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ABSTRACT

The aim of trust prediction is to infer trust values for
pairs of users when the relationship between them is
unknown. The unprecedented growth in the amount
of online interactions on e-commerce websites has made
the problem of predicting user trust relationships crit-
ically important, yet sparsity in the amount of known
(labeled) relationships poses a significant challenge to
the usage of machine learning techniques. This pa-
per presents a community detection approach which
leverages the network of available trust relations and
rating similarities to compensate for the lack of labels.
The key insight behind our framework is that trust
values from the central community members can be
used as a predictor for relationships between other
community members. Here we evaluate the usage
of two community detection algorithms, one of which
works merely on the trust network while the other one
uses both. Our algorithm outperforms other existing
trust prediction methods on datasets from the well-
known product review websites Epinions and Ciao.

I INTRODUCTION

Trust prediction, the ability to identify how much to
trust to allocate an unknown user, is an important
prerequisite toward the development of scalable on-
line e-commerce communities. We are more likely to
purchase an item from a seller on an e-commerce web-
sites such as eBay or Amazon, if our trusted acquain-
tances have reported positive experiences with that
seller in the past. Reviews from trusted users will
carry more weight towards the purchasing decision
than reviews from anonymous or unknown customers.
Trust can be gained or lost through direct personal
interactions, but this is impractical for popular e-
commerce systems which boast millions of users. Thus,
these platforms must support computational mech-
anisms for propagating trust between users. This
problem is complicated by the fact that most cus-

tomers only have interactions with a small set of other
users and products, resulting in a sparse dataset of
known trust relationships.

In this paper, we propose a novel community-based
mechanism for propagating trust between users, even
when they are not closely connected by existing links.
The underlying assumption is that customer trust
values are likely to be strongly correlated with other
customers within the same community. Using com-
munity detection, users are grouped into non-exclusive
communities (i.e., each user can be a member of sev-
eral communities), which are represented by a pro-
totypical highly-connected community member. Our
model uses the community membership vector to in-
fer trust values between two users by examining the
similarities between the users and representative com-
munity members.

This paper introduces a two-phase approach to pre-
dict the trust values between each pair of users. In the
first phrase, we cluster users into communities. This
paper evaluates the usage of two different commu-
nity detection algorithms: a game-theoretic approach
(originally introduced in [1]) that operates under the
assumption that users join communities to maximize
their utility, which is calculated from a combination
of rating similarity and the network neighborhood
of known trust relations. For the second algorithm
we use smart local moving (SLM) community detec-
tion [2] which detects communities by maximizing a
modularity function. SLM is only designed to work
on a single network, so we we run it on trust network
only.

In the second phase, we predict the trust between
each pair of users by comparing the similarities be-
tween their respective community membership vec-
tors. To calculate the similarity between two commu-
nities, our community-based algorithm compares the
central, or prototypical, community members. This
paper evaluates the relative merits of different cen-
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trality measures (Betweenness, Eigenvector, MaxDe-
gree, MaxTrustor and MaxTrustee) in selecting com-
munity centers. These central members are then used
to determine the similarity between the communities;
communities with similar central users are assumed
to be similar to one another. Our aim is to find the
pair of communities from the users’ community mem-
bership vectors that are both 1) similar to each other
and 2) are a good match for the users (i.e., the users
are themselves similar to the central member of the
community). Intuitively, cases where both users be-
long to the same community will often have the high-
est match score, since two identical community cen-
ters will have the highest possible similarity score.

The paper concludes with a comparison between our
community-based trust prediction method, a set of
commonly used trust prediction heuristics, and hTrust
(a low rank matrix factorization approach) [3].

II RELATED WORK

Bootstrapping trust between users is a general prob-
lem in many e-commerce platforms; it is useful to
have a method to infer the trust value between two
users before collecting a substantial amount of inter-
action data. Skopic et al. described two general ap-
proaches for initializing trust values between users,
mirroring and teleportation [4].

Trust prediction can be framed as a supervised [5, 6]
or an unsupervised [7, 8] learning problem. Unlike
many other classification problems, it is easy to ob-
tain labels for trust prediction since any known link
serves as a positive training instance for binary classi-
fication; however, these approaches need to compen-
sate for the extremely imbalanced datasets. Unsu-
pervised methods are capable of inferring trust val-
ues even for indirectly connected users, but can also
suffer from the sparsity of known trust relations. Ma
et al. extracted features from writer-reviewer interac-
tions and employed them in cluster-based classifica-
tion methods [9]. Their method clusters users which
are then used to train a personalized trust classifier
for each user. Sherchan et al. proposed a five-state
temporal Hidden Markov Model for predicting repu-
tation where each state was represented by four hid-
den factors [10].

One of the earliest works on trust prediction was done
by Golbeck [11] who defined properties of trust such
as transitivity, composability and asymmetry while
also introducing a number of algorithms for inferring
binary and weighted trust values based on a specific

propagation model. In [12], Kuter and Golbeck pro-
posed a sampling method to estimate confidence val-
ues in the trust information.

An efficient trust propagation algorithm was intro-
duced in [13]. The algorithm computes a weighted
average and assigns it to a certain sink by removing
untrustworthy members whose trust ratings fall be-
low a threshold. Guha et al. introduced four atomic
trust and distrust propagation primitives based on
matrix operations; their trust inference algorithm was
able to deal with the large numbers of iterations re-
quired to propagate trust through a large graph [8].

One area of particular research interest is trust pre-
diction for consumer data (e.g., [14] and [15]). Noor
and Sheng compute trustworthiness as a sum of feed-
backs weighted by their trust credibilities, which in
turn are calculated based on feedback density and
majority consensus [14].

In this paper, we compare our work to Tang et al.
who formulated trust prediction as an optimization
problem. [3]. The authors first demonstrated the ex-
istence of homophily in trust relations and then used
homophily regularization to exploit the effect. Their
method, hTrust, uses low-rank matrix factorization
and homophily regularization for unsupervised trust
prediction.

III TRUST PREDICTION MODEL

To perform trust prediction, our algorithm first ex-
tracts and then compares users’ community member-
ship profiles. We compare the performance of two
community detection approaches for generating the
membership vector: game-theoretic [1] and smart lo-
cal moving (SLM) [2].

1 COMMUNITY DETECTION

1.1 GAME-THEORETIC

Suppose that we have a graph G = (V,E), with
n = |V | vertices and m = |E| edges representing the
sparse trust relationship network data T . Further,
suppose that there exists rating relationship network
data R consisting of users and items and the ratings
that users have given to the items. Following the
work described in [1, 16], we consider the process of
community detection as an iterative game performed
in a multi-agent environment in which each node of
the underlying graph is a selfish agent who decides
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to maximize its total utility ui. This process can be
simulated using an agent-based model that seeks to
detect communities by optimizing each user’s utility
through a stochastic search process. For calculating
the utility function, we examine the contribution of
two factors, trust similarity (Tij) and rating similar-
ity (Rij), toward community detection.

During the game, each agent can periodically take
an action (join, switch, leave and no operation) to
modify or retain the labels of communities that it
belongs to, based on its current utility. The set of all
such communities is denoted by [k] = 1, 2, . . . , n. We
define a strategy profile S = (s1, s2, ..., sn) which
represents the set of all strategies of all agents, where
si ⊆ [k] denotes the strategy of agent i, i.e. the set
of its labels.

In our framework, the best response strategy of an
agent i with respect to strategies S−i of other agents
is calculated as: arg maxsi⊆[k] ui(S−i, si). We con-
sider a linear function of Tij and Rij as the gain
function of each agent, where α ∈ [0, 1]:

gi(S−i, si) =
1

m

∑
l∈si

∑
j∈l

(αTij + (1− α)Rij). (1)

As in real life, joining communities always has ex-
penses (e.g. fees), so here we also consider loss func-
tion li for each agent, which is linear in the number
of labels each agent has:

li(S−i, si) =
1

m
(|si| − 1). (2)

Therefore the utility function for each agent is calcu-
lated by:

ui(S−i, si) = gi(S−i, si)− li(S−i, si). (3)

The strategy profile S forms a pure Nash equilibrium
of the community formation game if all agents play
their best strategies.

For calculating the similarities between each pair of
vertices in G, we can use local or global properties,
regardless of whether or not the nodes are directly
connected. In this work we use separate similarity
measures for the two halves of the utility function.
For the first half, we use neighborhood similarity [1]

with different normalization factors to quantify trust
similarity between users:

Tij =


wij(1− didj/2m) Aij = 1, wij >= 1

wij/n Aij = 0, wij >= 1
didj/2m Aij = 1, wij = 0
−didj/2m Aij = 0, wij = 0

(4)
where wij is the number of common neighbors node i
and j have and di is the degree of node i. Tij assumes
its highest value when two nodes have at least one
common neighbor and are also directly connected, i.e.
Aij = 1.

To evaluate the value of rating similarity between
users, we calculate the cosine similarity over the rat-
ings using:

Rij =

∑
k rikrjk√∑

k r
2
ik

√∑
k r

2
jk

(5)

where vectors ri and rj are rating vectors for user i
and user j, respectively.
Algorithm 1 shows our proposed framework. After
calculating trust similarities between each pair of agents
(Equation 4) and rating similarity (Equation 5), the
multi-agent game commences. The community struc-
ture of the network emerges after agents reach the
local equilibrium.

1.2 SMART LOCAL MOVING (SLM)

The smart local moving algorithm (SLM) detects com-
munities in networks by maximizing a modularity
function; nodes are repeatedly transferred between
communities in such a way that each movement causes
an increase in modularity [2]. In more detail, the local
moving heuristic iterates over the nodes in random
order and checks whether the modularity increases
by moving that node from its current community to
another one. This process continues until no more
movement is possible (Algorithm 2).

2 TRUST PREDICTION

Once we have extracted the communities, we select
a representative (central) user from each community.
In this paper, we evaluate the usage of different mea-
sures for selecting this representative user:

1. Betweenness
2. Eigenvector
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Algorithm 1 Game-theoretic based trust predictor

1: Input: trust and rating networks
2: Output: Predicted trust values
3: Calculate trust similarities Tij between pairs of

users with trust relations
4: Calculate rating similarities Rij between pairs of

users’ rating vectors
5: while NOT convergence in the agents’ utilities

do
6: Iterate over agents
7: Iterate over actions (join, switch, leave and no

action)
8: Calculate the change in agent utility resulting

from the action
9: if change exceeds a threshold then

10: Execute action
11: Update communities
12: end if
13: end while
14: Detect centers of communities
15: Iterate over all possible pairs of users (i, j) with-

out trust relations
16: Find the labels of communities which agent i and

agent j belong to
17: Calculate predicted trust values based on equa-

tion 6

Algorithm 2 SLM based trust predictor

1: Input: trust and rating networks
2: Output: Predicted trust values
3: Calculate rating similarities Rij between pairs of

users’ rating vectors
4: SLM(trust)
5: Detect centers of communities
6: Iterate over all possible pairs of users (i, j) with-

out trust relations
7: Find the labels of communities which user i and

user j belong to
8: Calculate predicted trust values based on equa-

tion 6

3. MaxDegree
4. MaxTrustor
5. MaxTrustee
6. Random.

These centrality measures are calculated using func-
tions from the JUNG package1 on the community
subgraphs. A high betweenness scores indicates that
a node lies on a large number of geodesics within the
subgraph. Eigenvector centrality for each node is de-
fined as the proportion of time that a random walker
will visit that node over the time horizon. Max de-
gree selects the node with the highest overall degree,
and max trustor/trustee treat the in degree and out
degree separately. We compare these centrality meth-
ods against a baseline in which the central community
node is randomly selected.

This prototypical user is then treated as being the
center of the community for the purposes of measur-
ing similarities between users. After detecting centers
for all communities, we calculate the rating similar-
ity Ricil

(Equation 5) between rating vectors of user i

and each of the centers cil of all labels that it belongs
to, where l ∈ si. We repeat this process for user j
and their corresponding centers. We also maintain a
list of rating similarities between all the community
centers. The final trust value between users is the
maximum over the possible average values of these
numbers:

Pij = max
ci∈csi ,cj∈csj

Avg{Ricil
, Rjcjl

, Rcilc
j
l
} (6)

The aim of this process is to find the pair of centers
that are both 1) similar to each other and 2) similar
to the users themselves.

IV EXPERIMENTS

We use the Epinions and Ciao datasets2 to evalu-
ate our method. First, the datasets are preprocessed
by eliminating users with less than two trustors and
items with less than two available ratings. Table 1
gives the statistics of the datasets after filtering. Also,
trustor and trustee distributions for both datasets are
shown in Figure 1 and Figure 2 respectively.

Following the evaluation in [3], we choose (100−x)%
of the pairs of users with known existing trust rela-
tions as the trust relations N to predict and remove

1http://jung.sourceforge.net/
2http://www.public.asu.edu/$\sim$jtang20/

datasetcode/truststudy.htm
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Figure 1: Trustor (top) and trustee (bottom) distri-
butions for the Epinions dataset

Epinions Ciao

# Users 9,497 5,329
# Items 114,983 56,134
# Ratings 367,741 198,230
# Trust Relations 321,305 106,388
Max # of Trustors 1,047 98
Max # of Trustees 1,432 780
Avg. Degree 21.667 19.964
Trust Network Density 0.004 0.004
Avg. Clustering Coefficient 0.154 0.153

Table 1: Statistics of datasets after filtering

their trust values by setting G(i, j) = 0. The new rep-
resentation of G is fed to each predictor. x is varied as
{50, 60, 70, 80, 90}. We then use prediction accuracy
(PA) [17] to report the performance of the predic-
tors. More specifically, each predictor ranks the pairs
of B ∪ N in decreasing order, where B is the ran-
domly chosen subset of pairs of users with unknown
trust relation with size equal to 4 ∗ |N |. The final set
of predicted trust relations, T , is the first N pairs in
the sorted list. Finally we compare T with set N to
see how many pairs are predicted correctly. Hence we
have the following equation:

PA =
|N ∩ T |
|N |

(7)

Since we select the users in B randomly, we report
the final results by taking the average of 10 runs for
each method.

Figure 2: Trustor (top) and trustee (bottom) distri-
butions for the Ciao dataset

1 RESULTS

This section presents results on the performance of
different variants of our proposed trust prediction
framework: 1) the usage of game-theoretic vs. SLM
community detection methods and 2) different cen-
trality measures for identifying community centers.
The results of the game-theoretic trust predictor with
α = {0.1, 0.5, 0.9} are shown in Figures 3 and 4; those
of the SLM based trust predictor are shown in Fig-
ure 5. Then, we compare our framework against a set
of baselines:

• hTrust: Infers trust values using low-rank ma-
trix factorization and homopily regularization [3].

• RS: Ranks the pairs of users based on Cosine
similarity (Equation 5).

• JC: Ranks the pairs of users based on Jaccard
similarity:

Rij =
|I(i) ∩ I(j)|
|I(i) ∪ I(j)|

(8)

where I(i) refers to the set of items user i has
rated. Jaccard similarity counts the total num-
ber of unique items that user i and user j have
rated.

• Random: Ranks the pairs of users after assign-
ing random values to each of them.

Based on these experiments, we make the following
observations. The game-theoretic version of our com-
munity based trust prediction outperforms the use of
SLM for community detection. In both the game-
theoretic and SLM community detection approaches
(all conditions), betweenness is the best method for
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(a) α = 0.1

(b) α = 0.5

(c) α = 0.9

Figure 3: Prediction accuracy of game-theoretic com-
munity detection variant vs. training dataset size (x)
on the Epinions dataset

(a) α = 0.1

(b) α = 0.5

(c) α = 0.9

Figure 4: Prediction accuracy of game-theoretic com-
munity detection variant vs. training dataset size (x)
on the Ciao dataset
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(a) Epinions

(b) Ciao

Figure 5: Prediction accuracy of SLM community de-
tection variant vs. training dataset size (x)

(a) Epinions

(b) Ciao

Figure 6: Prediction accuracy of the baseline meth-
ods vs. training dataset size. The baseline methods
are compared with our proposed community-based
trust prediction methods (both game-theoretic and
SLM community detection with community centers
selected by betweeness). The game-theoretic version
of our method is the top performing approach on both
datasets.

identifying community centers, followed by MaxDe-
gree and MaxTrustor. Different values of α seem to
have minimal impact on the performance of our util-
ity function in game-theoretic community detection.
In the comparison against other baselines, the game-
theoretic version outperforms hTrust, the strongest
baseline method, and the SLM version outperforms
the other heuristics (but not hTrust). Increasing the
training data set size paradoxically leads to small de-
creases in prediction accuracy; this phenomenon is
described in greater detail in [3].

V CONCLUSION

This paper presents a community detection based ap-
proach for bootstrapping trust prediction on product
review websites. The intuition behind our method is
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that comparing rating similarities between communi-
ties is more robust than comparing ratings between
individuals. First, communities are detected using
both the trust and rating networks. Second, commu-
nity centers are identified using centrality measures
to find representative users. Finally, trust prediction
is performed by selecting corresponding communities
from the users’ membership vectors that 1) are sim-
ilar to each other and 2) match the users well, as
measured by similarity between the users and the
community centers. Here we demonstrate that the
game-theoretic version of our proposed method out-
performs a set of baseline trust prediction methods.
For the next part of our research agenda, we plan
to explore alternate distance metrics for measuring
distances between users.
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