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Abstract—
Crowdsourcing has become an popular approach for
annotating the large quantities of data required to
train machine learning algorithms. However, obtaining
labels in this manner poses two important challenges.
First, naively labeling all of the data can be pro-
hibitively expensive. Second, a significant fraction of
the annotations can be incorrect due to carelessness
or limited domain expertise of crowdsourced workers.
Active learning provides a natural formulation to
address the former issue by affordably selecting an
appropriate subset of instances to label. Unfortunately,
most active learning strategies are myopic and sensitive
to label noise, which leads to poorly trained classi-
fiers. We propose an active learning method that is
specifically designed to be robust to such noise. We
present an application of our technique in the domain
of activity recognition for eldercare and validate the
proposed approach using both simulated and real-
world experiments using Amazon Mechanical Turk.

I. INTRODUCTION

Social computing is revolutionizing machine learning because

it transforms the problem of generating a large corpus of

labeled real-world data from a monolithic labor-intensive

ordeal into a manageable set of small tasks, processed by

thousands of human workers in a timely and affordable

manner. Human computation, organized through services such

as Amazon’s Mechanical Turk (MTurk) have made it possible

for researchers to acquire sufficient quantities of crowdsourced

labels, enabling the development of a variety of applications

driven by supervised learning models [1], [2].

However, crowdsourcing is not a panacea for data labeling

for two reasons. First, the human labelers recruited by crowd-

sourcing typically lack specialized training and are thus limited

to labeling data that requires little domain-specific expertise.

For instance, in our eldercare application, it is infeasible

to directly crowdsource labels for inertial measurement unit

(IMU) traces generated by body-worn sensors. A popular

solution to this issue [3] is for researchers to create a parallel,

time-aligned channel of information (such as video) that can

be provided to labelers. While this auxillary data would not

necessarily be available in the deployed system, it serves a

vital role in the classifier training process. While video does

enable human workers to annotate IMU data, our studies show
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that the acquired labels are still corrupted by an unacceptable

level of noise. In this paper, we propose augmenting the action

labeling task with an object recognition task (on images). By

integrating information about both objects and actions (similar

in spirit to [4]), we are able to better infer more accurate labels

for the IMU traces.

Second, exhaustively labeling large corpora can be pro-

hibitively expensive, motivating demand for approaches such

as active learning [5] for affordably training supervised clas-

sifiers with a significantly smaller subset of labeled data.

Active learning iteratively selects, from a pool of unlabeled

data, those samples that would have the greatest impact on

the classifier. Unfortunately, a direct application of traditional

active learning algorithms to crowdsourced training data is

problematic due to the problem of label noise. We propose

a modified active learning paradigm that balances the tradi-

tionally myopic selection of instances in active learning (e.g.,

based on proximity of data to the decision boundary) with a

term that also considers the distribution and local consistency

of labels. In other words, we aim to automatically identify

those unlabeled instances that are most valuable to label, but

also samples that might benefit from relabeling because their

initial labels seem suspect. Since acquiring multiple labels for

each sample en masse would be impractical due to expense,

our proposed method seeks to incrementally label only the

most important samples. Additionally, we identify problem-

atic samples (those for which we cannot get a sufficiently

consistent set of labels) and withhold them from the training

set. Thus, through the judicious use of inconsistency detection

and incremental relabeling, significantly boost the ability of

active learning to exploit crowdsourced data. Our experiments

show that this enables us to affordably train classifiers on noisy

crowd-sourced data.

II. RELATED WORK

Although active learning is a mature field [5], the majority

of work assumes the absence of label noise (i.e., perfect ora-

cles). Furthermore, most active learners incrementally select

the next instance in a greedy and myopic manner, though

efforts in pool-based active learning [6], [7] or hierarchical

approaches [8] take a more global perspective. The main

problem for active learning in our application is that un-

certainty sampling is inherently “noise-seeking” [9] and thus

the quality of learned classifiers degrades dramatically in the
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presence of crowdsourced annotations. The serious issue of

label corruption in social computing has been identified both

for crowdsourced data collection [10] and in the context of

attacks on collaborative tagging [11].

Our work is motivated by Nguyen and Smeulders [12]

and Donmez et al. [13]. Philosophically, our work is most

aligned with Sheng et al. [14], where relabeling is used to

obviate the effects of noise and Vijayanarasimhan et al. [15],

which identifies promising crowdsourcing annotation tasks

given a specific data labeling budget. Proactive learning [16]

attacks the related problem of selecting an optimal oracle using

a decision theoretic approach. Finally, our application area

of activity recognition using body-worn inertial sensors has

become an important research topic, particularly in the context

of eldercare and healthcare applications, as surveyed in [17].

III. PROPOSED APPROACH

Figure 1 presents an overview of our approach. Our goal is

to accurately label large quantities of IMU data with activity

labels, from which we can train activity recognition classifiers.

Given temporally-aligned video and IMU data, such as those

provided in the CMU-MMAC dataset [3], we assign MTurk

workers to label short, automatically-segmented video clips

of cooking activities with the label(s) corresponding to the

current action(s). Unfortunately, labels predicted using the raw

crowdsourced labels are unacceptably inaccurate. Inspired by

ideas in multi-task learning [18], we ask each worker to solve

a second related task — to identify visible objects. As detailed

below, we train a Naive Bayes classifier to infer actions based

on the combined annotations.

We then apply this framework in an active learning context

to iteratively annotate data. The key idea is to select instances

according to a mixture of two criteria: 1) Maxmin [19] and 2)

based on the distribution of labels in local neighborhoods.

A. Inferring Actions from Visible Objects

Our experiments use the CMU-MMAC dataset [3], which

consists of data collected from subjects performing unscripted

recipes in an instrumented kitchen using a variety of sensors.

Our goal is to perform reognition on the IMU data, but because

this data is difficult to annotate directly, we also provide

annotators with temporally aligned video from an egocentric

camera. As discussed earlier, to compensate for the poor

annotation accuracy of raw crowdsourced action labels, we

ask MTurk workers to annotate which objects are visible in

each scene. We use these as a secondary source from which

to infer action labels, and the two sources are combined using

a Naive Bayes formulation. Experiments show that while this

significantly improves annotation accuracy, the label noise is

still too high for traditional active learning methods.

B. Adding Robustness to Label Noise for Active Learning

Active learning seeks to iteratively obtain labels for data

by identifying, at each iteration, the most uncertain sample

(i.e., the instance, which if labeled would have the greatest

impact on the classifier). Before describing our modification,

we briefly review active learning in the context of a support

vector machine (SVM) framework. Let T = {x1,x2, . . . ,xl}
be a set of initially labeled instances, with corresponding

labels given by L = {y1, y2, . . . , yl}. We also define a set

of unlabeled instances as U = {xl+1,xl+2, . . . ,xn}. Our

method extends Tong and Koller’s Maxmin Margin strategy [7]

for selecting samples that have the greatest impact on the

loss: Lossuncertainty(xi) = minxi∈U(V +(xi), V
−(xi)), where

V +(xi) and V −(xi) denote the sizes of the version spaces

resulting from labeling xi as + or −, respectively. This formu-

lation extends naturally from binary to multiclass settings by

computing the product of the loss function for the appropriate

classification hyperplanes from all classes. The version space

idea also applies to SVMs with non-linear kernels; in our work,

we employ the popular Gaussian kernel.
Note that this standard formulation for SVM-based active

learning is potentially ill-suited to our task for two important

reasons. First, it assumes that the requested labels are perfect.

This can be a dangerous assumption since it makes the SVM

very sensitive to label noise. Second, a given sample, once

labeled can never be selected for relabeling, which means that

an error, once made, tends to become “locked in”.
To address the first concern, we modify the loss function, as

described below, to add a term characterizing the inconsistency

of each labeled sample based on labels in its neighborhood.

The intuition behind this idea is that one should request labels

for samples that are in unexplored regions of the feature space

or those near samples that may have been incorrectly labeled.

To address the second concern, we also propose relabeling

such points using crowdsourcing. Let xi ∈ U be the unlabeled

sample with unknown label yi and xj ∈ T be a labeled sample

with known label yj . Now, we can estimate the probability of

labeling xi as class c (based on labels in its neighborhood) as

p(yi = c) =
1

|T |
∑

xj∈T
h(c, yj)f(xi,xj). (1)

Here, h(c, yi) = 1 if the labels agree and 0 otherwise, and

f(., .) is a Gaussian function (corresponding to the SVM RBF

kernel). We formulate the inconsistency term of the modified

loss simply as the entropy of the label distribution p(yi):

Lossinconsistency(xi) = −
∑

c∈C
p(yi = c) ln(p(yi = c)) (2)

Finally, the modified loss consists of a linear combination of

these two terms. The sample that we select is obtained using:

x∗ = arg max
xi∈U

Lossuncertainty(xi)+λ ·Lossinconsistency(xi), (3)

where λ denotes the mixing weight between the two criteria

and depends on the expected annotation accuracy. Given a
priori knowledge about annotation accuracy, one could set

λ appropriately — with reliable labels, a lower value for λ
suffices. In practice, since the expected accuracy of labels is

unknown, we employ cross-validation with a hold-out set to

determine λ. As suggested in [16], we initialize our labeled

set by crowdsourcing k “representative samples” taken near

cluster centers of our data.
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Fig. 1. Overview of the proposed method. Since labeling IMU data is difficult for untrained users, we crowdsource short activity labels for temporally
aligned video clips supplemented with object labels for still images. The object labels generate more accurate activity labels. Our modified active learning
approach uses both uncertainty and inconsistency, requests relabels for important samples, and rejects problematic samples. The resulting system can train
accurate activity recognition classifiers from unreliable crowdsourced data.

C. Relabeling Strategy

As discussed above, the modified active learning scheme

can crowdsource additional labels for samples that might

have been incorrectly labeled. Given multiple labels, the most

straightforward strategy for incorporating them is a voting

scheme where the most popular label is assumed to be correct,

termed majority relabeling (MR) in our experiments below.

Unfortunately, this form of voting is no better than random

when too many workers disagree (when it would be better to

discard the sample) and does not distinguish between a clear

and slight majorities.

For these reasons, we propose an alternate scheme, termed

absolute majority relabeling (AMR) that incrementally adds

labels until the sample is either accepted (with a clear ma-

jority) or deemed problematic due to inconsistent labeling

and discarded. The intuition behind our proposed scheme is

straightforward: given the distribution of labels for the sample,

we accept the majority label iff it has received more than 50%

of the votes. Otherwise, we incrementally request additional

labels; if a clear majority fails to emerge after N = 7 labels,

we mark the sample as problematic and remove it from the

training set.

relabeling accepts label c iff: p(Y = c) > 0.5. (4)

We can make a further modification to the AMR strategy

by allowing workers to provide soft votes for multiple labels

rather than a hard vote for a single label (analogous to

cumulative voting). Specifically, each worker’s vote consists

of the label distribution p(Y |O,A) generated using Naive

Bayes (described in Section III-A). These histograms are

accumulated and normalized. The decision criterion remains

the same: if ∃c ∈ C s.t. p(Y = c) > 0.5 then we accept the

label c. If no consistent labeling emerges after N workers have

relabeled the sample, we discard the sample from the training

set. In the experiments below, we term this modified relabeling

scheme as absolute cumulative majority relabeling (ACMR).

IV. DATA COLLECTION

CMU-MMAC [3] is primarily an unlabeled dataset. To test

our annotation strategies, we use the labeled subset posted

on the CMU-MMAC website1 as ground truth labels. This

consists of labels for 10 subjects who baked the brownie

recipe, where the annotations were manually generated from

the video data alone.

A. Synthetic Data

In addition to evaluation on CMU-MMAC, we study the

performance of our proposed methods on a synthetic dataset

under controlled noise conditions. Based on previous experi-

ence, we model label noise in crowdsourced annotations as

a combination of two factors, random error and systematic
error.

The random error comes from annotator carelessness, when

workers occasionally provide an incorrect label for the given

task. We treat this as i.i.d. noise on each label. Our model

assumes that there is a fixed probability r ∈ [0, 1] that a given

sample will be corrupted by random noise. Such samples are

assigned an incorrect label, chosen from among the remaining

labels with uniform chance.

The second source, systematic error results from samples

that are inherently difficult for any worker to annotate. For

example, some videos are ambiguous or depict transitions

between two actions and are thus challenging to annotate. The

1http://www.cs.cmu.edu/∼espriggs/cmu-mmac/annotations/
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label noise for these samples is correlated. We simulate this by

a priori identifying n random samples as challenging. For each

challenging sample, there is a high probability s ∈ [0, 1] that

workers labeling this sample will generate a label chosen with

uniform probability from among the set of incorrect choices.

B. Real Data

The crowdsourced labels are collected using Amazon’s Me-

chanical Turk, which allows developers to publish distributed

annotation tasks to workers. Our task requires workers to

annotate a short video (approximately 1–2 seconds in dura-

tion) taken from the CMU-MMAC dataset showing a subject

preparing food in a kitchen environment. The work is asked

to select a single most likely action and tag the set of objects

visible in the video.

To enable us to study relabeling under repeatable conditions,

we ask 7 different workers to annotate each video in the

dataset. In the experiments, whenever an algorithm requests

an additional crowdsourced label, we pull an appropriate label

from the queue of 7 labels for the given point.

V. EXPERIMENTS

We present a selection of results from three categories of

experiments. In the first set, we perform a controlled study

on synthetic data by corrupting labels with known quantities

of noise to evaluate the robustness of different active learning

selection criteria. The second set evaluates the three proposed

relabeling strategies under controlled conditions. The third

set examines the performance of the different active learning

sample selection criteria and the relabeling strategies on the

CMU-MMAC dataset, and examines the impact of combining

object and action labels to infer more accurate annotations.

A. Robustness to Annotation Noise

The first set of experiments examines the robustness of

various active learning strategies to annotation noise. Figure 2

compares four active learning sample selection strategies under

four scenarios with increasing levels of random error (r = 0%,

20%, 40%). The selection strategies are:

1) Maxmin [7] - the standard criterion that only considers

uncertainty (black);

2) DWUS [12] - a global criterion that combines both

uncertainty and data distributions (red);

3) Proposed - our criterion that combines both uncertainty

and inconsistency criteria (blue).

In these experiments, there is no systematic error (s = 0).

We make several observations. First, in the noise-free case,

the classifier error of all three strategies decreases sharply

and converges to a low error rate. “Maxmin” and “Proposed”

perform better than “DWUS” at the final phase of the learning.

This is consistent with our expectations that the standard

criterion, which mainly focuses on most uncertain samples

is well suited for noise-free scenarios, and that our proposed

criterion can match this.

Next, in the r = 20% noise case, we see that “DWUS”

decreases quickly but converges to a higher error rate since

the representative term in its loss function forces the strategy

select samples from high density regions. That means although

“DWUS” benefits by selecting representative samples in the

initial phase, it suffers in the final phase because the most

uncertain samples remaining probably do not occur in the

high-density regions. We observe that the “Proposed” scheme

continues to have low errors in the final phase of learning

since it focuses on inconsistent samples that have mislabeled

neighbors.

Finally, under the challenging conditions of 40% noise, none

of the three criteria perform particularly well. From this, we

can conclude that improving the criteria for selection in active

learning can effectively counter moderate noise but is not

sufficient by itself when dealing with very noisy annotations.

This validates our earlier observation that crowdsourced labels

may require judicious relabeling in addition to improved active

learning strategies.

B. Relabeling — Synthetic Data

In this section we evaluate the performance of relabeling

strategies on synthetic data with both random and systematic

noise. We employ two sets of synthetic data in this experiment.

The first simulates annotation with random error r = 20%. The

second set of data has 50% of samples correctly annotated and

the other 50% with systematic error s = 40%. The relabeling

strategy can request up to 7 labels to annotate a given sample.

We applied Maxmin and our proposed active learning methods

to select the most informative sample to be annotated. This

experiment involves two relabeling strategies:

1) Majority relabeling (MR) - a sample is relabeled with the

most popular action label. If multiple labels are equally

popular, a random label from that set is used.

2) Absolute majority relabeling (AMR) - proposed strategy

using only the raw action labels.

Figure 3 indicates the results by applying different relabel-

ing strategies on synthetic data with random error (r = 20%)

only. The results shows that by asking multiple workers to

annotate samples, the majority relabeling (MR) (dashed lines)

effectively reduces the learning error to a low rate (approx-

imately 5%) even when the label noise is 20%. Moreover,

with the absolute majority relabeling (AMR) (solid lines),

which identifies unreliable labels and asks additional workers

to relabel them, the learning error converges rapidly to a much

lower level for both of the active learning sample selection

criteria.

Another experiment on the synthetic data with systematic

error (s = 40%) is shown in Figure 4. This experiment

also validates the benefit of relabeling. AMR (solid lines)

outperforms the MR (dashed lines).

C. Relabeling — CMU-MMAC Dataset

In this experiment, we compare the classifier error of

different relabeling strategies (see Figure 5). Specifically, we

examine the following conditions:

1) Majority relabeling (MR) - a sample is relabeled with the

most popular action label (black dashed).
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(a) Noise free (b) 20% noise (c) 40% noise

Fig. 2. Impact of label noise on classifier error rates for different active learning selection criteria (lower is better). The figure key is as follows: 1) Maxmin [7]
(red), 2) DWUS [12] (black) 3) Proposed (blue).

Fig. 3. The performances of different relabeling strategies on synthetic data
with random error (r = 20%).

Fig. 4. The performances of different relabeling strategies on synthetic
data with systematic error (s = 40%). Absolute majority (AMR) dominates
majority relabeling for both active learning selection criteria.

2) Absolute majority relabeling (AMR) - proposed strategy

described above (black solid).

3) Majority + augmented labels (MR+Augment) - for each

worker, we infer an augmented label using the Naive

Bayes model based on both action and visible objects

and select the most popular (red dash).

4) Absolute majority relabeling + augmented labels

(AMR+Augment) - AMR applied to augmented labels

(red solid).

5) Cumulative majority relabeling + augmented labels

(CMR+Augment) - rather than accumulating peak votes

Fig. 5. The learning error by using Maxmin active learner combined with
different relabeling strategies.

as in MR+Augment, we take the peak of the summed

distributions (blue dashed)

6) Absolute cumulative majority relabeling + augmented

labels (ACMR+Augment) - we accept the majority label

from CMR only if it has an absolute majority, i.e., > 50%
of probability mass (blue solid).

Note that in AMR and ACMR, samples where incremental

crowdsourcing fails to obtain a label that can capture an

absolute majority (> 50% after up to N = 7 independent

votes) are discarded from the training set. To facilitate direct

comparisons, all of these relabeling strategies are employed in

conjunction with the standard uncertainty-based active learn-

ing sample selection criterion (Maxmin [7]).

As observed in Figure 5, using the raw action labels

collected directly from MTurk (black dashed and solid) is

problematic in conjunction with Maxmin because the label

noise is severe enough to cause active learning to increase

classifier error over time. This is true both for the straight-

forward majority relabeling strategy as well as our proposed

AMR strategy (though the latter does better). Employing the

augmented feature set, which combines action and object

labels, addresses this shortcoming.

We also observe that employing cumulative voting with

the augmented features (CMR+Augment, ACMR+Augment)

during active learning significantly improves the classifier

performance, and that the proposed absolute majority schemes
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Fig. 6. Proposed relabeling strategy with different active learning methods
on real data from MTurk.

are consistently better than their counterparts (AMR vs. MR,

and ACMR vs. CMR), as seen by the contrast between dashed

and solid lines. This validates our hypothesis that discarding

inconsistently labeled samples from the training set leads

to better performance. The best performance is achieved by

the proposed method (ACMR+Augment), which combines

absolute majority voting over label distributions with the

augmented object+action features.

The final set of experiments (see Figure 6) explores the

impact of the different active learning sample selection criteria

on the CMU-MMAC dataset. In this experiment, all of the

active learning criteria used the best relabeling strategy along

with the augmented feature set (ACMR+Augment), with a

pool of upto N = 7 independent relabeling opportunities. The

active learning strategies are:

• Maximin [7], which focuses on sample uncertainty (black

line);

• DWUS [12], which considers both unertainty and repre-

sentative samples using the data distribution (red line);

• Proposed method that combines sample uncertainty with

label consistency (blue line).

We see that DWUS initially improves faster than Maximin,

since focusing on representative samples is an advantage.

However, the strategy ultimtely converges to a higher error

rate than the others because DUWS has reduced sensitivity to

the uncertain samples. The proposed method performs much

better than DUWS and slightly better than Maxmin. The

addition of the inconsistency term initially pushes the selection

criterion towards samples far from the labeled data and then

gradually picks up samples that have suspicious labels (those

inconsistent with their local neighborhood).

VI. CONCLUSION

Although crowdsourcing annotations using active learning is

an attractive and affordable idea for large-scale data labeling,

the approach poses significant difficulties. Our study in the

domain of wearable sensor-based activity recognition shows

that a straightforward approach using the raw annotations

obtained from Mechanical Turk in conjunction with standard

margin criteria for SVM-based active learning would fail due

to the high degree of annotation noise. This paper makes

three contributions that enable us to robustly train under these

challenging conditions. First, we infer more accurate action

annotations by combining objects with actions in a proba-

bilistic framework. Second, we propose a new criterion for

selecting instances in active learning that combines uncertainty

and inconsistency measures. Third, we show that relabeling

significantly improves the performance of active learning when

the quality of annotations cannot be trusted. Our experiments

using the CMU-MMAC dataset and Mechanical Turk confirm

that the proposed approach improves active learning in noisy

real-world conditions.
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