1, ..., G2w], ...[G(n�1)w+1, ..., Gnw

]}

For instance, suppose that we observed a network from day 1 to day
9, and our aim is to predict links that will appear at day 10. In this
example, the forecast horizon (window of prediction) is one day. Our
aim here is to model how the networks evolve every day in order to
predict what will happen in the forecast horizon. Figure 1.15 shows an
example of the evolution of network over time.

1.6.4 Network Similarity Metrics

Here, we use a standard set of topological metrics to assign scores to
potential links:
1 Common Neighbors (CN) (Newman, 2001) is defined as the number of

nodes with direct relationships with both members of the node pair:

CN(x, y) = |�(x) \ �(y)| (1.3)

where �(x) is the set of neighbors of node x.
2 Preferential Attachment (PA) (Barabási et al., 2009; Liben-Nowell

and Kleinberg, 2003) assumes that the probability that a new link is
created is proportional to the node degree |�(y)|. Hence, nodes that
currently have a high number of relationships tend to create more
links in the future:

PA(x, y) = |�(x)|⇥ |�(y)| (1.4)

3 Jaccard’s Coefficient (JC) (Tan et al., 2005) assumes higher values for
pairs of nodes that share a higher proportion of common neighbors
relative to total number of neighbors they have:

JC(x, y) =
|�(x) \ �(y)|
|�(x) [ �(y)| (1.5)

4 Adamic-Adar (AA) (Adamic and Adar, 2003), similar to JC, assigns
a higher importance to the common neighbors that have fewer total
neighbors. Hence, it measures exclusivity between a common neighbor
and the evaluated pair of nodes:

AA(x, y) =
X

z2|�(x)\�(y)|

1

log(|�(z)|) (1.6)



1.6 Rate Prediction Model for Link Formation 21

These metrics serve as 1) unsupervised baseline methods for evaluating
the performance of RPM and 2) are also included as features used by
the supervised classifiers.

1.6.5 Method

RPM treats the link prediction problem as a supervised classification
task, where each data point corresponds to a pair of vertices in the social
network graph. This is a typical binary classification task that could be
addressed with a variety of classifiers; we use the Spark support vector
machine (SVM) implementation. All experiments were conducted using
the default parameters of the Spark MLlib package: the SVM is defined
with a polynomial kernel and a cost parameter of 1. Algorithms were
implemented in Python and executed on a machine with Intel(R) Core
i7 CPU and 24GB of RAM.

In order to produce a labeled dataset for supervised learning, we re-
quire timestamps for each node and edge to track the evolution of the
social network over time. We then consider the state of the network for
two different time periods t and t0 (with t < t0). The network infor-
mation from time t is used to predict new links which will be formed
at time t0. One of the most important challenges with the supervised
link prediction approach is handling extreme class skewness. The num-
ber of possible links is quadratic in the number of vertices in a social
network, however the number of actual edges is only a tiny fraction of
this number, resulting in large class skewness.

The most commonly used technique for coping with this problem is
to balance the training dataset by using a small subset of the negative
examples. Rather than sampling the network, we both train and test
with the original data distribution and reweight the misclassification
penalties. Let G(V,A) be the social network of interest. Let G

t

be the
subgraph of G containing the nodes and edges recorded at time t. In turn,
let G

t

0 be the subgraph of G observed at time t0. In order to generate
training examples, we considered all pairs of nodes in G

t

. Even though
this training paradigm is more computationally demanding it avoids the
concern that the choice of sampling strategy is distorting the classifier
performance (Lichtenwalter et al., 2010).

Selecting the best feature set is often the most critical part of any
machine learning implementation. In this dissertation, we supplement
the standard set of features extracted from the graph topology (described
in the previous section), with features predicted by a set of time series.
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Let F
t

(t = 1, ..., T ) be a time series with T observations with A
t

defined
as the observation at time t and F

t+1 the time series forecast at time
t + 1. First, we analyze the performance of the following time series
forecasting models for generating features:
1 Simple Mean: The simple mean is the average of all available data:

F
t+1 =

A
t

+A
t�1 + ...+A

t�T

T

2 Moving Average: This method makes a prediction by taking the
mean of the n most recent observed values. The moving average fore-
cast at time t can be defined as:

F
t+1 =

A
t

+A
t�1 + ...+A

t�n

n

3 Weighted Moving Average: This method is similar to moving av-
erage but allows one period to be emphasized over others. The sum
of weights must add to 100% or 1.00:

F
t+1 =

X
C

t

A
t

4 Exponential Smoothing: This model is one of the most frequently
used time series methods because of its ease of use and minimal data
requirements. It only needs three pieces of data to start: last period’s
forecast (F

t

), last period’s actual value (A
t

) and a value of smoothing
coefficient,↵, between 0 and 1.0. If no last period forecast is available,
we can simply average the last few periods:

F
t+1 = ↵A

t

+ (1� ↵)F
t

We identify which time series prediction model produces the best rate
estimate, according to the AUROC performance of its RPM variant. Pa-
rameters of weighted moving average and exponential smoothing were
tuned to maximize performance on the training dataset. Figure 1.16
shows that the best performing model was Weighted Moving Average
with n = 3 and parameters C1, C2 and C3 set to 0.2,0.3, and 0.5 respec-
tively.

1.6.6 Results

Table 1.3 gives the network statistics for each of the datasets used in
the evaluation. Our evaluation measures receiver operating characteris-
tic (ROC) curves for the different approaches. These curves show achiev-
able true positive rates (TP) with respect to all false positive rates (FP)
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(a) (b)

Figure 1.16 Performance of RPM using different forecasting models
on (a) Travian Messages and (b) Travian Trades. Weighted Moving
Average is the best performer and is used in RPM.

by varying the decision threshold on probability estimations or scores.
For all of our experiments, we report area under the ROC curve (AU-
ROC), the scalar measure of the performance over all thresholds. Since
link prediction is highly imbalanced, straightforward accuracy measures
are well known to be misleading; for example, in a sparse network, the
trivial classifier that labels all samples as missing links can have a 99.99%
accuracy.

Figure 1.17 Dynamics of the Travian network (trades: left and mes-
sages: right). The line with square markers shows the new edges
added, and the line with circle markers shows edges that did not
exist in the previous snapshot.

In all experiments, the algorithms were evaluated with stratified 10-
fold cross-validation. For more reliable results, the cross-validation pro-
cedure was executed 10 times for each algorithm and dataset. We bench-
mark our algorithm against Supervised-MA (Soares and Prudêncio,
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Table 1.3 Dataset Summary

Data Travian (Messages) Travian (Trades)

No. of nodes 2,809 2,466
Link (Class 1) 44,956 87,418
No Link (Class 0) 7,845,525 5,993,738
No. of snapshots 30 30

Table 1.4 AUROC Performance
Algorithms / Networks Travian(Messages) Travian(Trades)

RPM 0.8970 0.7859
Supervised-MA 0.8002 0.6143

Supervised 0.7568 0.7603
Common Neighbors 0.4968 0.5002
Jaccard Coefficient 0.6482 0.4703

Preferential Attachment 0.5896 0.5441
Adamic/Adar 0.5233 0.4962

2012). Supervised-MA is a state of the art link prediction method that
is similar to our method, in that it is supervised and uses moving aver-
age time series forecasting. In contrast to RPM, Supervised-MA creates
time series for the unsupervised metrics rather than the link forma-
tion rate itself. Supervised is a baseline supervised classifier that uses
the same unsupervised metrics as features without the time series pre-
diction model. As a point of reference, we also show the unsupervised
performance of the individual topological metrics: 1) Common Neigh-
bors, 2) Preferential Attachment, 3) Jaccard Coefficient, and 4)
Adamic-Adar. Table 1.4 presents results for all methods on Travian
(communication and trade layers). Results for our proposed method are
shown using bold numbers in the table; in all cases, RPM outperforms
the other approaches. Two-tailed, paired t-tests across multiple network
snapshots reveal that the RPM is significantly better (p < 0.01) on all
four datasets when compared to Supervised-MA.

We discover that explicitly including the rate feature (estimated by a
time series) is decisively better than the usage of time series to forecast
topological metrics. The rate forecast is useful for predicting the source
node of future links, hence RPM can focus its search on a smaller set
of node pairs. We believe a combination of topological metrics is useful
for predicting the destination node, but that relying exclusively on the
topological metrics, or their forecasts, is less discriminative.

The performance of RPM relies on three innovations: 1) explicit mod-
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eling of link formation rates at a node level, 2) the usage of multiple
time series to leverage information from earlier snapshots, 3) training
and testing with the full data distribution courtesy of the Spark fast
cluster computing system. Rate is an important concept in many gener-
ative network models, but its usage has been largely ignored within dis-
criminative classification frameworks. For instance, the stochastic actor-
oriented model of network dynamics contains a network rate component
that is governed by both the time period and the actors (Snijders et al.,
2010). RPM does not attempt to create a general model of how the rate
is affected by the properties of the actor (node), but instead predicts the
link formation rate of each node with a time series. By accurately iden-
tifying the most active individuals in the social network, RPM achieves
statistically significant improvements over related link prediction meth-
ods. Our experiments were performed on networks created by a variety of
social processes, including communication and trading; they show that
the rate of link generation varies with the type of network.

Link Prediction in Coevolving Multiplex Networks

As social media platforms offer customers more interaction options, such
as friending, following, and recommending, analyzing the rich tapestry
of interdependent user interactions becomes increasingly complicated.
Although standard social network analysis techniques (Scott, 2012) offer
useful insights about these communities, there is relatively little theory
from the social sciences on how to integrate information from multiple
types of online interactions. Rather than organizing this data into social
networks separately chronicling the history of different forms of user
interaction, dynamic multiplex networks (Kivela et al., 2014) offer a
richer formalism for modeling the social fabric of online societies. This
section introduces a comprehensive framework, MLP (Multiplex Link
Prediction), in which link existence likelihoods for the target layer are
learned from the other network layers. These likelihoods are used to
reweight the output of a single layer link prediction method that uses
rank aggregation to combine a set of topological metrics.

A multiplex network is a multilayer network that shares the same set
of vertices across all layers. This network can be modeled as a graph
G =< V,E > where V is the set of vertices and E is the set of edges
present in the graph. The dynamic graph G = {G0, G1, ..., Gt

} represents
the state of the network at different times. The network is then defined
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as: G
t

=< V,E1
t

, ..., EM

t

> with E↵

t

✓ V ⇥ V , 8↵ 2 {1, ...,M}, where
each set E↵

t

corresponds to the edge set of a distinct layer at time t.
Thus a dynamic multiplex network is well suited for representing diverse
user activities over a period of time. Here, we address the problem of
predicting future user interactions from the history of past connections.
Assuming the data is represented as a graph, our goal is then to predict
the structure of graph G

t

with ↵ as the target layer, using information
from previous snapshots as well as other layers of the network.

MLP is a hybrid architecture that utilizes multiple components to ad-
dress different aspects of the link prediction task. We seek to extract
information from all layers of the network for the purpose of link pre-
diction within a specific layer known as the target layer. To do so, we
create a weighted version of the original target layer where interactions
and connections that exist in other layers receive higher weights. After
reweighting the layer, we employ the collection of node similarity met-
rics on the weighted network. To express the temporal dynamics of the
network, we use a decay model on the time series of similarity metrics
to predict future values. Finally, the Borda rank aggregation method is
employed to combine the ranked lists of node pairs into a single list that
predicts links for the next snapshot of the target network layer. Each
component of the model is explained in more detail in the following
sections.

1.6.7 Multiplex Likelihood Assignment and Edge

Weighting

This component leverages information about cross-layer link co-occurrences.
During the coevolution process, links may be engendered due to activity
in other network layers. Some layers may evolve largely independently of
the rest of the network, whereas links in other layers may be highly pre-
dictive of links in the target layer. In our proposed method, a weight is
assigned to each layer based on its influence on the target layer. Weights
are calculated using a likelihood function:

w
i

= Likelihood(Link in LTarget|Link in Li

) (1.7)

where Li and w
i

represent the ith layer and the weight calculated for
it respectively. LTarget indicates the target layer for which we want to
predict future links. The Likelihood function computes the similarity be-
tween the target layer and the ith layer; to do this, we use the current
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ratio of overlapping edges. Next, we calculate weights for every node pair
by checking the link correspondence between two layers using the likeli-
hood of a link being present in the target layer given the existence of the
link in the other layer at any other previous snapshot. This orders other
layers in terms of their relative importance for a specific target layer.
The process assigns higher weights to node pairs which occur in more
than one layer (multiplex edges). The rate of link formation is incorpo-
rated into the model as the first term of the edge weight. Algorithm 1
shows the process of assigning likelihoods to layers and reweighting the
adjacency matrix.

Algorithm 1 Likelihood Assignment and Edge Weighting

1: Input: Edge sets (E1, ..., EM

) for M layers where E↵ is the edge set
of target layer

2: Output: E↵

w

weighted adjacency matrix for layer ↵ (target layer)
//Calculate weights for the layers

3: for i 2 {1, 2, ...,M}� {↵} do
4: w

i

= Likelihood(Link in L↵|Link in Li

)

5: end for
//Weighting target layer

6: for edge e 2 E↵ do
7: w

e

= rate+
P

M

i=1&i 6=↵

w
i

⇥ linkExist(e)

8: end for

The term rate is defined as the average value of the source node’s
out-degree over previous timesteps. Function linkExist is used to ob-
tain information about a link’s existence in other layers during previous
snapshots. It checks each layer for the presence of an edge and returns
1 if an edge is present in that layer.

1.6.8 Node Similarity Metrics

This section provides a brief description of the topological and path-
based metrics for encoding node similarity that are used within our
MLP framework to create ranked score lists for each node pair. These
techniques are often used in isolation as unsupervised methods for link
prediction. Note that �(x) stands for the set of neighbors of vertex x

while w(x, y) represents the weight assigned to the interaction between
node x and y. We use the same metrics used by RPM: 1) common
neighbors (CN), 2) Jaccard’s coefficient (JC), 3) preferential attachment
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(PA), and 4) Adamic-Adar coefficient (AA). Additionally, MLP uses the
following metrics:

• Resource Allocation (RA)
RA was first proposed in Zhou et al. (2009) and is based on physical

processes of resource allocation:

RA(x, y) =
X

z2�(x)\�(y)

w(x, z) + w(y, z)P
c2�(z) w(z, c)

(1.8)

• Page Rank (PR)
The PageRank algorithm (Brin and Page, 2012) measures the sig-

nificance of a node based on the significance of its neighbors. We use
the weighted PageRank algorithm proposed inDing (2011):

PR
w

(x) = ↵
X

k2�(x)

PR
w

(x)

L(k)
+ (1� ↵)

w(x)
P

N

y=1 w(y)
(1.9)

where L(x) is the sum of outgoing link weights from node x, andP
N

y=1 w(y) is the total weight across the whole network.
• Inverse Path Distance (IPD)

The Path Distance measure for unweighted networks simply counts
the number of nodes along the shortest path between x and y in the
graph. Note that PD(x, y) = 1 if two nodes x and y share at least one
common neighbor. In this article, the Inverse Path Distance is used
to measure the proximity between two nodes, where:

IPD(x, y) =
1

PD(x, y)
(1.10)

IPD is based on the intuition that nearby nodes are likely to be
connected. In a weighted network, IPD is defined by the inverse of the
shortest weighted distance between two nodes.

• Product of Clustering Coefficient (PCF)
The clustering coefficient of a vertex v is defined as:

PCF (v) =
3⇥ # of triangles adjacent to v

# of possible triples adjacent to v
(1.11)

To compute a score for link prediction between the vertex x and y,
one can multiply the clustering coefficient score of x and y.
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1.6.9 Temporal Link Structure

Given the network history for T time periods, we need to capture the
temporal dependencies of the coevolution process. To do so, our frame-
work uses a weighted exponentially decaying model (Acar et al., 2009).
Let {Sim

t

(i, j), t = t0 +1, ..., t0 + T} be a time series of similarity score
matrices generated by a node similarity metric on a sliding window of
T successive temporal slices. An aggregated weighted similarity matrix
is constructed as follows:

Sim(t0+1)⇠(t0+T )(i, j) =

t0+TX

t=t0+1

✓t0+T�tSim
t

(i, j) (1.12)

where the parameter ✓ 2 [0, 1] is the smoothing weight for previous time
periods. Different values of ✓ modify the importance assigned to the
most or least recent snapshots before current time t+1. This procedure
generates a composite temporal score matrix for every node similarity
metric. Sim(t0+1)⇠(t0+T ) (shortened to Sim) is used by the algorithm
as a summary of network activity, encapsulating the temporal evolution
of the similarity matrix.

1.6.10 Rank Aggregation

Before describing the final step of our approach, let us briefly discuss ex-
isting methods for ranked list aggregation/rank aggregation. List merging
or list aggregation refers to the process of combining a number of lists
with the same or different numbers of elements in order to get one final
list including all the elements. In rank aggregation, the order or rank of
elements in input lists is also taken into consideration. The input lists
can be categorized as full, partial, or disjoint lists. Full lists contain ex-
actly the same elements but with a different ordering, partial lists may
have some of the elements in common but not all, and disjoint lists have
completely different elements. In this case, we are only dealing with full
lists since each similarity metric produces a complete list for the same
set of pairs, differing only in ordering.

In rank aggregation, distance metrics are used to find the disagreement
between two lists/rankings. In general, any method of rank aggregation
is desired to produce an aggregate ranking with minimal total disagree-
ment among the input lists. Two well-known distance measures are:

• Spearman Footrule Distance: This computes the distance between
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(a) (b)

Figure 1.18 Log scale box-whisker plots for user interactions in dif-
ferent layers of the network: (a) Travian (Trades) (b) Travian (Mes-
sages)

two ranked lists by computing the sum of differences in rankings of
each element. Formally, it is given by:

F (L1, L2) =

X

i2n

|L1(i)� L2(i)| (1.13)

• Kendall Tau Distance: This counts the number of pairs of elements
that have opposite rankings in the two input lists i.e. it calculates the
pairwise disagreements.

K(L1, L2) = |(i, j)s.t.L1(i)  L2(j)&L1(i) � L2(j)| (1.14)

where L1 and L2 are the input lists and L1(i) and L2(i) represent the
ranks of element i in the two lists correspondingly.

Rank aggregation methods can be categorized into two types: order-
based and score-based. Order-based methods use the rank information (Liu
et al., 2007) while score-based aggregation methods use score information
from individual rankers. Several rank aggregation methods are described
in (Sculley, 2007), including Borda’s, Markov chain, and median rank
methods. Borda’s method is a rank-then-combine method originally pro-
posed to obtain a consensus from a voting system. Since it is based on
the absolute positioning of the rank elements and not their relative rank-
ings, it can be considered a truly positional method. For every element
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Figure 1.19 Heatmap representing the edge overlap between pairs of
layers for the Travian dataset

in the lists, a Borda score is calculated and elements are ranked accord-
ing to this score in the aggregated list. For a set of complete ranked lists
L = [L1, L2, L3, ...., Lk

], the Borda score for an element i and a list L
k

is given by:

B
Lk(i) = {count(j)|L

k

(j) < L
k

(i)&j 2 L
k

} (1.15)

The total Borda score for an element is given as:

B(i) =

kX

t=1

B
Lt(i) (1.16)

Borda’s method is computationally cheap, which is a highly desirable
property for link prediction in large networks.

Algorithm 2 shows our proposed framework which incorporates edge
weighting, the temporal decay model, and rank aggregation to produce
an accurate prediction of future links in a dynamic multiplex network.
The Borda function produces the final output of the MLP framework.
Results of the proposed algorithm are compared with other state-of-the-
art techniques in the next section.

1.6.11 Experimental Study

To investigate the impact of each component of our proposed method,
not only do we compare our results with two other approaches for fus-
ing cross-layer information, but we also analyze the performance of ab-
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Algorithm 2 Multiplex Link Prediction Framework (MLP)
1: Input: Weighted edge sets of the target layer for T previous snapshots

2: Output: Temporal aggregated score matrix S for the target layer
3: for each node similarity metric u do
4: for t 2 {1, ..., T} do
5: Calculate score matrix Simu

t0+t

6: end for
7: Calculate temporal similarity matrix Simu

8: end for
9: Final score matrix S = Borda(Sim1, ..., Simu

)

Table 1.5 Dataset Summary: Number of edges, nodes, and snapshots
for each network layer

Dataset Travian

No. of Nodes 2,809
No. of Snapshots 30

Layers/No. of Edges Trades 87,418
Messages 44,956

lated versions of our method. The complete method, MLP (Hybrid), is
compared with MLP (Decay Model + Rank Aggregation) and MLP
(Weighted + Rank Aggregation). All of the algorithms were imple-
mented in Python and executed on a machine with the Intel(R) Core
i7 CPU and 24GB of RAM for the purpose of fair comparison. Our
implementation uses Apache Spark to speed the link prediction process.

1.6.12 Analysis of Cross-layer Interaction

Figure 1.18 shows log scale box-whisker plots that depict the frequency
of interactions between users who are connected across multiple layers.
We compare the frequency of interactions in cases where the node pair is
connected on all layers vs. the frequency of being connected in a single
layer. As expected, in cases where users are connected on all layers,
the number of interactions is higher. The heatmap of the number of
overlapping edges between different network layers (Figure 1.19) suggests
that a noticeable number of edges are shared between all layers. This
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clearly indicates the potential value of cross-layer information for the
link prediction task on these datasets. Our proposed likelihood weighting
method effectively captures the information revealed by our analysis.

1.6.13 Performance of Multilayer Link Prediction

For our experiments, we adopted a moving-window approach to evaluate
the performance of our temporal multiplex link prediction algorithm.
Given a specified window size T , for each time period t(t > T ), graphs
of T previous periods (G

t�T

, ..., G
t�1) (where each graph consists of M

layers) are used to predict links that occur at the target layer ↵ in the
current period (G↵

t

). To assess our proposed framework and study the
impact of its components, we compare against the following baselines:

• MLP (Hybrid): incorporates all elements discussed in the framework
section. It utilizes the likelihood assignment and edge weighting pro-
cedure to extract cross-layer information. Node similarity scores are
modified using the temporal decay model and combined with Borda
rank aggregation.

• MLP (Likelihood + Rank Aggregation): This method only uses
the aggregated scores calculated from the graphs weighted with cross-
layer information. It does not consider the temporal aspects of network
coevolution.

• MLP (Decay Model + Rank Aggregation): This method does
not use the cross-layer weighting scheme and relies on temporal infor-
mation alone to predict future links. The final aggregated score matrix
is calculated based on forecast values at time t for each node similarity
metric using the decay model.

• Likelihood: Weights generated by the cross-layer likelihood assign-
ment procedure are treated as scores for every node pair. We then sort
the pairs based on their score and calculate the AUROC.

• Rank Aggregation: This method is a simple aggregated version of
all unsupervised scoring methods using the Borda’s rank aggregation
method applied to node similarity metrics from the target layer.

• Unsupervised Methods: The performance of our proposed frame-
work is compared with eight well-known unsupervised link prediction
methods described in proposed method under node similarity metrics.
All unsupervised methods are applied to the binary static graph from
time 0 to t� 1 in order to predict links at time t. Only the structure
of the target layer is used.
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• Average Aggregation: In order to extend the rank aggregation
model to include information from other layers of the network, we
use the idea proposed in Pujari and Kanawati (2015). Node similarity
metrics are aggregated across all layers. So for attribute X (Common
Neighbors, Adamic/Adar, etc.) over M layers the following is defined:

X(u, v) =

P
M

↵=1 X(u, v)↵

M
(1.17)

where X(u, v) is the average score for nodes u and v across all layers
and X(u, v)↵ is the score at layer ↵. Borda’s rank aggregation is then
applied to the extended attributes to calculate the final scoring matrix.

• Entropy Aggregation: Entropy aggregation is another extended
rank aggregation model proposed in Pujari and Kanawati (2015) where
X(u, v) is defined as follows:

X(u, v) = �
MX

↵=1

X(u, v)↵

X
total

log(

X(u, v)↵

X
total

) (1.18)

where X
total

=

P
M

↵=1 X(u, v)↵. The entropy based attributes are
more suitable for capturing the distribution of the attribute value
over all dimensions. A higher value indicates a uniform distribution of
attribute values across the multiplex layers.

• Multiplex Unsupervised Methods: Finally, using the definition of
core neighborhood proposed in Hristova et al. (2015), we extend four
unsupervised methods (Common Neighbors, Preferential Attachment,
Jaccard Coefficient and Adamic/Adar) to their multiplex versions.

Table 1.6 shows the results of different algorithms on the Travian
dataset. Bold numbers indicate the best results on each target layer
considered; MLP (Hybrid) is the best performing algorithm.

1.6.14 Discussion

In this section, we discuss the most interesting findings:
Does rank aggregation improve the performance of the un-

supervised metrics? As shown in Table 1.6, although the aggregated
scores matrix produced by Borda’s method achieves better results than
unsupervised methods in one case (Travian message) and comparable
results on Travian trade, it is not able to significantly outperform all
unsupervised methods in any of the networks. As discussed before, we
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are using the simple Borda method for the rank aggregation which does
not consider the effect of each ranker on the final performance. While
adding weights to the rankers or using more complex rank aggregation
models such as Kemeny might achieve better results, it has been shown
that those approaches have high computational complexity which makes
them less suitable for large real-world networks (Pujari and Kanawati,
2012; Tabourier et al., 2014). Despite the fact that the rank aggrega-
tion alone does not significantly improve the overall performance of the
link prediction task, it enables us to effectively fuse different kinds of
information (edge and node features, nodes similarity, etc.).

On the other hand, the Average and Entropy Aggregation methods,
which are designed to consider attribute values from other layers, are
able to outperform regular Rank Aggregation and MLP (Decay Model
+ Rank Aggregation). However, both methods use the static structure
of all snapshots from time 0 to t� 1, while MLP (Decay Model + Rank
Aggregation) only incorporates the past T snapshots which makes it
more suitable for large networks.

Does the likelihood assignment procedure outperform the
unsupervised scores? To study the ability of our likelihood weighting
method to model the link formation process, we generate results for two
methods: using likelihood explicitly as a scoring method as well as using
the values to generate a weighted version of the networks. First, the Like-
lihood method is used in isolation to demonstrate the prediction power
of its weights as a new scoring approach. Table 1.6 shows significant im-
provements on unsupervised scores as well as the aggregated version of
them. As expected, the more overlap between the target layer and pre-
dictor layers, the more performance improvement Likelihood achieves.
As an example, Likelihood achieves ⇠ 7% of improvement on Travian
(Trade) compared with ⇠ 5% of improvement on Travian (Message).
Not only is there a lower rate of overlapping edges between those layers,
but also the number of interactions is higher than the two other layers.

On the other hand, the method introduced in Algorithm 1 gener-
ates a weighted version of input graphs which is used to generate a
weighted version of unsupervised methods to produce the final scoring
matrix. This paired with the rank aggregation method generates signif-
icantly better average AUROC performance compared with other pro-
posed methods. Also, when temporal information from previous snap-
shots of the network is included, MLP (Hybrid) outperforms other vari-
ants of MLP as well as well-known unsupervised methods. This indicates
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Table 1.6 AUROC performances for a target layer averaged over all
snapshots with a sliding time window of T = 3. Variants of our

proposed framework are shown at the top of the table, followed by
standard unsupervised methods. The algorithms shown in the bottom

half of the table are techniques for multiplex networks proposed by other
research groups. The best performer is marked in bold.

Algorithms / Networks Trade Message
MLP (Hybrid) 0.821±0.001 0.803±0.002
MLP (LH/RA) 0.802±0.001 0.790±0.0021
MLP (DM/RA) 0.722±0.002 0.731±0.002
Likelihood 0.770±0.033 0.760±0.041
Rank Aggregation 0.694±0.001 0.712±0.001
Common Neighbors 0.656±0.002 0.667±0.002
Jaccard Coefficient 0.628±0.002 0.680±0.003
Preferential Attachment 0.709±0.002 0.637±0.001
Adamic/Adar 0.635±0.003 0.700±0.003
Resource Allocation 0.625±0.005 0.690±0.003
Page Rank 0.595±0.0016 0.687±0.002
Inverse Path Distance 0.572±0.003 0.650±0.003
Clustering Coefficient 0.580±0.002 0.633±0.003
Average Aggregation 0.744±0.030 0.752±0.020
Entropy Aggregation 0.731±0.004 0.763±0.020
Multiplex CN 0.729±0.0040 0.643±0.013
Multiplex JC 0.666±0.031 0.619±0.012
Multiplex PA 0.722±0.010 0.646±0.012
Multiplex AA 0.671±0.010 0.690±0.031

the power of overlapping links in improving the performance of link pre-
diction in coevolving multiplex networks.

Does including temporal information improve AUROC per-
formance? The importance of incorporating temporal information into
link prediction has been discussed in our previous work (Hajibagheri
et al., 2016). However, here we are interested in analyzing the impact
of this information on improving the performance of MLP. For that
purpose, first, the decay model is employed in MLP (Decay Model +
Rank Aggregation) to determine whether it improves the results gener-
ated by the aggregated score matrix. The final aggregated score matrix
is calculated based on forecast values at time t for each unsupervised
method using the decay model. As expected, this version of MLP is able
to achieve up to ⇠ 3% of AUROC improvement using only information
from the last three snapshots of the Travian network. On the other hand,
we observed the same pattern when the decay model was added to MLP
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(Hybrid) along with likelihood and rank aggregation. Using the scores
generated by our hybrid approach outperformed all other proposed and
existing methods. The results presented here have been obtained using
T = 3 for the Travian dataset. While for Travian layers, increasing the
value of T tends to improve the prediction performance slightly until
T = 3; higher values of T may decrease the performance. Similarly, the
value of ✓ is set to 0.4.

In summary, MLP (Decay Model + Rank Aggregation) is able to
achieve results comparable to other baseline methods except Average
and Entropy Aggregation since they benefit from the entire graph struc-
ture. Although rank aggregation by itself is not able to significantly
improve the performance of unsupervised methods, paired with decay
models and taking temporal aspects of the network, it can achieve better
performance. On the other hand, the multiplex versions of the neighbor-
hood based unsupervised methods are able to improve average AUROC
performance, however the results are inconsistent and they achieve lower
performance in many cases. Finally, both MLP (Hybrid) and MLP (Like-
lihood + Rank Aggregation) achieve higher performance compared with
all other methods, illustrating the importance of the cross-layer informa-
tion created by the network coevolution process. A paired two-sample
t-test is used to indicate the significance of the results produced by each
method where the p-value is smaller than 0.0001. It is worth mentioning
that, even though MLP (Hybrid) is able to outperform all other meth-
ods, its performance is not significantly better than MLP (Likelihood +
Rank Aggregation) in the case of Travian (Message).

In summary, MLP (Multiplex Link Prediction) employs a holistic ap-
proach to accurately predict links in dynamic multiplex networks using a
collection of topological metrics, the temporal patterns of link formation,
and overlapping edges created by network coevolution. Our analysis on
real-world networks created by a variety of social processes suggests that
MLP effectively models multiplex network coevolution.

1.7 Conclusion

The Travian massively multiplayer online game has served as a valu-
able testbed, enabling us to evaluate our social modeling algorithms in
a complex and rich environment. Due to the dearth of publicly available
data, many of the published prediction models have only been tested
on coauthorship networks, such as DBLP and arXiv. However our re-
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sults show that networks formed through different social processes (e.g.,
aggression vs. communication) exhibit different characteristics, necessi-
tating experimentation on many types of datasets. Although most of the
research described in this chapter has been conducted on the commu-
nication and trade layers of the Travian multiplex network, our current
work focuses on the problem of leveraging information from the attack
layer to improve our models of alliance evolution and link formation. The
attack network layer is particularly challenging since it contains fewer
interactions, and the standard topological metrics are not good predic-
tors of its future structure. Also we plan to include additional network
layers to represent alliance membership and geographic proximity; these
relationships are semantically slightly different from the other layers be-
cause they are based on long-term relationships, rather than a series of
transactions. Using a combination of our three techniques, D-GT, RPM,
and MLP, we are able to successfully model the changes in community
structure, rate of link formation, and the coevolution of different net-
work layers. In future work we plan to introduce a single unified model,
capable of exploiting dependencies between the dynamics of different
processes.
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