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ABSTRACT

Networked data, extracted from social media, web pages, and bib-
liographic databases, can contain entities of multiple classes, in-
terconnected through different types of links. In this paper, we
focus on the problem of performing multi-label classification on
networked data, where the instances in the network can be assigned
multiple labels. In contrast to traditional content-only classification
methods, relational learning succeeds in improving classification
performance by leveraging the correlation of the labels between
linked instances. However, instances in a network can be linked for
various causal reasons, hence treating all links in a homogeneous
way can limit the performance of relational classifiers.

In this paper, we propose a multi-label iterative relational neigh-
bor classifier that employs social context features (SCRN). Our
classifier incorporates a class propagation probability distribution
obtained from instances’ social features, which are in turn extracted
from the network topology. This class-propagation probability cap-
tures the node’s intrinsic likelihood of belonging to each class, and
serves as a prior weight for each class when aggregating the neigh-
bors’ class labels in the collective inference procedure. Experi-
ments on several real-world datasets demonstrate that our proposed
classifier boosts classification performance over common bench-
marks on networked multi-label data.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—Data Min-
ing; J.4 [Social and Behavior Sciences]: Sociology

General Terms

Algorithm, Experimentation
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INTRODUCTION

Recently, much attention has been paid to the problem of learn-
ing from networked data, where instances are interconnected by
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implicit or explicit relationships [1,5,21]. Relational learning [6]
can learn models of this data structure by utilizing the correlation
between labels of linked objects; networks resulting from social
processes often possess a high amount of homophily, such that
nodes with similar labels are more likely to be connected [15].
Many of the algorithms developed for relational classification are
heuristic methods that do not necessarily correspond to formal prob-
abilistic semantics [17]. In other approaches, during the infer-
ence process the probability distribution is structured as a graph-
ical model based on the assumption that the structure of the net-
work corresponds at least partially to the structure of the network
of probabilistic dependencies [14]. Relational learning enhances
the tractability of estimating the full joint probability distribution
of the data by making a first-order Markov assumption that the la-
bel of one node is dependent on that of its immediate neighbors in
the graph. Collective inference in relational classification makes
simultaneous statistical estimations of the unknown labels for in-
terrelated entities, and finds a equilibrium state such that the incon-
sistency between neighboring nodes is minimized. By exploiting
network connectivity information, relational classification models
have been shown to outperform traditional classifiers [18,25].

The conventional relational classification model focuses on the
single-label classification problem, which assumes that each in-
stance is only associated with one label among a finite set of can-
didate classes. However, in many real relational datasets, each in-
stance is associated with multiple labels. For instance, in document
networks, one document can describe multiple topics. In social net-
works, people often belong to a large set of interest groups. Clas-
sifying this type of dataset can be regarded as a multi-label clas-
sification task. In previous work, edges in the network are treated
homogeneously; the implicit assumption is that the edges are en-
gendered from similar social processes. However, in multi-label
relational datasets, connections between instances are driven by
various casual reasons. In the familiar example of collaboration
networks, scientific authors usually have multiple research inter-
ests and seek to collaborate with different co-authors for different
types of work. For instance, Author A cooperates with author B on
publishing papers in machine learning conferences whereas his/her
interaction with author C' is mainly due to work in the data mining
area. The heterogeneity in connection causality makes the classifi-
cation problem more difficult.

Collective classification becomes particularly challenging in multi-
label settings since the label dependencies among related instances
are more complex. Currently, most collective inference models
do not differentiate in their treatment of connections between in-
stances; however, treating links in a homogeneous way may nega-
tively affect the classification result [23]. The relational neighbor
classifier (RN) [13] provides a simple yet effective way to solve



single-label relational classification problems. In this paper, we
present a multi-label relational classifier that accounts for this in-
homogeneity in connections and is designed for classification prob-
lems on multi-label networked datasets. Our proposed method,
SCRN, extends RN by introducing a node class-propagation prob-
ability that modulates the amount of propagation that occurs in a
class specific way based on the node’s similarity to each class. Al-
though the class propagation probability can be determined by the
node’s intrinsic features, it can also be based on node’s social fea-
tures. These features capture link patterns between a node and its
neighbors and can be extracted from network topology in instances
when the node lacks intrinsic features. SCRN’s ability to differ-
entiate between classes during the inference procedure allows it to
outperform previous methods in several real-world multi-label re-
lational datasets.

The multi-label collective classification problem that we address
here is related to the within-network classification problem: entities
whose labels are known are linked to entities for which the class has
to be estimated. In this paper, we aim to simultaneously predict the
label sets of a group of related instances within the same network.
The multi-label networked dataset is represented as a graph G =
(V,E,C, L), where V. = {v1,v2, ..., v, } is a set of nodes, F is a
set of edges that connect pairs of nodes. Let C' = {c1, c2, ..., Cm }
be the finite set of m possible classes that each node can possess.
Given a node v; € V/, its class label is represented by a binary
vector L; = (I},1%,...,1™) € {0,1}™, indicating the multiple
label assignment to each node. I;* = 1 iff v; belongs to class ¢y,.
The set of nodes, V, is further divided into two disjoint parts: nodes
with known class labels, vE , and VU, nodes whose labels need to
be determined. Lx = {L;|v; € V¥} indicates the observed multi-
label set assigned to V. Our task is to use V¥ as the training data
to infer the labels, Ly, for nodes in VU

In multi-label classification problems, a popular approach is to
decompose the multi-label classification problem into multiple bi-
nary classification problems (one for each class). Conventional
multi-label classification approaches (e.g., the ones used on non-
networked data), usually assume the instances are i.i.d., and that
the inference for each instance is performed independently:

PLV) o [ P(Lilvs).

v, VU

ey

In this paper, we propose a multi-label relational classifier that
models the correlations between inter-related instances in the net-
work. We start by constructing a social feature space, an edge-
based representation of social dimensions using the network topol-
ogy to capture the node’s potential affiliations as described in [23].
A class-propagation probability is assigned to each node to describe
its intrinsic correlation to each class. The class-propagation prob-
ability is calculated from the similarity between the node’s social
features and the class reference vector. The multi-label relational
classifier estimates a node’s label set based on its neighbors’ class
labels, the similarity between connected nodes, and its class prop-
agation probability. SCRN iteratively classifies the labels of the
unlabeled nodes until all the label predictions are fixed or the max-
imum number of iterations is reached. In the next section, we de-
scribe the basic idea behind relational neighbor classifiers before
describing our proposed method.

2. APPROACH

The Relational Neighbor (RN) classifier proposed by [13], is a
simple relational probabilistic model that makes predictions for a
given node based solely on the class labels of its neighbors, with-
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out machine learning or additional features. RN estimates class-
membership probabilities by assuming the existence of homophily
in the dataset, entities connected to each other are similar and likely
belong to the same class. Suppose each instance in the network
only belongs to a single class ¢ € C. Givenv; € V'Y, the relational-
neighbor classifier estimates P(L; = c|v;), the class-membership
probability of a node v; belonging to class c, as the (weighted) pro-
portion of nodes in the neighborhood that belong to the same class.
We define neighbors NN; as the set of labeled nodes that are linked
to v;. Thus:

P(Ll = C|’Ui) = (2)

% Y wlvi,vy) x I(L; = o),

vjENi

where Z = ZvjeNi w(vi,vj). w(vs,v;) is the weight of the link
between node v; and v; and I(.) is an indicator variable.

Instead of making a hard labeling during the inference proce-
dure, the weighted-vote relational neighbor classifier (wvRN) ex-
tends RN by tracking changes in the class membership probabili-
ties. wvRN estimates P(L;|v;) as the (weighted) mean of the class
membership probabilities of the entities in the neighborhood (IV;):

P(Lz = C‘UZ') = (3)

1
A > w(vi,v;) x P(L; = ¢|N;),
v EN;

where Z is the usual normalization factor.

In both RN and wvRN, entities whose class labels are unknown
are either ignored or are assigned a prior probability, depending on
the choice of the local classifier. Since only a small portion of the
nodes in G have known labels, a collective inference procedure is
needed to propagate the label information through the network to
related instances, using either the RN classifier or wvRN classifier
in its inner loops.

As shown in [13], both RN and wvRN perform surprisingly well
on relational datasets, even compared to more complex models,
such as the Probabilistic Relational Model and Relational Proba-
bilistic Tree.

2.1 Proposed Method: SCRN

wvRN assumes that each node only has one single label, and that
the class labels of linked nodes are likely to be the same. How-
ever, in multi-label relational networks, the existence of heteroge-
neous relationships gives rise to nodes with neighbors from mul-
tiple classes. The diversity of the connections indicates two con-
nected nodes might only share a subset of labels. The inference
procedure in the RN classifier and wvRN classifier treat all links
homogeneously, and this may cause problems when propagating
the label information across the network, especially when collec-
tive inference originates from the overlapping nodes (nodes with
multiple labels) in the network. A toy example with two class la-
bels is shown in Figure 1. Imagine the case where all the nodes
on the left-hand side of node 1 belong to group 1, while those on
the right-hand side of node 1 are from group 2; node 1 serves as a
bridge, weakly connecting both groups. If we commence inferring
the label sets of all the other nodes using node 1’s label informa-
tion, without differentiating between the connections, the collective
inference in RN classifier will expect all the nodes in the graph to
have the same class label as node 1.

To address this problem, instead of uniformly aggregating the
neighbor’s labels along each class like wwRN does, we propose to
assign each node a class propagation probability distribution, which
represents its likelihood of maintaining the neighbor’s class label
set. A node will be more likely to share a class with neighbors
that have a high class-propagation probability. Take the toy graph



Figure 1: A simple example of a coauthorship network. The
solid line represents the act of publishing a paper in a data min-
ing conference and the dashed line represents the activity of col-
laborating on a machine learning paper. To express the nodes
using edge-based social features, each edge is first represented
by a feature vector where nodes associated with the edge denote
the features. For instance, here the edge “1-3” is represented as
[1,0,1,0,0,0,0,0,0,0]. Then, the node’s social feature (SF) vec-
tor is constructed based on edge cluster IDs. Suppose in this
example the edges are partitioned into two edge clusters (rep-
resented by the solid lines and dashed lines respectively), then
the SFs for node 1 and 3 become [3,3] and [0,3] using the count
aggregation operator.

for example, when inferring the labels of node 2 from node 1, we
want to keep its estimation of class 2’s probability much higher than
class 1 to make a more accurate prediction. Therefore, a node’s
class-propagation probability can be regarded as its prior probabil-
ity for each class. Learning the class-propagation probability dis-
tribution is critical in order to achieve better discrimination during
the inference procedure. Fortunately the structure of the network
can be highly informative, and we capture this information through
using the network topology to construct social features.

In the proposed method, we first extract the social features (SF)
from the network topology using the edge clustering method de-
scribed in Section 2.2. These social features capture the nodes’ in-
volvement patterns in different potential affiliations, and the node’s
class propagation probability can be constructed from the social
features in the following way. An initial set of reference features
for class c can be defined as the weighted sum of social feature
vectors for nodes known to be in class c:

LS P =1) x SF(w),

K
Ve |vieVCK

RV (c) = “

where VX = {v;|v; € V¥}, which represents the nodes whose
labels are known as class c.

Then node v;’s class propagation probability for class ¢ condi-
tioned on its social features, Pcp(I§|SF(v;)), can be calculated
by the normalized vector similarity between SF'(v;) and class ¢’s
reference feature vector, RV (c):

Pep(l{|SF (vi)) = sim(SF(v;), RV (c)), )

where sim(a, b) is any normalized vector similarity function (e.g.,
cosine or inner product).

Our proposed multi-label relational classifier then estimates the
class-membership probability of node v; belonging to class c:

based on the class labels of its neighbors, {L;|lv; € N;}, the
weight between v; and its directed neighbors v;, w(v;, v;), and its
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Table 1: Overview of SCRN Algorithm

Input: {G, V,E, C, Lx}, Max_Iter
Output: Ly for nodes in VY

1. Construct the social feature space using scalable K-means
edge clustering.

2. Initialize the class reference vectors, RV, for each class
based on Equation 4.

3. Calculate the class-propagation probability for each test
node using the similarity between the node’s social feature
and class reference vectors using the GHI kernel.

4. Repeat until # iterations>Max_Iter or predictions converge
to stable values:

e Estimate the test node’s class membership probability
according to Equation 6.

e Update the test node’s class membership probability
based on the prediction in the last iteration according
to Equation 7.

e Update the class reference vectors according to the la-
bels of the nodes in the current iteration.

e Re-calculate each node’s class-propagation probability
using the present class reference vectors.

conditional class propagation probability, Pcp(I§|SF(v;)). The
multi-label relational classifier model is defined as follows:
P(IF|Ni, SF(vi)) = 33, en, Por(f|SF(vi)) ©)

xw(vi, v5) x P(I5|Ny),

where Z is the normalization factor. Similar to the RN and wwRN
classifiers, our multi-label relational classifier iteratively classifies
the nodes in V'V using the model defined in Equation 6 in its inner
loop. Since the label predictions change in each iteration, the class
reference feature vector is updated based on the feature vectors of
nodes (both training and testing nodes) whose labels belong to class
c in the current iteration. In this paper, we adopt the Relaxation
Labeling (RL) approach [3,27] in the collective inference frame-
work. During each iteration, RL updates the prediction probability
by taking account of the probability estimates from the previous
iteration. The general update procedure for relaxation labeling is
shown in Equation 7 [14]:

P = gV Me (o) + (1= 8“Y) - PO, )
where B(O) = kand BtV = B . o. Both k and « are con-
stants in the range O to 1; ¢ is the iteration count and M (-) de-
notes the relational model. The inference procedure in SCRN ter-
minates when it meets the stopping criteria; possible stopping cri-
teria include the stability of all label predictions between iterations
or reaching a fixed budget of iterations. A summary of the SCRN
framework is shown in Table 1.

2.2 [Edge-Based Social Feature Extraction

The notion of edge-based social dimensions was created to ad-
dress the classification problem in networked data with multiple
types of links. Connections in human networks are mainly affiliation-
driven, and each connection can often be regarded as principally
resulting from one affiliation. Hence, links (connections) possess
a strong correlation with affiliation classes. Moreover, since each
person usually has more than one connection, the involvements of
potential groups related to one person’s edges can be utilized as a



Figure 2: Visualization of edge clustering using a subset of
DBLP with 95 instances. Edges are clustered into 10 groups,
with each shown in a different color.

representation for his/her true affiliations. Because this edge class
information is not readily available in most social media datasets,
an unsupervised clustering algorithm can be applied to partition the
edges into disjoint sets such that each set represents one potential
affiliation [23]. The edges of actors who are involved in multiple
group affiliations are likely to be separated into different sets which
in turn facilitates the multi-label classification task.

In this paper we construct the node’s social feature space using
the scalable edge clustering method proposed in [23]. Specifically,
we first represent each edge in a feature-based format, where each
edge is characterized by its adjacent nodes, as shown in Figure 1.
Based on the features of each edge, K-means clustering is used to
separate the edges into groups. Each edge cluster represents a po-
tential affiliation, and a node will be considered involved in one
affiliation as long as any of its connections are assigned to that af-
filiation. Since the edge feature data is very sparse, the clustering
process can be accelerated wisely. In each iteration a small portion
of relevant instances (edges) that share features with cluster cen-
troids are identified, and only the similarity of the centroids with
the relevant instance need to be recomputed. By using this pro-
cedure introduced by [23], the clustering task can be completed
within minutes even for networks with millions of nodes. Figure 2
shows a result of the edge clustering method on a small sample of
DBLP dataset. Edges are clustered into 10 separate groups, and
each edge group is marked in one color. As we can see, the edge
clustering method is able to maintain the correlation between con-
nected nodes; nodes and their neighbors usually share the same
type of edge. Also, nodes with high degree are more likely to asso-
ciate with different types of edges since they are usually involved
in multiple affiliations.

After clustering the edges, we can easily construct the node’s
social feature vector using aggregation operators such as count or
proportion on edge cluster IDs. In [23], these social dimensions
are constructed based on the existence of the node’s involvements
in different edge clusters. Although aggregation operators are sim-
ply different ways of representing the same information (the his-
togram of edge cluster labels), alternate representations have been
shown to impact classification accuracy based on the application
domain [20].

3. EXPERIMENTAL SETUP

We evaluate the classification performance of our proposed multi-
label relational classifier on three real-world multi-label relational
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Table 2: Dataset Summary

Data DBLP IMDb YouTube
# of nodes 8,865 11,476 15,000

# of links 12,989 323,892 136,218
# of categories 15 27 47
Network Density 3.3 x 10™% 4.7 x10™® 1.2x1073
Maximum Degree 86 290 14,999
Average Degree 3 55 9
Average Category 2.3 1.5 2.1

datasets, DBLP, IMDb, and YouTube, whose properties are sum-
marized in Table 2.

3.1 DBLP Dataset

The first real-world dataset we studied in this paper is extracted
from the DBLP dataset. The DBLP dataset provides bibliographic
information for millions of computer science references. In this
paper, we construct a weighted collaboration network for authors
who have published at least 2 papers during the 2000 to 2010 time-
frame. In this network, the author is represented by the node, and
two authors are linked together if they have collaborated at least
twice. The weight of the link is defined as the number of times
these two authors have co-authored papers. Each author can have
multiple research interests. For our dataset, we selected 15 repre-
sentative conferences in 6 research areas. An author is interested in
aresearch area if he/she has published a paper in any of the confer-
ences listed under that area, and our classification task is to asso-
ciate each author with the correct set of conferences. The selected
conferences are listed below:

e Database: ICDE, VLDB, PODS, EDBT
Data Mining: KDD, ICDM, SDM, PAKDD
Artificial Intelligence: [JCAIL, AAAI
Information Retrieval: SIGIR, ECIR
Computer Vision: CVPR
Machine Learning: ICML, ECML

3.2 IMDb Dataset

The second dataset studied in this paper is IMDb.? The Internet
Movie Database (IMDD) is an online database of information re-
lated to movies, television programs, and video games, including
information about directors, actors, and plots. Our classification
task is to predict the movie’s genres based solely on the collab-
oration network. Each movie can be assigned to a subset of 27
different candidate movie genres in the database such as “Drama",
“Comedy", “Documentary" and “Action". In our experiment, we
extract movies and TV shows released between 2000 and 2010,
and those directed by the same director are linked together. We
only retain movies and TV programs with greater than 5 links.

3.3 YouTube Dataset

The third dataset is extracted from YouTube, which is a popular
website for sharing videos. Each user in YouTube can subscribe
to different interest groups and add other users as his/her contacts.
In this paper, we select a subset of data (15000 nodes) from the
original YouTube dataset® in [23] using snowball sampling, and re-

"http://www.informatik.uni-trier.de/~ley/db/
http://www.imdb.com/interfaces

3http ://www.public.asu.edu/~1ltang9/social_
dimension.html



tain 47 interest groups as our class label. Unlike DBLP and IMDb,
YouTube is not a collaboration network and thus exhibits different
network properties.

3.4 Baseline Methods

In this paper, we compare our proposed multi-label relational
classifier to four related methods: EdgeCluster, wwRN, Prior and
Random. A short description of these methods follows:

o Edge (EdgeCluster) captures the node’s correlation to different
classes by extracting social dimensions from network structure us-
ing the edge clustering representation [23]. The edge-based social
features are constructed using the count operator on the edge clus-
ter IDs, and a linear SVM is used as the classifier. To achieve good
performance with EdgeCluster, it is necessary to balance the sizes
of the positive and negative training sets; this can be accomplished
using resampling.

o wVvRN, weighted-vote Relational Neighbor Classifier [13], makes
predictions based solely on the class labels of the given node’s
linked neighbors; the node’s predicted class memberships are con-
structed as the weighted mean of its neighbors. Our implementa-
tion of wvRN uses the same relaxation labeling procedure as used
in SCRN.

e Prior generates a class membership estimate according to the
fraction of instances in the labeled training data with the given class
label. Thus, all nodes (regardless of network connectivity) share
the same class estimates which are assigned to multi-label nodes in
rank order.

e Random generates class membership estimates randomly for
each node in the network using neither network nor label informa-
tion.

In our proposed method, the edge clustering method is initially
adopted to construct the social features. We use cosine similarity
while performing the clustering; the dimensionality of the edge-
based social features is set to 1000 for DBLP and Youtube datasets
and 10000 for the IMDD dataset; these parameters are selected be-
cause they give the best results for EdgeCluster and therefore pro-
vide the fairest comparison.

In SCRN, the class-propagation probability is calculated by the
similarity between the node’s social feature and class reference
features. We evaluated several similarity measures, including Co-
sine, Inner Product and Generalized Histogram Intersection Ker-
nel, and we observe that the Generalized Histogram Intersection
Kernel (GHI) [2] outperforms the other measures in grouping sim-
ilar instances and is therefore used in the rest of this paper.

Since our problem is essentially a multi-label classification task,
we assume that the number of labels for the unlabeled nodes is
already known (e.g., based on the output of a separate classifier)
and assign the labels according to the top-ranking set of classes at
the conclusion of the inference process. Such a scheme has been
adopted for multi-label evaluation in social network datasets [23,
26]. In our work, we sample a small portion of nodes uniformly
from the network as training instances. The fraction of the train-
ing data ranges from 5% to 30% for DBLP dataset, 1% to 20% for
IMDb dataset, and 1% to 9% for the YouTube dataset. We em-
ploy the network cross-validation (NCV) method [16] to reduce
the overlap between test samples, which produces fair comparisons
between different within-network classification approaches. The
NCV method starts by creating k disjoint test sets. Then for each
test set fold, the remaining folds are merged together, and the train-
ing set is randomly sampled from the merged set. The collective
inference is executed over the full set of unlabeled nodes (the infer-
ence set), but model performance is only be evaluated on the nodes
assigned to the test set. The classification performance is evaluated
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Table 3: Network cross-validation procedure

Input: G, propLabeled, k,
S = total number of instances in G
F=0
Split data into k disjoint folds
for fold 1 to k
current fold becomes festSet
remaining folds are merged to become trainPool
trainSet = sample of (propLabeled x S) nodes drawn with
uniform probability from trainPool
inferenceSet = G - trainSet
F=F U <trainSet, testSet, inferenceSet >
end for
output: F

using three standard measures: Macro-F1, Micro-F1, and Ham-
ming Loss. Table 3 summarizes the NCV procedure [16].

3.5 Evaluation Measures

In this section, we explain the details of the evaluation criteria:
Macro-F1, Micro-F1 and Hamming Loss. Given the dataset X €
RNXM ety s € {0, I}K be the true and predicted label sets,
respectively, for the instance x;.

e Macro-F1 [4] is the averaged F1 score over categories:

K
1 k
Macro-F1 = 7 ,;,1 Fr. ®)

For a category Cl, if P* and R* denote the precision and the re-
call, respectively, Macro-F1 is defined as the harmonic mean of
precision and recall:

2P*R*

2300, vk
_ i=1Yi Yi
-2 -

27511 yzl'c + 2511 'gf .

e Micro-F1 [4] is computed using F* while considering the pre-
cision as a whole. Specifically, it is defined as follows:

2 22:1 Eil yfgf
K N K N k"
D k=1 2im Yy + D k=1 Dim i

Macro-F1 is more sensitive to the performance of rare categories
(since all categories are weighted evenly) while Micro-F1 is af-
fected more by the common categories (since this measure weights
instances evenly).

e Hamming Loss [28] is one of the most frequently used criteria,
which counts the number of labels that are incorrectly predicted.

Ff

&)

Micro-F1 =

10)

N
1 1

HammingLoss = — >~ —|ly; @ @ill1, 11

ammingLoss Nile”y ® Gill (11

where ® denotes the Hamming distance (XOR operation), and ||-||1
denotes the [1 -norm. The smaller the value, the better the perfor-
mance of the classifier.

4. RESULTS

We perform two studies to evaluate the performance of our pro-
posed multi-label relational classifier. First, we study the perfor-
mance of SCRN under different measures of calculating the node
similarity, w(v;, v;). Then we compare the classification results of



Table 4: SCRN results using different node similarity measures
on DBLP (10% training data)

Degree Cosine Pearson

Micro-F1 (%) 56.51 42.96 54.39
Macro-F1 (%) 49.35 36.99 47.33

SCRN against four baseline methods on the DBLP, YouTube and
IMDb datasets.*

4.1 Node Similarity Measures
Both the wvRN and SCRN classifiers consider the similarity of

linked nodes, w(v;, v;), when estimating the label of node v;. w(v;, v;)

measures the similarity between linked nodes; note that the weight
matrix W is not necessarily symmetric (i.e., w(v;,v;) can be dif-
ferent from w(v;, v;)). In this experiment we compare three differ-
ent approaches for determining the node similarity using the infor-
mation contained in the network structure.

e Degree calculates the weight w(v;, v;) by the normalized frac-
tion of connections between v; and v; among all of v;’s connec-
tions. In our weighted DBLP dataset, we normalize the original
weight of the link, wo (v;, v;), by the total weight summed over the
neighbors of node vi, 3 v, wo(vi, v;), and use it as an estimate
of the node’s similarity to v;.

e Cosine Similarity uses the cosine function to normalize the
number of common neighbors between two nodes in the graph.

e Pearson Correlation Coefficient is an alternative way to nor-
malize the count of common neighbors by comparing it with the
expected value that the count would have in a network in which
nodes select their neighbors at random [19].

Table 4 shows the classification performance of SCRN using
different node similarity measures. The Degree similarity mea-
sure clearly achieves the highest accuracy rate (Macro-F1 score
of 49.35%); the Pearson Correlation Coefficient performs slightly
worse than Degree; and Cosine Similarity is poorest at capturing
the relationship between two nodes. Based on this experiment, we
select the Degree method to measure node similarity for the re-
maining experiments in the paper.

4.2 Classification Results

Table 5 shows the classification performance, under Macro-F1
and Micro-F1 measures, on the DBLP dataset averaged over 10
cross-validation folds. We make several observations. First, we
confirm that all the network classification approaches, which con-
sider the correlations between linked nodes (SCRN, EdgeCluster
and wvRN) always outperform the two baseline methods, Random
and Prior. wwvRN, which takes advantage of the correlation between
the labels of linked nodes, significantly outperforms the baselines.
EdgeCluster, which uses social features in a supervised learning
framework, performs worse than wvRN on this dataset, since it is
less able to exploit label homophily. Our proposed method SCRN,
which leverages both social features and neighboring labels, con-
sistently outperforms the others. The class-propagation probability
in SCRN captures the node’s intrinsic likelihood of belonging to
each class, enabling a more accurate inference procedure.

Table 6 shows results on the IMDb dataset. We observe that
SCRN consistently has the best performance on Micro-F1. On

*Our open-source implementation of SCRN and the base-
line methods is available at: http://code.google.com/p/
multilabel-classification-on-social-network/.

N
o

ey
o

===SCRN

wvRN === Edge| -

Hamming Loss
- -—h
£ [=2]

Y
N

10

g% 10% 15% 20% 25% 30%
Training Sample Size

Figure 3: Classification on DBLP Dataset (Hamming Loss);
lower score corresponds to better performance. SCRN is sig-
nificantly better.

Macro-F1, SCRN and wvRN are tied and significantly outperform
the non-relational methods. In contrast, we observe that EdgeClus-
ter performs surprisingly well on the YouTube dataset, as seen in
Table 7. In particular, under the Macro-F1 measure, SCRN is out-
performed by EdgeCluster, although SCRN is still the best under
the Micro-F1 measure for most conditions. We attribute this to the
fact that the YouTube network is not a true collaboration network
with strong causal links between authors; also it has a large number
(47) of highly skewed classes with a less informative link structure.
The relatively low correlation between labels of linked nodes pe-
nalizes relational classifiers such as SCRN and wvRN.

Our results confirm that in multi-label collaborative networks,
such as DBLP and IMDb, the correlation between connected nodes
can be a great asset for relational learning. However, we argue that
it is important to correctly exploit this information. For instance, in
previous work by Tang and Liu [22, 24], combining labeled node
features and relational features aggregated from neighbors in a link-
based classifier performed poorly. Thus, in our proposed approach,
rather than simply concatenating these two types of features, we
translate the similarity between two connected nodes’ social fea-
tures into a class propagation probability and see that this signifi-
cantly boosts the performance of collective classification.

Figures 3, 4, and 5 compare the classification performance of
the various methods on the DBLP, IMDB, and YouTube datasets,
respectively, under the commonly used Hamming Loss measure
for multi-label classification. SCRN significantly outperforms the
other methods on both DBLP and IMDb, particularly with fewer
training samples. All three methods perform equivalently on the
YouTube dataset, as discussed above.

5. RELATED WORK

Multi-label classification (MLC) is a variant of classification where
each instance is associated with multiple labels. Given a set of
training samples, each of which is associated with a set of labels,
MLC aims to learn a model that outputs a bipartition of the labels
into those relevant and irrelevant with respect to a query instance.
One simple way of addressing multi-label learning is to transform
the multi-label classification problem into a set of independent,
single-label classification problems, e.g., the most intuitive one-vs-
rest learning methods [11]. More sophisticated approaches focus
on exploiting the correlations between different labels to improve
the label set prediction performance. For instance, Guo and Gu [8]



Table 5: Classification on DBLP Dataset (Macro-F1 and Micro-F1)

Labeled 5% 10% 15% 20% 25% 30%

Micro-F1 (%)

SCRN 51.06+1.08 56.51+1.18 60.31+0.70 62.80+0.84 65.03+1.13 66.58+0.95
Edge 38.414+2.39 43.65+1.69 47.5342.54 50.29+1.55 52.50+2.42 54.00+1.26
WVRN 47.59+1.22 52.78+1.29 56.67+0.87 59.45+0.59 61.51£1.36 63.24+0.97
Prior 32.224+1.48 33.06+1.60 32.4341.85 33.45+1.22 33.23+0.94 33.50+1.04
Random  20.32+0.75 20.65+0.83 20.594+0.97 20.06+0.96 19.84+1.05 20.40+0.78

Macro-F1 (%)

SCRN 44.35+1.45 49.35+£1.51 53.65+1.37 56.384+1.26 58.62+1.21 59.54+0.94
Edge 33.83+1.62 40.264+2.03 43.474+1.14 46.12+1.18 47.36+2.11 49.294+0.98
wvRN 41.85+1.48 46.61+£1.49 51.05+£1.53 53.88+1.18 55.83+£1.70 57.08+1.51
Prior 15.31£1.11  15.76+1.52 15.424+1.41 16.06+£0.97 16.13+0.72 16.48+0.81
Random 18.66+0.74 18.97+£0.70 18.97+091 18.424+0.94 18.20+0.98 18.694+0.67

Table 6: Classification on IMDb Dataset (Macro-F1 and Micro-F1)

Labeled 1% 3% 5% 10% 15% 20%

Micro-F1 (%)

SCRN 45.62+2.03 58.58+1.39 63.65+1.07 68.90+1.69 71.01+0.70 71.98+1.24
Edge 40.08+1.51 52.17+£0.85 57.31£1.56 62.03£1.89 64.50+0.85 65.27£1.32
wvRN 44724191 5698+1.35 62.44+1.18 67.05£1.89 70.76£0.92 71.78+1.36
Prior 39.67+£1.49 39.484+1.20 39.37+1.23 39.274+1.11 39.28£1.30 39.20+1.14
Random ~ 7.58+£0.61  7.23+0.72  7.77£0.60  7.43+0.99  7.38+£0.85  7.75+0.59

Macro-F1 (%)

SCRN 18.46+2.35 27.19+2.31 33.22+1.39 39.40+3.10 42.67+2.57 43.31+1.66
Edge 17.644+1.59 24.24+1.83 29.66+2.13 34.17+£2.45 36.61+1.59 37.50+1.54
WVRN 18.53+2.28 27.414+2.06 33.02+1.76 39.0842.90 42.104+2.54 43.28+2.11
Prior 5.58+0.49 5574052 5494046 5434041 5.40+£0.40  5.344+0.42
Random  6.22+0.53  6.04+0.67  6.40+0.61 6.21+0.94  6.244+0.62  6.314+0.58

Table 7: Classification on YouTube Dataset (Macro-F1 and Micro-F1)
Labeled 1% 3% 5% 7% 9%

Micro-F1 (%)

SCRN 35.67+3.54 40.69+3.35 43.15+1.35 43.76+3.11 43.93+3.27
Edge 35.4443.89 40.92+3.87 41.764+2.60 43.20+3.88 44.09+2.89
WVRN 33.1845.39 40.08+4.23 42.5742.56 43.40+3.45 43.87+3.90
Prior 34.3242.74  37.21+1.94 37.2442.22 37.83+2.38 37.54+2.04
Random  9.7742.92  9.91+£2.56  9.05+2.92  9.5242.37  9.66+2.69

Macro-F1 (%)

SCRN 15.20+4.51 21.43+4.98 23.93£3.75 25.84+4.90 26.00+4.28
Edge 21.64+3.33 25.46+4.23 26.73+3.67 30.08+3.76 30.65+4.08
WVRN 14.80+4.40 23.53+4.99 24.26+4.03 26.54+4.82 27.57+4.27
Prior 10.58+4.80 11.10+4.64 10.78+4.65 11.04+4.53 11.104+4.42
Random  9.0743.22  9.08+2.70  8.24+3.06  8.65+2.55  8.78+2091
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Figure 4: Classification on IMDB Dataset (Hamming Loss);
lower score corresponds to better performance. SCRN is sig-
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proposed a generalized conditional dependency network model for
multi-label classification. Their conditional dependency network
exploits the dependencies of multiple labels, and the conditional
distributions are defined using binary classifiers.

Like other traditional classifiers, MLC assumes that instances
are independent and identically distributed. When learning on net-
worked data, relational classifiers can improve on the performance
of traditional classifiers by taking advantage of dependencies both
among labels, and sometimes among attributes, of related labeled
instances [12, 14, 17]. Most of the previous work in collective in-
ference for relational learning uses network connectivity for pre-
diction under the assumption that the connections in the network
are homogeneous. However, many real-world networks can be re-
garded as heterogeneous information networks composed of multi-
ple types of nodes and links. Conventional learning methods do not
distinguish the type differences among objects and links in the het-
erogeneous network. Ji et al. [10] proposed a ranking-based clas-
sification model (RankClass) for heterogeneous information net-
works. While classifying the data objects, the model simultane-
ously ranks each object according to its importance within each
class, in order to provide informative class summaries.

Goldberg et al. [7] observe that in social media, nodes may link
to one another even if they do not have similar labels. They use
two edge types to denote the affinity or disagreement in the class
labels of linked objects and incorporate the link type information
into discriminant learning. Heatherly et al. [9] introduced a Link
Type Relational Bayes Classifier that predicts the node’s class la-
bels according to the neighbors’ labels as well as their link types.
The SocDim framework was created specifically to address the link
heterogeneity problem [23]. In this framework, latent social di-
mensions are extracted from the network using modularity max-
imization to capture the potential affiliations of each entity, and
then a discriminant classifier is trained using the instances’ social
dimensions. Social features were also employed by Wang and Suk-
thankar [26] in conjunction with Fiedler embedding to uncover the
relations between nodes and their links.

6. CONCLUSION

In this paper, we tackled the problem of classifying multi-label
networked datasets, where each instance in the network is asso-
ciated with a subset of multiple labels from the candidate label
set. We proposed a multi-label relational classifier (SCRN) that
addresses the issues that arise when directly applying the relational
neighbor classifier (RN) on network data.

SCRN combines the ability of relational neighbor classifiers to
exploit label homophily while simultaneously leveraging feature
similarity through the introduction of class propagation probabil-
ities. Although this paper focuses on the use of social features
extracted from the network, it is straightforward to extend our ap-
proach to also employ content features constructed from node (e.g.,
document) properties.

The intuition behind SCRN is straightforward: wvRN uses the
network solely through class-independent pairwise link strengths
during label propagation. In contrast, SCRN utilizes an additional
observation that strives to capture, on a per class basis, how the
given node resembles other nodes based upon the network struc-
ture. This observation term thus modifies the probabilities of the
node belonging to the different classes. Empirical studies on sev-
eral real-world tasks demonstrate that our proposed approach sig-
nificantly boosts classification performance on collaboration net-
works.
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