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ABSTRACT
The question of how to influence people in a large social system is a
perennial problem in marketing, politics, and publishing. It differs
from more personal inter-agent interactions that occur in negotia-
tion and argumentation since network structure and group member-
ship often pay a more significant role than the content of what is be-
ing said, making the messenger more important than the message.
In this paper, we propose a new method for propagating informa-
tion through a social system and demonstrate how it can be used
to develop a product advertisement strategy in a simulated market.
We consider the desire of agents toward purchasing an item as a
random variable and solve the influence maximization problem in
steady state using an optimization method to assign the advertise-
ment of available products to appropriate messenger agents. Our
market simulation accounts for the 1) effects of group membership
on agent attitudes 2) has a network structure that is similar to realis-
tic human systems 3) models inter-product preference correlations
that can be learned from market data. The results show that our
method is significantly better than network analysis methods based
on centrality measures.

Categories and Subject Descriptors
I.2.11 [Distributed artificial intelligence]: Multi-agent systems

General Terms
Algorithms

Keywords
Marketing, Optimization, Multi-agent social simulations

1. INTRODUCTION
The gift of persuasion is a powerful and highly-sought after skill,

as evidenced by the fact that individual self-help books in this area,
the most famous being How to Win Friends and Influence People
published in 1936, remain popular. The rise of social media out-
lets and click-through advertisement opened the door for relatively
small groups to influence large numbers of people. Combined with
modern data analysis techniques, it is possible to create a detailed
social simulation of the population of interest, but the problem of
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whom to influence remains as an open research question. Partic-
ularly in advertisement, indiscriminate mass marketing techniques
can lead to negative information cascades about product quality,
even if cost efficiency is not an issue. This problem can be framed
as a network influence propagation problem; previous work in this
area has looked at diverse domains such as information propagation
in the Flickr social network [7] and identifying important blogs for
marketing [3].

In this paper we present a mathematical analysis of how influ-
ence propagation occurs over time and propose a new optimization
technique for identifying effective messenger agents in the network
that outperforms other network analysis methods while accounting
for realistic factors such as group membership and product pref-
erence correlation. Following the work of Hung et al. [12, 13],
optimization is used along with an analysis of the expected long-
term system behavior to assign the advertisement of the available
products to appropriate agents in the network. In contrast with pre-
vious work on identifying influential nodes for marketing purposes
(e.g., [11] and [4]), in this work we model the effects of realistic
social factors such as group membership on product adoption. In
the analysis presented in [12, 13] for counterinsurgency messaging
tactics, there exists a single random variable representing the atti-
tude of agents toward counterinsurgency, but in our work, we use
a vector of random variables which represents the desire of each
agent toward any single product. This consideration combined with
product demand correlations in the market make the analysis and
optimization more complicated, but ultimately our approach has the
promise of being applicable to a wider variety of social systems.

The paper is organized as follows. Section 2 describes the agent-
based model and how it can be used for influencing propagation.
Section 3 presents our network generation model that is designed to
account for social influence factors present in real human societies
such as homophily and group membership. The subsequent section
presents our analysis of the system dynamics, and our proposed
optimization technique is described in Section 5. We evaluate our
method vs. a set of centrality based network analysis techniques in
Section 6. We end the paper with an overview of related work in
this area and a discussion of future work.

2. MARKET MODEL
To explore the efficiency of the proposed marketing method, we

have extended a multi-agent system model, inspired by [12] and
[13], to simulate a social system of potential customers. In this
model, there is a population of N agents, represented by the set
A = {a1, . . . , aN}, that consists of two types of agents (A =
AR ∪ AP ). The first type of agent, defined as: AR = {ar |
ar is Mutable and 1 ≤ r ≤ R}, are the Regular agents, who
are the potential customers. These agents have a changing atti-
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Figure 1: The model of the social system. There exist two types
of agents, Regular agents (AR) and Product agents (AP ). A
static network exists among Regular agents, and our problem
is to find effective connections between the Product (sellers) and
Regular agents (customers) in order to influence the customers
to buy products. Regular agents also can belong to different
groups in their society (Gm), which modifies the local influence
propagation properties.

tude on purchasing products and can be influenced by the Prod-
uct agents who represent salespeople offering one specific product.
These agents have an immutable attitude toward a specific product
and are defined as: AP = {ap | ai is Immutable and 1 ≤ p ≤ P}.
Figure 1 provides an illustration of the market model.

Each Regular agent can be considered as a unique node in the
social network, connected by directed weighted links based on the
underlying interactions with other agents. The connection between
the Regular agents is modeled by an adjacency matrix, E, where
eij = 1 is the weight of a directed edge from agent ai to agent aj .
The in-node and out-node degrees of agent ai are the sum of all
in-node and out-node weights, respectively (diin =

∑
aj⊆AR

eji

and diout =
∑

aj⊆AR
eij). This network is assumed to follow a

power law degree distribution like many human networks, and is
generated synthetically as explained in Section 3.

We model the desire of an agent, ai, to buy an item or consume a
specific product, p, as a random variable denoted by xip ∈ [−1 1].
As there exist P items in the environment, each agent is assigned a
vector of random variables,

−→
Xi, representing the attitude or desire

of the agent toward all of the products in the market.
Within the social network there are different groups of Regular

agents; these groups could represent demographic groups or other
types of subcultures. Agents from the same group are more ef-
fective at influencing each other. To model this, the social system
contains m different long-lasting groups, G1, . . . , Gm, and each
agent i is designated with a group membership, Gi.

Here, we do not attempt to capture a rich social-cultural behav-
ior model of these interactions, but rather view the model sim-
ply as a function F : Gi −→ Si, mapping the group label of
agents, Gi, to a social impression, Si, that affects link formation
and influence propagation, which we designate as the group value
judgment. This value represents the agents’ judgments on other
groups and is based on observable group label of the agent rather
than real characteristics of the person. We assume that the impres-
sion of different groups has been learnt by agents beforehand there-
fore each agent has a unique vector of judgment values, noted as
−→
Si = S1, S2, . . . , Sm, to indicate the judgment of each agent on
different groups in the simulated society.

Moreover, in real life there is a correlation between the user de-

mand of different products in the market. The desire of customers
for a specific product is related to his/her desire toward other simi-
lar products. To model this correlation and consider its effect in our
formulation, we designate a matrix M that identifies the relation-
ship between demands among advertised items and can be shown
as:

M =

m11 . . . m1P

...
. . .

...
mP1 . . . mPP


where mij indicates the probability of having desire toward item
j assuming the agent already has a desire for item i. We assume
that this matrix is known beforehand and has been modeled by the
advertisement companies by tracking the users and applying user
modeling.

In the market, the companies are trying to select a set of con-
nections between the AP agents and AR agents, in such a way to
maximize the long term desire of the agents for the products. We
define a simple decision variable uji, where

uji =

{
1 Product j connects to Regular agent i,
0 otherwise.

(1)

Note that the links between Product agents and Regular agents
are directed links from products to agents and not in the opposite di-
rection, and that Product agents will never connect to other Product
agents. In the social simulation, each agent interacts with another
agent in a pair-wise fashion that is modeled as a Poisson process
with rate 1, independent of all other agents. By assuming a Pois-
son process of interaction, we are claiming that there is at most one
interaction at any given time. Here, the probability of interaction
between agents ai and aj is shown by pij and is defined as a frac-
tion of the connection weight between these agents over the total
connections that agent i makes with the other agents. Therefore,

pij =


eij

diout
i, j ∈ AR

uji

Threshold
i ∈ AR, j ∈ AP

0 otherwise

(2)

where diout is the out-node degree of a Regular agent i and the
Threshold parameter is the total number of links that Product agent
can make with Regular agents. The bounds on Threshold are a nat-
ural consequence of the limited budget of companies in advertising
their products.

At each interaction there is a chance for agents to influence each
other and change their desire vector for purchasing or consuming
a product. In all these interactions Product agents, the immutable
agents, are the only agents who do not change their attitude and
have a fixed desire vector. The probability that agent j influences
agent i is denoted as αij and is calculated based on the out-node
degree of agent j as:

αij =

{ eji

d
j
out

i, j ∈ AR

cte i ∈ AR, j ∈ AP

(3)

Figure 2 shows a simple example of how to calculate pij and αij .
The other important parameter in the agent influence process is

εij , which determines how much agent j will influence agent i.
This parameter is derived from a Gaussian distribution assigned to
the membership group of agent j based on the experience of agent
i with this group. Therefore, this value can easily be extracted from
the previously defined vector

−→
Si .

As a final note, in this model the agents can access the following
information:
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Figure 2: An illustration of how the probability of interaction
(p) and the probability of influencing others (α) is calculated
between the Regular agents.

1. the links connecting agents that possess a history of past in-
teractions. Each agent is aware of its connections with neigh-
bors and their weights;

2. the group membership of neighboring agents and other select
members of the community.

The ultimate goal of our marketing problem is to recognize the in-
fluential agents in the graph and define ujis in a way to get the
maximum benefit of the product advertising.

3. NETWORK GENERATION
To evaluate the performance of our proposed optimization method

on identifying influential agents in a variety of networks, we simu-
late the creation of agent networks formed by the combined forces
of homophily and group membership. Since social communities
often form a scale-free network, whose degree distribution follows
a power law [5], we model our agent networks using the network
generation method described in [25]. Note that this network only
connects the regular agents (ai ∈ AR). The connection between
the Product and Regular agents is identified later in a way to opti-
mize the efficiency of the product marketing.

Following the network data generation method in [23], we con-
trol the link density of the network using a parameter, ld, and value
homophily between agents using a parameter, dh. The effects of
value homophily are simulated as follows:

1. At each step, a link is either added between two existing
nodes or a new node is created based on the link density pa-
rameter (ld). In general, linking existing nodes results in a
higher average degree than adding a new node.

2. To add a new link, first, we randomly select a node as the
source node, ai, and a sink node, aj (ai, aj ∈ AR), based
on the homophily value (dh), which governs the propensity
of nodes with similar group memberships to link. Node aj is
selected among all the candidate nodes in the correct group,
based on the degree of the node. Nodes with higher degree
have a higher chance to be selected.

3. If a prior link exists between agent ai and aj , selecting them
for link formation will increase the weight of their link by
one.

Group membership also governs the process of reciprocal link
formation. Once the link generation process starts and the source
and sink nodes have been selected, we add a directed link from
node ai to node aj by default, under the assumption that the first
selected agent initiated the interaction. The group value judgment

Table 1: Agent Network Generator
Agent Network Generator (numNodes, numLabels,
ld, dh)
i = 0
E = NULL
while i < numNodes do

sample r from uniform distribution U(0, 1)
if r ≤ ld then

connectNode(E,numLabels,dh)
else

addNodes(E,numLabels,dh)
i = i+ 1

end if
end while
return E

of the second node governs whether a reciprocal link is formed
or not. We use an evaluation function Fa(S) to map an observed
group value S to a binary evaluation of interaction (positive or neg-
ative). We assume that all agents use the same evaluation function,
which is:

Fa(S) =

{
1 : S ≥ 0.5

−1 : S < 0.5

The result of this process is to create clusters of agents with the
same group labels within the network, since group membership af-
fects both the probability of the initial interaction (through the ho-
mophily parameter) and also the reciprocal link formation.

To generate a new node, we first select a group label based on a
uniform group distribution and assign that group label to the node.
Then we add links between the new node and one of the existing
nodes as we described above. The algorithm for generating the
static network is outlined in Table 1.

4. ANALYSIS OF SYSTEM DYNAMICS
As explained in Section 2, the agent i’s desire toward product

p, is modeled as a random variable that assumes a scalar value af-
ter each interaction (xip ∈ [−1 1]) . Therefore, since there exist
P different products, each agent has a vector of random variables,
−→
Xi, which indicates the desire of the agent toward all the available
products in market. Following Hung et al. [12, 13], we model the
desire dynamic of all agents as a Markov chain where the state of
the system is a matrix of all agents’ desire vectors at a particular
iteration k and the state transitions are calculated probabilistically
from the pair-wise interaction between agents connected in a net-
work. The state of the system at the kth iteration is a vector of
random variables, denoted as X(k) ∈ RNP×1 (created through a
concatenation of N vectors of size P ) and expressed as:

X(k) =


[
−→
X1(k)]

...
[
−−→
XN (k)]


4.1 Interaction and Influence

In this work, we define interactions as any kind of information
or belief sharing between two agents about the available products
in the market. During these interactions, there is a possibility for
one agent to influence the desire of the other one. As explained in
Section 2, this possibility is modeled by parameter αij when agent
i initiates the interaction with agent j. Also, in this interaction,
we assume that the influenced agent will retain some fraction of



its existing desire. This fraction is different for any single agent i
while interacting with agent j, but remains fixed, and is denoted as
εij ∈ [0 1]. The dynamics of the model at each iteration k proceed
as described in [13]:

1. Agent i initiates the interaction on a uniform probability dis-
tribution over all agents. Then agent i selects another agent
among its neighbors with probability pij . Note that the desire
dynamic can occur with probability 1

N
(pij + pji) as agent

i’s attitude can change whether it initiates the interaction or
is selected by agent j.

2. Conditioned on the interaction of i and j:

• With propagability αij , agent i will change its desire:{−→
Xi (k + 1) = εij M

−→
Xi (k) + (1− εij)M

−→
Xj(k)−→

Xj(k + 1) =
−→
Xj(k)

(4)
Recall that M is the pre-defined matrix indicating the
correlation between the demands of different products.

• With probability of (1− αij), agent i is not influenced
by the other agent:{−→

Xi (k + 1) =
−→
Xi (k)−→

Xj(k + 1) =
−→
Xj(k)

(5)

To analyze Equation 4 in detail, we rewrite the matrix calculation
for agent i as follows:

−→
Xi(k + 1) =


∑P

f=1 m1f (εijxif + (1− εij)xjf )
...∑P

f=1 mPf (εijxif + (1− εij)xjf )

 (6)

A closer look at each row of (
−→
Xi(k+1)) reveals that the desire of

agent i toward a product depends on own previous desire, a fraction
of the other agent’s desire toward that product, and the desire of
both agents toward other available products in the market. This is
an interesting result showing how our proposed model can express
the complexity of real-world markets and capture the dependency
of demand for different products [20].

4.2 Expected Long-term Desire
In this work, we determine the long-term desire of the agents for

products in the system to find the optimized connection between the
Product agents and Regular agents. In other words, we hypothesize
that by examining the expected value of the steady state system
(X(k)), we are able to optimize the marketing strategy and identify
the most influential nodes in the network. Therefore our goal in
this section is to calculate the expectation vector of the system state
since it captures all the interactions and the dependencies between
the demand of the products.

The conditional expected value of the desire vector of agent i
in a single pair-wise interaction between agents i and j, when the
current state of the system is observed:

E[
−→
Xi(k + 1)|X(k), j] = (1− αij)

−→
Xi(k)

+ αij

[
εijM

−→
Xi(k) + (1− εij)M

−→
Xj(k)

]
= [αijεijM+ (1− αij)I]

−→
Xi(k)

+ αij(1− εij)M
−→
Xj(k) (7)

By defining matrix W(i, j) = αij(1−εij)M, we rewrite Equa-
tion 7 in the form of:

E[
−→
Xi(k + 1)|X(k), j] =

−→
Xi(k) +W(i, j)

−→
Xj(k)

− [W(i, j) + αij(I−M)]
−→
Xi(k) (8)

Therefore, based on the probability of interaction between two
agents ( 1

N
(pij + pji)), the desire of Regular agents dynamically

changes as specified in Equation 7. It is worthwhile to mention that
matrix W is a factor of matrix M, and it has the same dimensions
of P × P . Rewriting the dynamics of

−→
Xi in this way indicates that

the desire vector of agent i at iteration (k + 1) is equivalent to its
own desire plus the weighted desire of agent j at iteration k, minus
its own weighted desire at that iteration. This finding shows that, in
spite of having the extra matrix M, extracted from the marketing
situation, and a complicated notion of the agents’ desire vector, the
computation model simply follows [12], although the optimization
approach must account for multiple product interactions.

We substitute W(i, j) + αij(I − M) = S(i, j), where S(i, j)
again is dimension P ×P . Then, Equation 8 simplified as follows:

E[
−→
Xi(k+1)|X(k), j] =

−→
Xi(k)−S(i, j)

−→
Xi(k) +W(i, j)

−→
Xj(k)

(9)
Next, we write the expected value of agent i’s desire vector at

iteration (k + 1) over all the possible interactions it initiates or is
subject to by other agents’ actions, conditioned on the state of the
system at k. Recall that the interaction between i and j occurs with
probability 1

N
(pij + pji).

E[
−→
Xi(k + 1)|X(k)] =

−→
Xi(k)

−
∑
j

1

N
(pij + pji) S(i, j)

−→
Xi(k)

+
∑
j

1

N
(pij + pji) W(i, j)

−→
Xj(k)

(10)

Now, we want to express the expected desire of all agents at
iteration (k + 1) conditioned on all agents’ previous desire. This
step relies on both the laws of interacting expectations and linearity
of expectations. Assembling a vector of all entries for each i results
in:

E[X(k + 1)|X(k)] = X(k) +QX(k) (11)

where Q is a block matrix and each component of Q ∈ RN×N ,
considering Equation 10, is:

Qij =



1
N
(pij + pji)W(i, j) i ∈ AR, j ∈ A and i ̸= j

− 1
N

∑
j(pij + pji)S(i, j) i ∈ AR, j ∈ A and i = j

+ 1
N
(pij + pji)W(i, j)

0 i ∈ AP , j ∈ A
(12)

Finally, by calculating the expected value of Equation 11 and
using the linearity of expectations, we have:

E[E[X(k+1)|X(k)]] = E[X(k+1)] = E[X(k)]+Q E[X(k)]
(13)

We define −→µX(k) ∈ RNP×1 as the expected value vector of
X(k). Therefore, the above equation is simplified as:

−→µX(k + 1) = −→µX(k) +Q −→µX(k) (14)
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Figure 3: Q matrix is a block matrix with size N × N where
N is the total number of agents (R + P ) and each block has
the size of P × P . Matrices A and B are the non-zero part
of this matrix which represent the interactions among Regular
agents and interactions between Regular agents and Products,
respectively.

Since we are seeking the expected value of X(k) at steady state,
the above equation when k → ∞ reduces to:

−→µX(∞) = −→µX(∞) +Q −→µX(∞) ⇒ Q −→µX(∞) = 0 (15)

In order to solve this system of equations efficiently, we decompose
the matrices:

Q =

(
A B
0 0

)
and −→µX(∞) =

(−→µ R−→µ P

)
(16)

Here A ∈ RRP×RP is the sub-matrix representing the expected
interactions among Regular agents while B ∈ RRP×P2

represents
the the expected interactions between Regular agents and Product
agents. Figure 3 shows the breakdown of matrix Q.

Moreover, −→µ R and −→µ P are vectors representing the expected
long-term desire of Regular agents and Product agents, respec-
tively, at iteration k → ∞. Note that vector −→µ P is known since
the Product agents, the advertisers, are the immutable agents, who
never change their desire. Solving for −→µ R yields the vector of
expected long-term desire for all regular agents, for a given set of
influence-probabilities on a deterministic social network.

A −→µ R +B −→µ P = 0 ⇒ −→µ R = A−1(−B −→µ P) (17)

Now based on this analytical view of the system, we define an
optimization method in following section to maximize the product
sales through intelligent selection of the Product agent linkages.

5. NODE SELECTION METHOD
Using the analysis from the previous section, we can identify

the influential nodes in the network and connect the products to
those agents in a way that maximizes the long-term desire of the
agents in the social system. Here, we define the objective function
as the maximization of the weighted average of the expected long-
term desire of all the Regular agents in the network toward all the
products as:

maxu

∑
1≤k≤P

∑
i∈AR

(ρi.
−→µ R,i) (18)

−→µ R,i is the part of −→µ R that belongs to agent i, and ρi parameter is
simply a weight we can assign to agents based on their importance
in the network. In the case of equivalent ρi = 1 for all the agents,
the above function reduces to the arithmetic mean of the expected
long-term desire vectors for all agents.

The goal of our proposed method is to assign a fixed number of
Product agents with limited number of connections to a network
of Regular agents in a way to optimize the objective function pre-
sented above. In Equation 17, matrix A and vector −→µ P are known
since the static network among the Regular agents and the fixed
desire vector of the products are both known. We define the matrix
B based on parameters of uijs. We substitute the probability of
interaction, pij , occurring between agents i and j in matrix Q, by
Equation 2 of the model.

The partitioning of matrix Q in Equation 16 and the size of ma-
trices A and B (Figure 3), indicates that the elements of matrix
B are all off the diagonal. Therefore substituting the values of pij
and pji of Equation 2 into Equation 12, Bij = 1

N
ujiW(i, j) =

û⊗M. Here, û contains all the variables and influence parameters
and ⊗ indicates the Kronecker product [21].

Therefore, by rewriting Equation 17 as:

−→µ R = A−1[û⊗M]V ec(µ̂P) (19)

and using the following identity

[û⊗M] V ec(µ̂P) = V ec(M µ̂P û),

Equation 17 becomes −→µ R = A−1V ec(M µ̂P û), which is solved
using convex optimization methods. Therefore the optimal assign-
ment of Product agents to Regular agents is obtained through the
following optimization problem:

maximize
û

∥A−1V ec(M µ̂P û)∥1

subject to xip ∈ [−1 1], ∀i ∈ AR,∑
j∈AR

uij = cte.

(20)

To solve this optimization problem we used the CVX toolbox of
Matlab which is useful for convex programming and minimized
the dual of our objective function.

6. EVALUATION

6.1 Experimental Setup
We conducted a set of simulation experiments to evaluate the

effectiveness of our proposed node selection method on market-
ing the items in a simulated social system with a static network.
The parameters of the model for all the runs are summarized in Ta-
ble 2(a). All the results are computed over an average of 30 runs
with 100 Regular agents and 10 Product agents.

In this work, we model four long-lasting groups, (G1, . . . , G4),
with different feature vector distributions in our social simulation.
Moreover, a group value judgment, (Si), assigned to each group,
is drawn from Gaussian distribution. We assumed that the group
model has been learned by agents based on their previous experi-
ences, each agent has its own fixed value judgment toward each
group of agents and that value has been selected based on the as-
signed Gaussian distribution of the model. Consequently, this group
value judgment affects the connection of agents during the net-
work generation phase, as we described before. Table 2(b) shows
the mean and standard deviations of the Gaussian distributions as-
signed to each group. Note that the membership in each group is



Table 2: Parameter settings
(a) Experimental parameters

Parameter Value Descriptions

R 100 Number of Regular agents
P 10 Number of Product agents

Threshold 2 Number of links between P and R agents
ε 0.4 Influence factor between P and R agents
α 0.6 Probability of influence between P and R agents

NIterations 10000 Number of iterations
NRun 30 Number of runs

(b) Group model

Group Mean Value StDev

G1 0.9 0.05
G2 0.6 0.15
G3 0.4 0.15
G4 0.3 0.1

permanent for all agents and cannot be changed during the course
of one simulation.

In the Regular and Product agent interaction, parameters α and
ε are fixed for any interaction and are presented in Table 2(a). We
assume that these parameters can be calculated by advertising com-
panies based on user modeling. The pij values for this type of in-
teraction are calculated using Equation 2 and are parametric.

Finally, the remaining part of the social system setup is matrix
M, which models the correlation between the demand for different
products. This matrix is generated uniformly with random numbers
between [0 1] and, as it has a probabilistic interpretation, the sum
of the values in each row, showing the total demand for one item,
is equal to one.

6.2 Results
We compare our optimization-based algorithm with a set of centrality-

based measures commonly used in social network analysis for iden-
tifying influential nodes based on network structure [15]. The com-
parison methods are:

Degree Assuming that high-degree nodes are influential nodes in
the network is a standard approach for social network analy-
sis. Here, we calculated the probability of joining a Regular
agent based on the out-degree of the agents and attached the
Product agents according to preferential attachment. There-
fore, nodes with higher degree had an increased chance of
being selected as an advertising target.

Closeness This is another commonly used influence measure in
sociology, based on the assumption that a node with short
paths to other nodes has a higher chance to influence them.
Here, we averaged the shortest paths of a node to all the
other nodes in the network and sorted the nodes according to
this measure. Nodes with shorter average path had a higher
chance of being selected as a target.

Betweenness This centrality metric measures the number of times
a node appears on the geodesics connecting all the other
nodes in the network. Nodes with the highest value of be-
tweenness had the greatest probability of being selected.

Random Finally, we consider selecting the nodes uniformly at
random as a baseline.

To evaluate these methods, we started the simulation with an ini-
tial desire vector set to 0.02 for all agents, and simulated 10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Iterations

A
v

e
ra

g
e

 o
f 

A
g

e
n

ts
’ E

xp
e

ct
e

d
 D

e
si

re

 

 

Random

Degree

Short path

Betweenness

Optimized

Random

Degree

Closeness

Betweenness

Optimized

Figure 4: The average of agents’ expected desire vs. the itera-
tions. The average is across all the products and over 30 dif-
ferent runs. Our proposed method has the highest average in
comparison to other methods which shows its capability as a
method for targeted advertisement in a social system.
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Figure 5: The average of agents’ expected desire vs. iterations.
In this simulation, the negative effect of advertising products
against other products has been increased. This result demon-
strates that our proposed method is more robust to the com-
monly occurring condition where increasing the desire toward
one item has a higher negative effect on the desire of agent to-
ward other products.

iterations of agent interactions. The entire process of interaction
and influence is governed based on the previous formulas given
in Section 4 and extracted parameters from the network. At each
iteration, we calculated the average of the expected desire value
of agents toward all products. Figure 4 shows this result for 100
agents and 10 advertisements. As explained before, the desire vec-
tor of Product agents are fixed for all products; in our simulation
is was set to 1 for the product itself and −0.05 for all other prod-
ucts (e.g., µ2 = [−0.05 1 − 0.05 . . . − 0.05]). The results for
this condition show that the proposed method creates a higher to-
tal product desire in the social system and is more successful than
other methods at selecting influential nodes. To test the robustness
of our algorithm we modified the desire vector of Product agents
and increased the negative effect of advertisements over other prod-
ucts by factor of three (e.g., µ2 = [−0.15 1 − 0.15 . . . − 0.15]).
The result of this simulation is shown in Figure 5. We can see that
in this case the average desire of agents has dropped dramatically
for all methods except the proposed algorithm. Even in the cases
of having high negative effect toward other products, this algorithm
can adapt the node selection in a way to keep the desire of agents
high and sell more products.
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Figure 6: The number of sold items vs. different advertising
methods. The assumption is that an agent with expected desire
greater than 0.01 will purchase the product. Different colors
in each bar indicates the number of sold items of each adver-
tised products. As there exist ten different products, the bar is
divided into ten parts.

To estimate the performance of algorithms in selling the products
to Regular agents, we assumed that agents with expected desire
higher than a threshold will purchase the product. Figure 6 shows
the average of total purchased items by agents with the purchasing
threshold as 0.01. Again, we see that our proposed algorithm is the
most successful method in advertising and selling products.

7. RELATED WORK
Social ties between users play an important role in dictating their

behavior. One of the ways this can occur is through social influ-
ence where a behavior or idea can propagate between friends. In
[1], the authors examine the statistical correlation between the ac-
tions of friends in a social network by considering factors such as
homophily and possible unobserved confounding variables. Hence
it follows that it is not only important to advertise to your customer
but also to your potential customer’s friends.

One theory about influential nodes is that they can be character-
ized as a set of initial nodes that trigger behavior cascades. This
set of nodes can then be identified either using probabilistic ap-
proaches [2, 18] or optimization-based techniques. For example,
in [16] the behavior spreads in a cascading fashion according to a
probabilistic rule, beginning with a set of initially active nodes. To
identify influential agents, they select a set of individuals to target
for initial activation, such that the cascade beginning with this ac-
tive set is as large as possible in expectation. [18] find influential
nodes in a complex social network by formulating the likelihood
for information diffusion data, the activation time sequence data
over all nodes; they propose an iterative method to search for the
probabilities that maximize this likelihood.

Apolloni et al. [2] examine the spread of information through
personal conversations by proposing a probabilistic model to de-
termine whether two people will converse about a particular topic
based on their similarity and familiarity. Similarity is modeled by
matching selected demographic characteristics, while familiarity is
modeled by the amount of contact required to convey information.
On the other hand, [22] propose a learning method for ranking in-
fluential nodes and perform behavioral analysis of topic propaga-
tion; they compare the results with conventional heuristics that do
not consider diffusion phenomena.

In this paper, we present one approach for framing and solving
the optimization problem using convex programming. The opti-

mization problem can also be solved using greedy algorithms (e.g.,
[19, 17]) that find approximate solutions using graph theory. [15]
also utilized greedy algorithms to identify the influential nodes. In-
telligent heuristics can be used to improve the scalability of in-
fluence maximization [8]. [9] made improvements upon existing
greedy algorithms to further reduce run-time and proposed new de-
gree discount heuristics that improve influence spread.

The effects of network topology on influence propagation have
been studied in several domains, including technology diffusion,
strategy adaption in game-theoretic settings, and the admission of
new products in the market [15]. It has been demonstrated that the
way information spreads is affected by the topology of the interac-
tion network [26] and also that there exists a relationship between
a person’s social group and his/her personal behavior [24].

Social network analysis has been used as a tool for implementing
effective viral marketing; influential nodes are identified either by
following interaction data or probabilistic strategies. For example,
Hartline et al. [11] solve a revenue maximization problem to inves-
tigate effective marketing strategies. The assumption is that a set
of influential nodes can propagate the information about the items
to other nodes, and therefore the objective is to find influential buy-
ers in a social network. [27] presented a targeted marketing method
based on the interaction of subgroups in social network. Moreover,
[4], similar to this work, considered the existing homophily in so-
cial networks. But instead of finding influential nodes, they base
their advertising strategy on the profile information of users and
user-only models.

Our work differs from related work in that, our model not only
considers homophily and group membership but also incorporates
other important factors such as the positive and negative effect of
competing product advertisements and the correlation among de-
mand for different products. Our optimization approach is largely
unaffected by the additional complexity since these factors only af-
fect the long-term expected value and not the actual solution method.
Outside of social network marketing approaches, there exist many
marketing methods based on personalization techniques for deliv-
ering advertisements [14] or news [3].

8. CONCLUSION AND FUTURE WORK
Agent-based simulation is an important tool for understanding

the behavior of social systems, enabling the analysis of population-
level effects over long time horizons that are not easily studied
within the confines of the lab. In this paper, we present a model
for researching techniques of large-scale persuasion; rather than
focusing on the content of the message, we address the problem of
identifying agents that have a high probability of indirectly influ-
encing a large number of additional agents. In popular parlance,
these influential agents can be considered to be some mixture of
Gladwell’s connectors, mavens, and salesman who affect the long-
term beliefs of other agents through their actions or communica-
tions [10]. Although this problem generalizes to domains such as
politics and social media distribution, we demonstrate our method
in a market scenario in which product representatives are attempt-
ing to maximize their sales through effective advertisement place-
ment. To solve this influence maximization problem, we compute
the steady-state expectation of the system and introduce a new op-
timization approach for selecting influential nodes. Contrary to
previous work, our approach is suitable for computing an optimal
solution across multiple products and handling the interactions of
multiple influencing agents. Our results show that our technique
conclusively outperforms a set of centrality-based techniques at se-
lecting influential agents and maximizing total product sales. Our
social model accurately reflects many of the complexities of real-



world human systems, such as group membership effects, product
preference dependencies, and a network structure driven by mul-
tiple conflicting forces. Moreover, in our model, an regular agent
need not represent an individual person but can be thought of as
an abstraction over communities of people. Then larger systems
can simply be solved in a hierarchical, but non-exact, fashion. In
our future work, we plan to mathematically analyze the short time
behavior of the system. This analysis will allow us to generalized
our solution technique to a dynamic network whose structure varies
over time [6] which is a characteristic possessed by certain real-
world social systems.
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