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Abstract—The problem of generating adversarial examples
for text has been studied extensively; however, the detection
of adversarial examples is largely underexplored. This paper
studies the usage of Local Outlier Factors (LOF) to detect and
filter adversarial examples from training data. Our experiments
demonstrate that removing examples detected by LOF restores
the performance of LSTM, CNN, and transformer-based clas-
sifiers on common sentence classification tasks. Our proposed
technique outperforms DISP and FGWS, two state of the art
detection techniques for identifying adversarial examples.

Index Terms—adversarial learning, anomaly detection, text
classification

I. INTRODUCTION

Adversarial examples (also known as adversarial attacks)
have proven successful in fooling natural language processing
models, significantly dropping the performance of such models
in a variety of linguistic tasks such as sentiment analysis
and question answering systems [1]-[6]. They are particu-
larly problematic for social media datasets, which are often
aggregated from a variety of sources. Detection techniques
work by separating a clean input from an adversarial input;
on the other hand, defense techniques work by correctly clas-
sifying the input to its corresponding class or output, without
filtering adversarial examples. Developing effective detection
techniques can lead to a more robust defense strategy [7], [8]
by enabling normal examples and adversarial examples to be
handled by separate techniques [9], [10]. As language models
are constantly being deployed in the real world to handle
tasks such as sentiment reviews and news topic classification,
it is critical to design detection methods that are capable of
deterring adversarial attacks by proactively notifying system
users of potential security breaches on NLP models.

This paper proposes the usage of Local Outlier Factor
(LOF), a density-based method that utilizes the number of
data points in neighboring regions of the space to identify
outliers; it is used for anomaly detection in a variety of
applications including fraud detection, medical diagnosis, and
engine inspections [11]. Our LOF-based detection technique
filters the training examples based on the degree of out-
lierness. The normal data points (non-adversarial examples)
would then be processed by an NLP classification model
(e.g. BERT) before including them in the dataset repository.
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Even though LOF cannot completely eliminate adversarial
examples, it filters enough of them to restore the performance
of text classification algorithms. This paper compares the
performance of our LOF-detection based detection scheme
to two other defense techniques, Frequency Guided Word
Substitution (FGWS) [3] and DISP (learning to DIScriminate
Perturbations) [9]. We demonstrate that LOF outperforms
these algorithms on restoring the performance of classifiers
vs. adversarial examples generated with TextAttack [12]. This
paper makes the following contributions:

1) We propose the usage of Local Outlier Factor to detect
and eliminate adversarial examples targeting text classi-
fiers.

2) We demonstrate that LOF can be used to counter three
different adversarial attack recipes: TextBurger, Genetic,
and Deepwordbug.

3) Our results show that preprocessing the dataset with
LOF restores the performance of the most popular text
classifier architectures (BERT, WordCNN, and LSTM) on
three different social media datasets.

II. RELATED WORK

Inspired by research developments in the computer vision
domain, the natural language processing community has en-
deavored to develop defense techniques for combating ad-
versarial attacks on text classification models. In particular,
the literature includes a plethora of defense techniques which
leverage adversarially generated examples to robustify models
against future adversarial attacks [9], [13], [14]. For instance,
Wang et al. [15] proposed a fast text adversarial attack
method, Fast Gradient Projection Method (FGPM) that can be
implemented twenty times faster than existing attack methods.
The authors then incorporate adversarial training with FGPM
enhanced by Logit Pairing (ATFL) to defend against future
adversarial attacks. However, there is less work on detecting
and eliminating adversarial examples from the training data.

Several studies have sought to detect and counter specialized
attack types. Pruthi et al. [16] conducted a study to detect
adversarial misspelling attacks; however they did not incorpo-
rate semantics and grammaticality constraints. Li et al. [17]
aim to detect a single type of attack based on a technique
that prepends an identical phrase to every training sample but



Fig. 1. When comparing the local density of a data point (A) relative to the
local density of its K neighbors, we observe that A’s neighbors have a much
higher density. Thus A has a high LOF score and is more likely to be an
outlier.

did not extend their work to other attack types. Sakaguchi et
al. [18] conducted a study to identify and deter adversarial
attacks based on the notion of exploiting the inconsistencies
in grammar of certain linguistic tasks. TextFirewall [19] is a
framework that can be used to identify new adversarial attacks
in the text domain. By analyzing the inconsistency between
the target model’s output and the impact value calculated by
essential words within the text, TextFirewall can identify and
detect adversarial examples. Although the authors presented
detailed results on the sentiment analysis task using the IMDB
and YELP datasets, it is not clear whether TextFirewall works
well for other downstream tasks.

We benchmark our work against two top performing de-
tection techniques, DISP and FGWS. DISP (learning to DIS-
criminate Perturbations) [9] uses a binary logistic regression
classifier to identify adversarially modified words and then
corrects the perturbed word by substituting one of its nearest
neighbors in the embedding space. FGWS [3] performs statisti-
cal tests on word frequency counts to identify adversarial word
substitutions. We selected these techniques as benchmarks
because they are applicable to a wide range of attacks.

III. METHOD

Local Outlier Factor (LOF) is a density-based method that
uses the number of data points in neighboring regions of the
space to identify outliers [11], [20]. The primary objective of
the LOF algorithm is to assign to each data point (or object)
a degree of being an outlier; this degree is referred to as the
local outlier factor (LOF) of an object. The locality of a data
point depends on the proximity of that point in relation to the
surrounding local points (or neighbors).

The local outlier factor is a ratio that determines whether
or not an object is an outlier with respect to its neighborhood.
LOF (A) is the average of the ratios of the local reachability
density of A and that of A’s k-nearest neighbors. We present
the details of the LOF algorithm [20] below:

Algorithm: LOF-based Outlier Detection

o Input: a set of data points D = xz1,x2,23,...
threshold r;

¢ Output: outliers in D.
For ¢ =1 to length of D do

T, and

1) For each data point X, let D¥(X) represent the distance
of point X to its k' neighbor, and Lj(X) represent the
set of points within D*(X)

2) Compute the reachability distance for each data point, X,
as R(X,Y) = max(dist(X,Y), D*(Y))

3) Compute the average reachability distance ARy (X) of
data point X as AR, (X) = MEANYGLR( yRi(X,Y)

4) The LOF score for each point, X is calculated as:
LOF(X) = MEANycr, (x) Aﬁk( ))

5) Return the data points with LOF Values exceeding r

Our LOF implementation was done using scikit-learn. Al-
though there are myriad other cluster-based anomaly detection
techniques such as K-means and DBSCAN, our preliminary
experiments revealed that LOF outperformed the most com-
monly used methods of detecting outliers. For our text classi-
fication scenarios, LOF improved when we preprocessed the
data using Kernel PCA (KPCA), a nonlinear dimensionality
reduction strategy. KPCA identifies an efficient representation
that models the data using a lower-dimensional manifold.

Using scikit-learn grid search, we identified the optimum LOF

hyperparameters on a separate validation set (r = 0.5 and

k = 20). The next section describes our experimental setting.

IV. EXPERIMENTS

This paper evaluates the performance of our LOF defense
technique vs. FGWS and DISP at combating adversarial
attacks directed against classifiers performing a sentiment
analysis task. Table I shows the details of the three popular
benchmark datasets used in our study: YELP, Movie Review
(MR), and AG NEWS. We examine two text classification
tasks: sentiment analysis (conducted on YELP and MR) and
topic classification (AG NEWS).

A. Text Classification Models

We employ three deep-learning algorithms that have been
shown to provide state of the art performance for text clas-
sification: BERT [24], WordCNN [25], and LSTM [26]. Our
implementation uses the models from the Hugging Face Trans-
former Library [27]. For our experiments, we used a pre-
trained BERT model, consisting of 125 million parameters.
The model was trained for 10 epochs with a batch size 16 and
a learning rate of le — 4. We chose maximum input sequence
lengths of 512, 256 and 128 after byte-pair encoding for the
YELP, MR, and AG NEWS datasets respectively [28]. The
CNN architecture consists of three convolutional layers, each
with a kernel size of 2, 3 or 4, and a total of 100 feature maps.
The LSTM was initialized with pre-trained GloVe [29] word
embeddings and use dropout during training at a rate of 0.5
before applying the output layer. Both CNNs and LSTMs were
trained with batch size 12 and a learning rate of le—4 for eight
epochs using the Adam optimizer [30]. We sample a subset
of the training data (1,000 samples) for each experiment.

B. Adversarial Examples Generation

All adversarial attacks were provided by TextAttack [12].
For generating adversarial examples, we follow the model



TABLE I

DATASETS
Name Description Train/Test Split Task
YELP [21] Large Yelp Review Dataset 560,000 training and 38,000 testing  sentiment analysis
MR [22] Movie Review Dataset 5,331 training and 5,331 testing sentiment analysis

AG NEWS [23]  News Topics

12,000 training and 7,600 testing

topic classification

TABLE 11
BASELINE PERFORMANCE OF CLASSIFIERS VS.
THE DEEPWORDBUG ATTACK TECHNIQUE PRIOR TO LOF

Dataset Model Accuracy
AG NEWS  BERT 21.09
WordCNN 13.68
LSTM 11.56
MR BERT 12.97
WordCNN 20.59
LSTM 19.29
Yelp BERT 9.98
WordCNN 9.64
LSTM 7.88

proposed by [31] which consists of a decoder and an encoder.
For semantic preservation, we follow [32] and tighten the
thresholds on the cosine similarity between the embeddings
of swapped words and the sentence encoding of original
and perturbed sentences. We enforce the grammaticality of
the adversarial examples by validating perturbations with a
grammar checker. Moreover, we apply semantics as well as
the grammatical constraints at each step of the search. This
process consists of three steps described in more detail by
[12]:

1) A search method to ensure that successful perturbations
are discovered.

2) A transformation technique to modify a text input from
x to z/ (e.g. character substitutions).

3) Linguistic constraints to reject unacceptable (perturba-
tions that do not meet the constraints) x/ such that the
modified input z/ meets the semantics and fluency of the
clean input z.

V. RESULTS

To this evaluate the performance of our adversarial detection
technique, we utilized three attack recipes from the TextAttack
framework [12]: Deepwordbug [33], Genetic Attack [34], and
Textbugger [35].

A. Baseline Text Classification

To contextualize our work, we have decided to evaluate the
performance of our three NLP classifiers prior to the imple-
mentation of our LOF-based technique. Table 2 shows that
the models’ classification accuracy under adversarial examples
is poor. The LSTM model fares the worst when exposed to
adversarial examples with a classification accuracy of 7.88
when tested with the YELP dataset. The WordCNN model also
perofrms poorly under attack and achieves an accuracy of only
9.64 when tested with the YELP dataset. On the other side of
the spectrum, we observe that BERT fares much better than
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Fig. 2. ROC curves for three attacks on the BERT classifier: DWB (Deep-
wordbug), TB (Textbuger), and GA (Genetic Attack). For each plot, the x-axis
and y-axis represent FPR and TPR, respectively. The legend refers to the AUC
of each detection technique. We observe that the LOF technique outperforms
both DISP and FGWS consistently across two tasks (YELP for sentiment
analysis and AG NEWS for topic classification task).

the previously mentioned models and achieves an accuracy of
21.97 when tested against the MR dataset.

B. Detection Performance

We test our three classifiers (BERT, WordCNN, and LSTM)
on three datasets (YELP, MR, and AGNEWS) and measured
the performance of our technique against two state-of-the-art
techniques from the literature (DISP [9]) and FGWS [3]).

DISP. The intuition behind DISP [9] is that it can block
adversarial attacks on text classification models by identify-
ing and adjusting malicious perturbations. The perturbation
discriminator identifies adversarial attacks by determining how
likely it is for a token in the text to be perturbed and providing
a list of potential perturbations. We evaluate the performance
of DISP and LOF at protecting the performance of all three
classifiers (Table III) and observe that LOF outperforms DISP
in all cases. In particular, we notice that our technique achieves
up to 92.4 F'1 score on the YELP dataset for the BERT model
when attacked with the Textbugger recipe. This shows that
our LOF solution is most effective in countering adversarial
examples generated by the Textbugger technique. On the other
side of the spectrum, we observe that our LOF technique
fared the worst (although still outperforms DISP) when tested
against the the Deepwordbug attack technique on the LSTM
model. In particular, we show that our LOF technique coun-
tered only a portion of the adversarial attacks, with 49.8 F'1
score. We believe that our LSTM classifier may have suffered



TABLE III

EVALUATION OF LOF vs. DISP AND FGWS

Attack Recipe

Classifier Detection Technique TextBurger Genetic Deepwordbug

TPR | FI [ AUC | TPR [ FI [ AUC | TPR | FI [ AUC
YELP
DISP 48.7 | 744 | 814 | 412 | 63.2 | 68.1 30.4 37.2 72.3
BERT FGWS 84.6 | 89.1 | 87.2 | 89.3 | 82.0 | 879 [ 704 [ 755 70.8
LOF 91.3 | 924 | 903 | 864 | 80.1 | 91.8 | 84.2 | 89.8 92.2
DISP 753 | 81.5 | 81.5 | 782 | 77.2 | 883 | 332 | 552 70.4
WordCNN FGWS 774 1 855 | 822 | 84.6 | 834 | 859 [ 632 | 68.1 68.5
LOF 87.6 | 89.9 | 941 | 88.6 | 865 | 91.6 | 67.8 | 79.3 92.5
DISP 337 | 473 | 69.2 | 323 | 43.6 | 683 | 223 41.6 61.2
LST™M FGWS 508 | 623 | 71.6 | 749 | 569 | 89.5 | 424 | 432 66.3
LOF 433 [ 535 | 828 | 452 | 66.8 | 824 [ 63.6 | 49.8 72.8
MR
DISP 723 | 82.6 | 81.0 | 72.8 | 823 | 874 | 39.2 | 443 73.0
BERT FGWS 844 | 837 | 832 | 91.2 | 92,5 | 91.8 | 66.3 73.8 773
LOF 89.8 [ 869 | 915 | 752 | 89.1 | 92.0 | 73.7 | 77.6 94.8
DISP 31.7 | 44.8 | 73.1 202 | 419 | 734 | 222 33.5 67.0
WordCNN FGWS 608 | 723 | 73.6 | 799 | 84.9 | 86.7 | 347 | 48.0 60.3
LOF 633 | 76,5 | 798 | 93.2 | 748 | 784 | 32.6 | 55.8 76.8
DISP 347 | 48.0 | 75.0 | 36,5 | 455 | 739 | 20.0 30.8 65.3
LSTM FGWS 61.6 | 720 | 727 | 80.8 | 55.6 | 86.4 | 36.1 494 60.0
LOF 652 | 693 | 824 | 69.1 | 572 | 819 | 37.1 50.5 77.9
AG NEWS

DISP 48.7 | 744 | 769 | 37.8 | 51.2 | 71.7 | 27.0 39.4 67.3
BERT FGWS 84.6 | 89.1 87.1 88.2 | 89.0 | 90.8 | 62.1 72.3 70.9
LOF 863 [ 924 | 945 | 757 | 81.5 | 924 | 81.8 | 853 93.7
DISP 69.1 | 845 | 91.8 | 722 | 793 | 89.6 | 37.1 50.4 74.7
WordCNN FGWS 78.8 | 872 | 822 | 86.6 | 88.1 | 879 | 533 65.1 63.5
LOF 882 [ 89.1 | 941 | 786 | 834 | 92.9 | 68.1 76.3 91.5
DISP 356 | 448 | 723 | 29.6 | 42.7 | 7377 | 24.6 | 3228 | 64.2
LSTM FGWS 608 | 723 | 73.6 | 79.8 | 84.9 | 86.7 | 34.7 48.0 60.3
LOF 652 | 693 | 824 | 652 | 702 | 829 | 779 | 445 76.7

from overfitting on the filtered dataset, a drawback of LSTM
models in-general.

FGWS. The intuition behind FGWS is that adversarial at-
tacks can be detected by frequency differences between the
replaced words and their corresponding substitutions. The
original paper [3] empirically validated the effectiveness of
their technique on the sentiment analysis task using various
NLP models on the SST-2 and IMDB datasets. The results of
FGWS and LOF on all three classifiers are shown in Table III.
We observe that LOF outperforms FGWS across many metrics
at countering adversarial examples. In particular, we notice
that our technique achieves a 92.4 F'1 score, compared to the
89.1 F'1 score achieved by FGWS on the YELP dataset on
the BERT model when attacked with the Textbugger recipe.
Additionally, we observe that the LOF technique outperforms
the FGWS on the MR dataset and BERT model when evalu-
ated against the Deepwordbug attack with an F'1 score of 77.6
compared to 73.8 F'1 score for the FGWS technique. However,
there were some instances where the FGWS outperforms the
LOF technique; in particular, FGWS demonstrated a stronger
performance at countering adversarial examples on the MR
dataset and WordCNN model when evaluated against the
Genetic attack framework. We observe that FGWS achieved
an 84.9 F'1 score compared to 74.8 F'1 score for the LOF
technique.

VI. CONCLUSION

As the requirements of training data grow in scale, natural
language processing practitioners often outsource or automate
the tedious task of dataset creation and curation. This exposes
NLP tools to potential security vulnerabilities from adversaries
who manipulate the training data. This paper empirically
validates the usage of the Local Outlier Factor algorithm
to detect and counter adversarial examples. LOF is good at
estimating local density based on the nearest neighbors of the
data point and detecting if the training example is anomalously
different from the rest of the data. To evaluate the performance
of our technique, we trained several commonly used NLP
architectures to perform sentiment analysis on three social
media datasets that were contaminated with adversarial data
generated using TextAttack [12]. Our results show that the
LOF-based filter is conclusively better than DISP at countering
adversarial examples. In general FGWS is better at countering
Genetic attacks than LOF but less good on TextBurger and
DeepWordBug.

While our results are robust against various types of adver-
sarial attacks, one limitation of this study is that we haven’t
evaluated a broad range of natural language processing tasks.
Also adversaries who are aware of this technique may attempt
to generate clusters of adversarial examples in order to foil
this detection technique.
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