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Abstract— Human-centric visual understanding is an im-
portant desideratum for effective human-robot interaction.
In order to navigate crowded public places, social robots
must be able to interpret the activity of the surrounding
humans. This paper addresses one key aspect of human-centric
visual understanding, multi-person pose estimation. Achieving
good performance on multi-person pose estimation in crowded
scenes is difficult due to the challenges of occluded joints
and instance separation. In order to tackle these challenges
and overcome the limitations of image features in representing
invisible body parts, we propose a novel prompt-based pose
inference strategy called LAMP (Language Assisted Multi-
person Pose estimation). By utilizing the text representations
generated by a well-trained language model (CLIP), LAMP
can facilitate the understanding of poses on the instance and
joint levels, and learn more robust visual representations that
are less susceptible to occlusion. This paper demonstrates that
language-supervised training boosts the performance of single-
stage multi-person pose estimation, and both instance-level
and joint-level prompts are valuable for training. The code is
available at https://github.com/shengnanh20/LAMP.

I. INTRODUCTION

Multi-person pose estimation (MPPE) algorithms must
simultaneously solve two problems: detecting the people
in the scene and localizing the joint keypoints. Dealing
with occlusion is an important challenge for human pose
estimation, especially in scenes with multiple persons and
complex contexts. While existing algorithms have achieved
promising results with both top-down and bottom-up meth-
ods, they often fail to recover occluded people and joints [1].
Top-down methods [2], [3], [4], [5], [6], [7] usually rely
on bounding-box cropping and cannot easily recover from
instance detection failures or bounding-box overlap. Bottom-
up methods [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19] experience difficulty estimating poses
when there are overlapping individuals or occluded body
parts, since they rely on grouping individual keypoints into
poses. Also, bottom-up methods often require complex post-
processing steps, which can be challenging to implement.
Unlike top-down and bottom-up methods, the newer single-
stage techniques [20], [21], [22], [23], [24], [25], [26] have a
simpler architecture and training process, which can reduce
the risk of error accumulation. Since they don’t rely on
grouping individual keypoints, single-stage methods can be
more efficient and typically employ dense regression to local-
ize body keypoints directly from scene feature vectors. Due
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Fig. 1. Previous methods suffer from the difficulty of detecting overlapped
persons and occluded keypoints. Our approach utilizes both instance and
joint prompts. The image model is trained to maximize the correlation
between text and image features. The results on the occluded scenario (right)
demonstrate the superiority of LAMP.

to the difficulty of long-range location regression, improving
the accuracy of the regression procedure remains a challenge.

With the recent improvements of multi-modal train-
ing, language-supervised visual representation learning has
shown great success on multiple tasks, including segmen-
tation [27], [28], depth estimation [29] and action recogni-
tion [30]. CLIP (Contrastive Language-Image Pretraining)
[31] is one of the most popular pre-training models, and we
leverage it for our research. Inspired by this line of research,
this paper investigates the question: can language supervised
training improve multi-person pose estimation by improving
the detection of occluded figures and body keypoints? Our
ultimate aim is to imbue a social robot with a human-centric
visual understanding model that will enable it to navigate
crowded streets, parks, and public places. Our MPPE model
can be used as an input for downstream tasks such as
human mesh recovery [32], [33], action recognition [34], and
person-to-person social interactions [35].

Our proposed architecture (LAMP) (Language Assisted
Multi-person Pose estimation) uses text prompts to link
semantic descriptions with both instances of people in the
scene and joint keypoints, transforming the MPPE problem
into a set of contrast tasks. LAMP utilizes both instance
prompts and joint prompts and trains the image model to
maximize the correlation between text and image features.
Prompts are generated automatically with templates and are
only used during the supervised training phase. Instance
prompts describe the relative locations of the people in the
scene and whether or not they are occluded. This information
is used to refine instance-aware heatmaps and helps LAMP
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Fig. 2. Overview of the proposed architecture LAMP. (a) Given an input image, a backbone is applied to generate the global feature F . Then an
image encoder with spatial attention and channel attention extracts a set of instance-aware features F sc from the global features. A text encoder takes the
description of each instance (Instance Prompt) as input and outputs a set of text features Jins. A similarity-based textual embedding for each instance
Sins is then generated by computing the inner product between the instance textual feature and the global image feature. (b) The instance-aware features
are utilized by the Joint Prompt module which takes the joint labels as input and generates a list of textual features. Then a matching evaluation between
image-text models for the joints is conducted on two levels: keypoint level and pixel level. LAMP trains the image model to maximize the correlation
between the textual embeddings and image features for the alignment modules shown in the figure.

ignore extraneous people in the scene. The instance-aware
heatmaps are then used for joint localization. Joint prompts
contain text describing the body keypoint (e.g. nose, left an-
kle, right shoulder). The CLIP model is trained on sufficient
data to enable these joint descriptions to be semantically
meaningful. To improve joint localization, we incorporate
both keypoint-level alignment and pixel-level alignment. The
intuition is that the inclusion of language pre-training makes
MPPE more robust to occlusion, while also improving the
performance of pixel-level alignment. Figure 2 shows the
LAMP architecture.

Although CLIP is a tremendously valuable tool, adapting
it to perform well on downstream applications such as multi-
person pose estimation is not straightforward. This paper
evaluates the performance of LAMP on OCHuman [36]
and CrowdPose [37]. LAMP outperforms the other single-
stage and bottom-up methods and is competitive against
the best top-down methods. We also perform an ablative
study to show the relative contributions of the instance and
joint components of the vision-language model on LAMP’s
performance.

This paper makes the following contributions:

• introduces a new architecture for multi-person pose
estimation for social robots that incorporates language-
assisted visual representation learning;

• demonstrates the power of language for making the
image model robust to occlusion and improving the
accuracy of the dense regression;

• outperforms existing single-stage models for MPPE on
two challenging benchmarks for crowded pose estima-
tion: OCHuman and CrowdPose.

II. RELATED WORK

A. Multi-person Pose Estimation

Multi-person pose estimation (MPPE) comprises two
problems: 1) detecting all instances of people in the scene
and 2) localizing their body keypoints. MPPE methods need
to overcome both occlusion created by crowded scenes, as
well as self-occlusion, where one body part obscures another.
A secondary problem is handling scale and orientation di-
versity between people in the scene; it is difficult to perform
human pose estimation on figures that may be only a few
pixels in height.

1) Top-down: Top-down methods [2], [3], [4], [5], [6],
[7] typically identify a bounding box for each person in
the scene and then perform single person pose estimation.
This two stage process often makes top down detectors
computationally slower but gives them an edge on average
precision. Mask-RCNN [2] reuses feature maps from the
detector for pose estimation through the RoIalign operation,
making it more efficient than other top down methods.
HRNet [5] seeks to improve pose estimation performance by
maintaining high resolution representations throughout the
whole process, rather than recovering them from a high-to-
low resolution network. We use the HRNet [5] as a backbone
for several of the benchmarks. Xiao et al. [3] published a
comprehensive evaluation of the effect of different detectors,
backbone choices, and pose estimation algorithms on top
down MPPE performance, and we benchmark LAMP vs.
their simple baselines in addition to other SOTA algorithms.

2) Bottom-up: Bottom-up algorithms [8], [9], [10], [11],
[12], [13], [14], [15], [16], [18], [17] group identity-free key-
points into persons using a variety of methods; for instance,
DeepCut [18], [17] formulates the grouping problem as an



integer linear program. Other grouping methods include part
linking [8], [11], associative embedding [9], and hierarchical
clustering [10]. Separate heatmaps are usually calculated
for each keypoint; a strength of these methods is that the
heatmaps often outperform direct pixel-wise regression at
localizing keypoints [38]. In general, bottom-up methods are
more computationally efficient than top-down techniques due
to their simpler convolutional pipelines but exhibit slightly
inferior performance.

3) Single-stage: Single-stage approaches [20], [21], [22],
[23], [24], [25], [26] densely regress candidate body key-
points directly from the original image, creating an end-
to-end trainable pipeline. These methods are better at pre-
serving valuable contextual information from the scene that
gets discarded by both top-down and bottom-up systems.
Also they do not rely on specific modules to perform RoI
cropping, non-maximal suppression, and keypoint grouping.
A key concern for these methods is improving the accuracy
of the regression procedure. Contextual Instance Decoupling
(CID) [26] improves the quality of regression in MPPE
by separating the multi-person heatmap into instance-aware
heatmaps that are later used to estimate heatmaps and key-
points for each person in the scene. We focus on further
improving the performance of single-stage methods through
the additional vision-language pretraining.

B. Vision-Language Models

Language has been shown to facilitate the learning of
effective visual representations for zero-shot domain transfer
on downstream tasks. CLIP (Contrastive Language-Image
Pre-training) [31], a large-scale language-vision model, trains
a textual encoder and a visual encoder on a dataset of
400M image-text pairs to explore the relationship between
the modalities. Usually CLIP [31] is provided with a text
prompt engineered for the downstream task to create a
contrast task. The inclusion of the prompt during model
training makes the downstream task more similar to the task
originally used to create to model. Liu et al. [39] present
a survey of prompt creation approaches. Although many of
the downstream tasks that have benefited from CLIP [31] are
simpler detection and classification tasks, DepthCLIP [29]
illustrates that it is possible to leverage CLIP for pixel level
tasks. PromptPose [40] uses vision-language pre-training for
animal pose estimation; they also use prompt and pixel-level
loss functions for body keypoint localization but do not learn
instance level models.

III. METHOD

Our work leverages the text representations generated
by language models such as CLIP [31] to facilitate the
understanding of poses. Towards this end, we conduct a
comprehensive study on the design and generation of pose
prompts including instance level information and joint level
information, which empowers the pose estimation baseline
model in scenarios with multiple people.

A. Overview

Vision-language models have achieved recent successes
in enhancing the performance of many vision tasks, which
shows promising transfer capability between vision and
text domains. Specifically, given a paired image and text
(image, text), vision-language models learn a multi-modal
embedding space by jointly training an image encoder and
text encoder to maximize the cosine similarity between the
correct pair while minimizing the incorrect pairs [31]. Using
a trained embedding, vision-language models can achieve
zero-shot transfer to downstream image recognition tasks.
Therefore, inspired by the previous work on introducing
language supervision into visual recognition tasks [29], [40],
we introduce a learned prior and investigate the use of
text prompts to enhance the recognition of instances and
keypoints in multi-person pose estimation.

Figure. 2 shows the flow of our instance-joint prompt
pipeline for multi-person pose estimation. There are two key
modules in the proposed architecture: instance prompt and
joint prompt, where the instance prompt is used to provide
dense instance-related information and semantics, and the
joint prompt is used to refine the multi-modal connections
at a joint level.

Given an image I ∈ R3×H×W , we extract multi-scale im-
age features from the backbone (i.e. HRNet [5]). The multi-
scale features are then concatenated together and generate
the global image feature map F . After that, we employ the
instance decoupling module [26] with spatial attention and
channel attention as the image encoder, to obtain the image
features for each instance. An instance prompt with a pre-
trained language-image encoder (i.e. CLIP) is simultaneously
used to exploit the instance-related features in the textual
model thus providing effective supervision to improve the
discriminative power of the instance encoder.

Instance-aware feature maps are then fed to the heatmap
module with a CNN layer, to obtain the probability distribu-
tion maps for the keypoints, i.e. keypoint heatmaps.

In order to leverage the semantic information from the
language model for accurate keypoint estimation, we propose
a method that incorporates both keypoint-level and pixel-
level contrast. This approach establishes the connections
between the image features and the embedding prompts,
allowing for a more effective utilization of joint-related
semantics in the language model.

With the alignment training by the proposed model, we
can align the instance and joint features between the image
model and language model, thus providing an effective
prompt to guide the image module to learn a powerful visual
representation in the MPPE task.

B. Instance Prompt with Attribute Injection

1) Image Encoder: Following previous studies of atten-
tion mechanism [41], [42], [26], [43], we decouple the cues
of each instance from the original feature map based on
spatial attention and channel attention. Specifically, given
a feature map F , we first roughly extract the features of
instances based on the ground truth locations of their center



points, obtaining a set of instance features f ∈ RN×Cori

.
After that, a spatial attention module is used to separate
instances into different spatial locations, while a channel
attention module is used to decouple instances into different
channels of the feature map.

To obtain the spatial feature of each instance, we compute
an instance-aware mask M i based on the location of the
i-th instance following [26]. Then we generate the spatial
recalibration as:

F s
i = F ·Mi. (1)

In order to decouple the channel feature map of the i-th
instance, we perform an element-wise manipulation between
the instance feature fi and the global feature as follows:

F c
i = F ⊗ fi, (2)

where fi is generated from the original feature based on
features at the coordinates of the instance’s center point.

After obtaining the spatial recalibration and channel recal-
ibration of each instance, we then conduct a fusion recalibra-
tion to bolster the discriminative ability of the model among
different instances. Thus the fused instance-aware features
are calculated as:

F sc = Relu(Conv([F s
i ;F

c
i ])) ∈ RN×C×H×W . (3)

2) Textual Label Generation: At the core of our approach
is the idea of prompting person pose perception from super-
vision contained in the language. Inspired by the findings
in [44], [45] that an expressive description can benefit the
transfer performance of vision language models, here we
design a prompt for instance separation by injecting essential
attributes of instances into the model.

The detailed structure of the instance-level prompt is
illustrated in Figure 2 (a). For each instance instancei in
the original image, we construct the prompt by applying the
following template:

Prompti = Template(
{
sAttrm

}
, instancei),

Attrm ∈ {location, depth, occlusion} .
(4)

Specifically, to calculate the location information of the
instance, we divide the original image into 3 × 3 patches
and label the instance using the coordinates of the center
point of each instance’s bounding box. To enhance the
discrimination between different instances, we introduce a
pseudo depth label based on the scale of each instance’s
bounding box. This is achieved by computing the ratio of
the width and height of the bounding box to the width
and height of the image. Based on this ratio, we assign
approximate depth labels, such as ”far,” ”close,” and ”giant,”
to the different instances within the image. This allows for
a rough categorization of depth information based on the
relative size of the instances. Another attribute that can
distinguish the relationships between instances further is
occlusion. By counting the visible keypoints of each instance,
we can decide whether an instance is occluded, which can
also help establish the depth orders of instances. Finally,

prompts formed by instance attributes will pass through the
textual encoder of CLIP [31] into latent space by:

P ins = TextualEncoder(Prompti) ∈ RN×Cemb . (5)

A transformer decoder layer with a multi-head self-
attention mechanism is then applied to enhance the projection
of the textual feature to the image feature, and we have the
textual prompts J ins

i ∈ R1×Cemb for the i-th instance.
3) Instance-level Alignment: To explore the connections

between the image feature and text embedded feature of
each instance, it is necessary to project both of them into
a multi-modal embedding space. Here for the image feature,
we conduct a multi-head self-attention layer with a feed-
forward network (FFN) after the original feature to get the
normalized image encoded feature F img ∈ RN×C×H×W .

We then calculate the inner product between the mapped
image features and embedded textual features J ins and get
an instance-pixel matching score map of each instance:

Sins
i = F img · J ins

i ∈ RH×W . (6)

With such a similarity-based ensemble, we could fuse the
prior knowledge learned by CLIP [31] and the image feature
generated by the backbone and achieve a more informative
representation for each instance. Thus by conducting an
alignment between the encoded image features F sc and the
embedded textual features Sins, LAMP provides extra su-
pervision and boosts the discriminative power of the instance
image encoders. Finally, an MSE loss between the textual
embeddings and the image feature is calculated to maximize
the correlation between them.

C. Joint Prompt

As shown in Figure 2 (b), after obtaining the instance-
aware image features, the joint-level prompt is designed to
further refine the pose representation at a joint level. Inspired
by [40], we enhance the textual prompt by utilizing the
embeddings from two aspects: keypoint level and pixel level.

1) Keypoint-level Alignment: As mentioned in section III-
B.3, the image features of instances F sc are first fed into a
multi-head self-attention layer to map into the multi-modal
embedding space, obtaining F ins ∈ RN×C×H×W .

Then to establish the connections between the text and
local keypoint features in the image, a keypoint-level align-
ment is conducted by exploring the feature similarities in the
embedding domain. Concretely, given m joints, the textual
encoder takes the description word of each body joint (e.g.
nose, left shoulder, right shoulder) as input and then gener-
ates the textual features of the joints Jkeypoint ∈ Rm×Cemb ,
where m is the number of joints.

To align the textual joint features with the local feature
of the joints in the image, we utilize the ground truth
locations of the joints to sample features from the original
instance image features, obtaining keypoint local features
F keypoint ∈ Rm×Cemb . Then we calculate the cosine sim-
ilarities between each {image, text} pair of the joints and
obtain the similarity map as:



Skeypoint
i = F keypoint

i · (Jkeypoint)T ∈ Rm×m. (7)

We then perform contrastive learning on the keypoint
local features and textual embedding features based on the
contrastive loss.

2) Pixel-level Alignment: Furthermore, to establish a
dense connection between the image features and the joint
textual features in the embedding space, a pixel-level prompt
is introduced to enhance the keypoints regression.

Following section III-C.1, we obtain the textual embedding
features of the joints Jkeypoint ∈ Rm×Cemb . Here, we apply
an inner product between the instance image features F ins

and the joint textual features in the embedding space and get
the text-pixel matching score of each pixel location by:

Spixel
i = F ins

i · Jkeypoint ∈ RH×W . (8)

This score map is supervised by the target heatmaps
through the pixel-level contrastive loss.

D. Loss Functions

1) Image Loss: Similar to [26], we train the instance
decoupling attention model with a contrastive loss to enhance
the discriminative power of each instance. Given a set of
instance features f ∈ RN×Cori

, we obtain:

Lfi
con = −log

exp(∥fi∥2 /τ)∑j=1
n exp(∥fi∥ ∥fj∥ /τ)

, (9)

where n is the total count of instances in the image, and τ
is a temperature parameter, which is set to 0.5 in experiments.

For heatmap regression, we compute the Focal Loss [46]
between the predicted heatmaps and ground truth heatmaps
generated based on the keypoints, obtaining:

FL(p, hgt) =
−1

N

C∑
c=1

H∑
x=1

W∑
y=1{

(1− pcxy)
αlog(pcxy) if hcxy = 1

(1− hcxy)
β(hcxy)

αlog(1− hcxy)) otherwise,
(10)

where h denotes the ground truth heatmaps and p denotes
the predicted heatmaps. Thus we have the overall heatmap
loss as:

Lf
FL =

1

N

N∑
i=1

FL(pi, h
gt
i ). (11)

2) Prompt Loss: After obtaining the instance textual
embeddings, an MSE loss is computed between the textual
embeddings and the image features of each instance, i.e.,

Lins
p = MSE(Sins, F sc) (12)

As for keypoint-level alignment, we perform a contrastive
learning by computing the cross entropy classification loss
between the obtained similarity map Skeypoint ∈ Rm×m and
the matching target Mgt = [0, 1, 2...,m− 1] as:

Lkeypoint
p = 1

2 (CE(Skeypoint,Mgt) + CE((Skeypoint)T ,Mgt)

(13)

To enable effective joint-pixel embedding, we utilize the
ground truth heatmaps as the supervision of the joint-pixel
matching map by computing the MSE loss as:

Lpixel
p = MSE(Spixel, hgt) (14)

Formally, the overall loss function of our approach can be
formulated as:

L = λ1L
f
con + λ2L

f
FL + λ3L

ins
p + λ4L

keypoint
p + λ5L

pixel
p ,
(15)

where λ1−5 are the loss weights, respectively.

IV. EXPERIMENTS

A. Datasets and Metrics

We follow the protocol of the recent state-of-the-art multi-
person pose estimation method (i.e. CID [26]) and evaluate
the performance of the proposed method on two multi-person
pose estimation benchmarks: OCHuman [36] and CrowdPose
[37].

a) OCHuman: This is a challenging dataset with many
crowded scenes. It contains 4731 images with 8110 persons
in total, including 2500 for training and validation, and 2331
for testing. We report our results following the setting of
previous methods [26] [47].

b) CrowdPose: This is another dataset with highly oc-
cluded scenarios. The dataset contains 10K images and 80K
annotated person instances with 14 keypoints for training,
2K images for validation and 8K images for testing.

c) Evaluation Metric: We follow the standard evalua-
tion metric [1] and use the Object Keypoint Similarity (OKS)
metrics for pose estimation. We report average precision and
average recall scores with different thresholds and different
object sizes: AP,AP 50, AP 75, APM , APL, AR,ARM and
ARL.

B. Implementation Details

LAMP was implemented using Pytorch [48] and MM-
Pose [49].1 Following previous work [13], [26], we use the
HRNet-W32 [5] pretrained on ImageNet as the backbone
for the image encoder in the pose estimation pipeline. For
the language model, we use the text encoder of CLIP-ViT-
Base [31] and initialize the model with the corresponding
pre-trained weights.

During training, the input images are resized to 512×512,
followed by random rotation, scale jitter, and translation. We
use the Adam optimizer [50] and set the initial learning rate
as 0.001. Note that text encoders are frozen during training to
prevent the language knowledge from being distracted [40].

For testing, images are resized with the short side to 512
while maintaining the aspect ratio between height and width.

1Code will be released after publication.
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Fig. 3. Qualitative comparison between the proposed method LAMP and the state-of-the-art approach CID on OCHuman testing set. (a) Estimation results
produced by CID. (b) Estimation results produced by LAMP. Compared with CID, our proposed method LAMP is more robust to person overlapping
and occlusion.

Method AP↑ AP 50↑ AP 75↑
Top-down methods

Mask R-CNN [2] 20.2 33.2 24.5
SimplePose [3] 24.1 37.4 26.8
OPEC-Net [47] 32.8 60.5 31.1

Bottom-up methods
HigherHRNet [12] 27.7 66.9 15.9
HGG [10] 36.0 - -

Single-stage methods
SPM [20] 47.6 67.5 53.2
DEKR (HRNet-W32) [13] 52.2 69.9 56.6
CID (HRNet-W32) [26] 57.5 75.5 63.3
Ours(HRNet-W32) 58.8 76.6 64.3

TABLE I
COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE OCHUMAN

TESTING SET.

C. Comparison with SOTA

a) Results on OCHuman Testing Set: To assess the
performance of LAMP in tackling occlusions, we compare
it with state-of-the-art methods on the OCHuman dataset,
one of the most challenging benchmarks for crowded pose
estimation. This dataset presents a significant challenge due
to increased person overlapping and occlusions, which can
negatively impact person detection and keypoint localization.
As depicted in Table I, we compare three categories of meth-
ods: top-down (Mask R-CNN, SimplePose, and OPEC-Net),
bottom-up (HigherHRNet and HGG), and single-stage (SPM,
DEKR, and CID). Our results show that LAMP outperforms
all top-down methods, demonstrating the superiority of our
decoupling strategy in crowded scenes. It also outperforms
bottom-up methods by achieving 22.8% AP higher than
HGG. Additionally, LAMP surpasses single-stage methods,

with a 1.3% improvement over the most recent work CID.
b) Results on CrowdPose Testing Set: Table II presents

the comparison of LAMP on another challenging benchmark
CrowdPose. It can be observed that LAMP achieves the
best performance, outperforming CID by 0.2%. A notewor-
thy finding is that the proposed model achieves a higher
improvement over previous works on APH , outperforming
CID by 0.4%. This further supports the efficacy of LAMP
in handling heavy occlusions and overlapping people.

c) Qualitative Results: Fig. 3 visualizes some pose
estimation results produced by the proposed model on the
OCHuman testing set (bottom). This visual representation
showcases the ability of our model to accurately estimate
multiple poses in crowd scenarios, particularly for over-
lapped persons and occluded body parts.

D. Ablation Study

In this section, we perform an ablation study to inves-
tigate the contribution of each prompt component in the
proposed model. The results are presented in Table III. We
can observe that, by introducing the instance alignment and
the keypoint alignment, the proposed approach improves
the performance to 57.9% AP and 57.8% AP respectively.
This validates the effectiveness of the instance prompt and
joint prompt. Notably, the model obtains the largest perfor-
mance improvement with the help of pixel alignment, and
the complete LAMP further outperforms the baseline and
achieves SOTA performance on the OCHuman dataset. This
can be attributed to pixel-level alignment that maximizes the
correlation between text prompts and image features more
precisely, making the model more robust in the presence
of overlapping persons or invisible joints. These results
further demonstrate the superiority of the proposed LAMP
architecture in occluded scenarios.



Method Backbone Input size AP↑ AP 50↑ AP 75↑ APE↑ APM↑ APH↑
Top-down methods
Mask-R-CNN [2] ResNet-50 800 57.2 83.5 60.3 69.4 57.9 45.8
SimplePose [3] ResNet-512 384x288 60.8 81.4 65.7 71.4 61.2 51.2
AlphaPose [51] - 61.0 81.3 66.0 71.2 61.4 51.1
Bottom-up methods
OpenPose [8] VGG-19 - - - - 62.7 58.7 32.3
HigherHRNet [12] HRNet-W32 512 65.9 86.4 70.6 73.3 66.5 57.9
PINet [16] HRNet-W32 512 68.9 88.7 74.7 75.4 69.6 61.5
Single-stage methods
SPM [20] Hourglass - 63.7 85.9 68.7 70.3 64.5 55.7
DEKR(HRNet-W32) [13] HRNet-W32 512 65.7 85.7 70.4 73.0 66.4 57.5
CID(HRNet-W32) [26] HRNet-W32 512 71.2 89.8 76.7 77.9 71.9 63.8
E2Pose [52] ResNet-512 512 66.5 - - - - -
Ours HRNet-W32 512 71.4 90.3 77.1 77.9 72.1 64.2

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON CROWDPOSE TESTING SET.

Model AP↑ AP 50↑ AP 75↑
Base (Image only) 57.5 75.5 63.3
Base + Instance Alignment 57.9 75.9 63.4
Base + Keypoint Alignment 57.8 76.2 63.8
Base + Pixel Alignment 58.6 76.5 63.7
Base + Instance + Keypoint + Pixel 58.8 76.6 64.3

TABLE III
ABLATION STUDY ON OCHUMAN.

V. CONCLUSION AND FUTURE WORK

Developing models of human-centered visual understand-
ing that are robust to occlusion is an important stepping
stone towards the development of social robots that can
navigate crowded public places. In this paper, we tackle
the challenge of multi-person pose estimation in crowded
scenes. Our proposed LAMP architecture exhibits substantial
improvements in occluded pose estimation through its end-
to-end pipeline that leverages both instance and joint cues
from the language model. Results from experiments on
several crowded pose estimation benchmarks confirm the
efficacy of our proposed method in addressing occlusion.

In future work, we will extend our model to handle
downstream tasks such as detecting person-to-person social
interactions and recognizing non-verbal communication. We
envision our model as being useful for the human-robot
interaction components of the Robocup@Home competi-
tion, assisting navigation and user control in UAV-human
workspaces, and facilitating trust in human-robot teaming.
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