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Abstract

We present a novel method aimed at enhancing the sam-
ple efficiency of ensemble Q learning. Our proposed
approach integrates multi-head self-attention into the
ensembled Q networks while bootstrapping the state-
action pairs ingested by the ensemble. This not only
results in performance improvements over the original
REDQ (Chen et al. 2021) and its variant DroQ (Hi-
raoka et al. 2022), thereby enhancing Q predictions,
but also effectively reduces both the average normal-
ized bias and standard deviation of normalized bias
within Q-function ensembles. Importantly, our method
also performs well even in scenarios with a low update-
to-data (UTD) ratio. Notably, the implementation of our
proposed method is straightforward, requiring minimal
modifications to the base model.

Introduction

Designing reinforcement learning algorithms that learn
rapidly with limited data remains a significant research
challenge. While previous approaches have solved com-
plex control tasks, they require huge amount of samples for
training and solving the task (Andrychowicz et al. 2020;
Mendonca et al. 2019). Newer techniques focus on achiev-
ing a high update-to-data (UTD) ratio which ensures fewer
environmental interactions but high sample efficiency. RL
methods such as Model-based Policy Optimization (MBPO)
(Janner et al. 2019) achieve a high UTD ratio by using both
real data and fake data generated by the model to achieve
sample efficiency. In contrast, the model-free Soft Actor
Critic (SAC) (Haarnoja et al. 2018) approach has a relatively
low UTD ratio of 1.

Two recent model-free ensemble methods use a very
high UTD ratio to achieve greater sample efficiency: REDQ
(Chen et al. 2021) and DroQ (Hiraoka et al. 2022). Hav-
ing a high UTD ratio risks creating estimation bias since
many model updates are made after a small number of en-
vironmental interactions. To prevent this, REDQ employs
a Q-function ensemble and reduces the estimation bias by
employing in-target minimization over a subset of the en-
semble. Similarly, DroQ, which is based on REDQ, in-
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jects model uncertainty into a smaller ensemble by using Q-
learners with dropout and layer normalization to minimize
estimation bias.

Our proposed method uses bootstrapping (Efron 1992) to
generate the samples used by the Q-learning ensemble. Sev-
eral recent deep RL algorithms have leveraged bootstrap-
ping to improve sample complexity but not within ensemble
learners. Rahman and Xue (2023) bootstrap experience tra-
jectory clusters to improve agent generalization. Gelada and
Bellemare (2019) tackle the problem of off-policy learning
with covariate or distribution shift by using bootstrapping to
reweight and resample the data from the behavior policy in
order to align it with target policy while reducing the bias
introduced due to importance sampling.

Here we use multi-head self attention within the indi-
vidual Q-learners. Self-attention was first introduced by
Vaswani et al. (2017) and has been effectively employed
in all transformer-based approaches in natural language
tasks. Recently, many deep RL approaches have showed
its effectiveness in both single-agent and multi-agent prob-
lems (Zheng, Zhang, and Grover 2022; Hu et al. 2021;
Upadhyay et al. 2019; Khan, Ahmed, and Sukthankar 2022).

This paper introduces a variant of the REDQ and DroQ
methods which, in addition to an ensemble of Q-functions,
dropout layer, and layer normalization, exploits multi-head
self-attention (referred as MHA), identity connections, and
bootstrapping mechanisms to further improve performance
and reduce estimation bias. Our approach provides the fol-
lowing benefits:

* With bootstrapping we create multiple sub-samples of the
agent’s experiences, thus helping the agent to utilize its
experiences effectively which leads to better state space
exploration.

* In addition, MHA effectively captures the temporal re-
lationship between sub-sampled state-action pairs while
taking into account the future states and rewards, and
learning a variety of dependencies amongst state-action
pairs.

» Experiments show that our method effectively improves
sample efficiency while reducing the estimation error. We
achieve comparable performance to REDQ even with low
UTD settings.

We demonstrate the performance of our algorithm vs. REDQ

and DroQ in four challenging OpenAl Gym environments:



Ant-v2, Hopper-v2, Humanoid-v2, and Walker2d-v2.

Related Work

Model-free deep RL approaches such as TRPO (Schulman
et al. 2015), PPO (Schulman et al. 2017) and A3C (Mnih et
al. 2016) have been applied to a variety of decision making
and control tasks. While these approaches provide reason-
able performance, they suffer from poor sample efficiency
due to on-policy learning, requiring new sampling at each
step. To tackle these challenges, Soft Actor Critic (Haarnoja
et al. 2018), an off-policy learning method, was proposed.
SAC achieves a higher sample efficiency, but still uses a very
low update-to-data (UTD) ratio which somewhat limits the
potential sample efficiency.

In contrast, MBPO (Janner et al. 2019) represents a
model-based approach that manages the trade-offs between
leveraging a model to generate data and the risks of using an
inaccurate model. It integrates both real data from the envi-
ronment and synthetic data generated from the model, and
utilizes higher UTD ratio, usually 20 to 40, to achieve better
sample efficiency.

Given the success of MBPO with a high UTD ratio, many
recent deep RL methods use a high UTD ratio to achieve
better sample complexity than model-based deep RL meth-
ods (Shen et al. 2020; Lai et al. 2020). However, the higher
UTD ratio comes at the cost of overestimation bias.

In the ongoing quest to improve the performance of deep
RL methods, researchers have proposed diverse approaches.
Notable strategies include ensembles of Q-functions (Faufler
and Schwenker 2015; Osband et al. 2016; Lee et al. 2021),
integration of dropout transition models (Gal and Ghahra-
mani 2016; He et al. 2022), and application of normalization
techniques such as batch normalization (Ioffe and Szegedy
2015) and layer normalization (Ba, Kiros, and Hinton 2016).
While previous methods employed ensembles to capture
model uncertainty in both target calculation and policy op-
timization, they did not specifically focus on the issue of
overestimation.

To address the overestimation problem caused by the
higher UTD ratio, Chen et al. (2021) proposed Random-
ized Ensembled Double Q-learning (REDQ). This model-
free approach attains superior performance and similar sam-
ple efficiency to MBPO, mainly by using a higher UTD ra-
tio. It mitigates the overestimation bias resulting from the
increased UTD ratio by employing a large ensemble of Q-
functions and then choosing a random subset of the Q-
function ensembles for in-target minimization.

Hiraoka et al. (2022) were able to improve the computa-
tional performance of REDQ. To achieve this improvement,
DroQ incorporates the techniques such as dropout (Srivas-
tava et al. 2014) and layer normalization (Ba, Kiros, and
Hinton 2016). Moreover, it aims to discover a policy capa-
ble of maximizing the expected return while incorporating
an entropy bonus.

Method

Our method incorporates multi-head self-attention, identity
connections, and bootstrapping into the REDQ architecture.

Our modifications are shown in Figure 1 while the pseu-
docode is presented in the Algorithm 1. Differences between
the algorithms are highlighted in red.

Algorithm 1 Modified REDQ
1: Initialize policy parameters 6, N Q-function parameters
oi,t =1,..., N, empty replay buffer D.
2: Set target parameters ¢yq,; < ¢, fori =1,2,..., N

3: repeat

4: Take an action a; ~ 7y (.|s;) and observe reward r;,
next state s;41

5: Update buffer D < D(\(s¢, at, T't, St+1)

6: for G updates do

7 Sample a mini-batch B = (s, a,r, s ) from D

8: for b; in B do

9: Select a sub-sample b* from mini-batch 5

with replacement
10: Apply multi-head self-attention to boot-
strapped sample b*

) qk™
Attention(q, k, v) = softmax <> v
V d]c

11: Calculate Q for all M of M distinct indices
from 1, 2, ..., N with bootstrapped sample b*
12: Calculate target y as:

y=r+-~ <Znelm Q@m’i(s’, a') — alog we(&'|sl)> ,

~/ /

a ~me(.|s)

13: end for
14: fori=1,...,N do
15: Update ¢; with gradient descent using
1
Voig > Qg (s,0) —y)?
(s,a,m,8")
16: Update target networks with
¢ta7‘,i <~ p¢tur,i + (1 - p)¢z

17: end for
18: end for
19: Update policy parameters 6 with gradient ascent us-

ing

1 1 &
P (N > Qo)) ~ alog m(ae(sns)) ,

ap(s) ~ mo(.])

20: until done

Similar to both REDQ and DroQ, our approach involves
utilizing N ensembles of Q-functions, and we select a subset
M out of N for in-target minimization. Each Q-network is
constructed using the original implementation of the REDQ
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Figure 1: Our modified REDQ approach incorporates both the bootstrapping and MHA mechanisms. Both the states and the
actions are first concatenated, and then multiple bootstrapped samples are drawn from the replay buffer for the ensemble of
Q-learners. Individual Q-learners incorporate a fully connected layer and multi-head attention on top of a Q-network. The Q-
network integrates elements from both the REDQ and DroQ implementations.

method. We also integrate the key modifications inspired by
the DroQ, incorporating a dropout layer and layer normal-
ization into each Q-network.

Moving forward, as depicted in Figure 1, we introduce our
modifications to each Q-network described above. Each Q-
network now boasts a fully connected layer and a multi-head
self-attention layer, carefully positioned before the original
Q-network implementation. This augmentation ensures the
model is capable of capturing even richer dependencies and
improves the overall expressive power of the model. Dur-
ing the training process, at each step, we draw a mini-batch
B from the replay buffer D and generate multiple boot-
strapped samples b* from B. We evaluated different sizes of
the bootstrap sample, |b*| = {2,4, 8}; results are reported
for |b*| = 4. Each sample is comprised of concatenated
state-action pairs. The incorporation of bootstrapped sam-
ples serves several crucial purposes: 1) these samples help
agent learn from both its own prediction and those gener-
ated by the Q-network; 2) the agent updates its policy based
on information it has while reducing the need for exten-
sive exploration to gather new experiences and hence re-
ducing environment interactions; 3) as the agent potentially
encounters some state-action pairs multiple times, this repe-
tition significantly amplifies the agent’s predictive capacity;
4) bootstrapping also reduces the variance.

Each bootstrapped sample b* then undergoes transforma-
tion through a fully connected layer before being fed to the
multi-head self-attention layer. This transformation ensures
that all samples are in the same representation space and
share a consistent embedding dimension, necessary to apply
self-attention. The multi-head self-attention is calculated as
given by Equations 1 and 2.

. qk™
head; = Attention(q, k, v) = softmax () v (1)
( ) vy,

MultiHead(g, k, v) = concatenate(head;, ..., head g )w
2

where the matrices k, v, and q € RN >4 are calculated from

each b* sub-sample. The dj, is the embedded dimension of
the model set to either d € R?56 or d € R®'2, depending
upon the environment. H is the number of heads which is
set to 8 for most of the environments.

The MHA provides significant advantages: 1) by applying
attention to state-action pairs, the agent gains a better un-
derstanding of the relationship between states and actions,
thereby enhancing temporal modeling; 2) it also aids the
agent in optimizing its policy and making informed deci-
sions while taking actions; 3) leveraging MHA, each head
has the capacity to learn a distinct and meaningful relation-
ships for a state-action pair; 4) and lastly, the MHA ensures
that the state-action pairs are invariant to permutations.

While the combination of MHA and bootstrapping con-
tributes to performance improvements over REDQ, in the
case of DroQ, MHA typically does not enhance perfor-
mance. Instead, it often leads to a declined performance.
This discrepancy can be attributed to the simplicity of the
DroQ network, where the inclusion of attention mechanisms
adds unnecessary complexity, adversely affecting perfor-
mance.

To address this issue, we propose a solution by incorporat-
ing identity connections, inspired by the concept introduced
in ResNet (He et al. 2016). By removing MHA and integrat-
ing identity connections while retaining the bootstrapping
approach, we effectively streamline the network architecture
and mitigate the performance issues associated with unnec-
essary complexity.

In the REDQ framework, the ensemble size is typically set
to N = 10, with a fixed random subset size of M = 2 and
UTD is set to 20. To ensure a fair comparison in our initial
experiments, we adopt the same configuration as outlined
by the REDQ implementation, aligning our setup with their
established parameters.

However, for our subsequent experiments, we diverge
from the conventional REDQ configuration. We choose an
ensemble size of N = 5, while still maintaining the subset
size at M = 2 and reducing the UTD from 20 to 10. In both
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Figure 2: An evaluation of Q-value prediction, average normalized Q-bias, and standard deviation of normalized Q-bias: REDQ
vs. our proposed approach. Results are based on three separate runs for each environment. Our method demonstrates enhanced
Q-value predictions while effectively managing estimation bias at a level comparable to REDQ.

configurations, each individual Q-network is initialized ran-
domly, but they all undergo updates with the same target. In

. . _ _ : i ~ . /AN
each case, the target value is determined as follows: E¢i,..,¢ M i:I{HUM Qaﬁm,w (s',a")| = z’:r{unN Q¢>tar,i(3 ,a’)

10
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Figure 3: Comparison of our method with identity connections and bootstrapping vs. DroQ. Our approach improves over DroQ

in all the environments. Results were obtained from three distinct runs.

where each Q-function of NV is independently initialized
with parameters ¢;, .., ¢y which is given by line 12 of the
algorithm. Our approach balances the dual aims of providing
the model with ample uncertainty without being excessively
computation intensive. It delivers consistent performance,
even when the UTD is reduced (UTD < 20) (Figure 4).

Experimental Results

We showcase our findings across four challenging OpenAl
Gym environments: Ant-v2, Hopper-v2, Humanoid-v2, and
Walker2d-v2. In addition to analyzing the rewards, we also

look at average estimation bias and the standard deviation of
estimated bias. The estimation bias is calculated as:

Q4(s,a) — R"(s,a)
where R” (s, a) is the Monte Carlo return while Q4 (s, a) is
the average return of randomly selected subset of Q-learners.

To better predict the estimation bias, normalized estimation
bias is also used as a metric and is calculated as:

b(s,a) = (Qp(s,a) — R (s,a))/Es ar[R" (s, a)]
Both the mean and standard deviation of estimation bias
are crucial metrics in assessing the performance. A high ab-
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Figure 4: Comparison of Q-value prediction, average normalized bias, and standard deviation of normalized bias between
REDQ (G = 20, N = 10) and our approach when UTD is set to G = 10 while NV = 5 for our approach. Our method still
managed to achieve better performance than REDQ. Results were obtained from three distinct runs for each environment.

solute mean bias indicates that the estimates are consistently
inaccurate. On the other hand, a high standard deviation
of bias suggests that the estimation errors are not uniform
across different states or actions. Our aim is to have the av-
erage normalized bias fall close to zero with a small standard
deviation.

These experiments are conducted using the optimal pa-
rameters of the REDQ. In this comparison, following the
REDQ approach, we choose N = 10 and M = 2, while the
UTD is set to G = 20. The results of this comparison are
illustrated in Figure 2. Under this configuration, our method
achieves superior average Q-value predictions while simul-
taneously keeping estimation bias at a minimum. Further-
more, our approach outperforms REDQ by maintaining bet-
ter average normalized bias and standard deviation of nor-
malized bias. These results affirm that our method is not
only proficient in handling overestimation and underestima-
tion but is, in fact, at least as effective as REDQ.

We conducted another set of experiments using the op-
timal configuration for both DroQ and our method, incor-
porating identity connections, with parameters set to N =
M = 2 and G = 20. The results are illustrated in Figure
3. Our method, enhanced by bootstrapping and identity con-
nection, consistently achieves superior rewards across all en-
vironments, effectively mitigating estimation bias by keep-
ing both average bias and standard deviation of average bias
close to zero.

A higher UTD ratio has substantial challenges including
overfitting to specific experiences, constraint exploration, re-

ducing the generalization and increasing the computational
cost. One of the straightforward ways to address these chal-
lenges is to reduce the UTD ratio. In our subsequent set of
comparisons, we opt for a more aggressive configuration by
choosing N = 5 and M = 2 while reducing the UTD
G = 20 to G = 10. For REDQ, we leave the values of
N and M unchanged. These results are presented in Figure
4. In this set of experiments, the results exhibit a somewhat
mixed nature. Although the average Q-values prediction is
reduced for both methods, our approach still manages to per-
form equally well in terms of average normalized Q bias and
standard deviation of normalized Q bias.

Conclusion

This paper introduces an enhanced variant of the REDQ
method that incorporates bootstrapping and multi-head self-
attention into an ensemble of Q-functions. Our method
demonstrates enhanced Q-value predictions while effec-
tively managing estimation bias at a level comparable to
REDQ, even when reducing the UTD ratio and ensemble
size. A version of our model outperforms the optimal con-
figuration for DroQ. Our results demonstrate the benefits of
our proposed approach towards improving both sample effi-
ciency and performance across multiple OpenAl Gym envi-
ronments.
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