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Abstract

Due to the rise in video content creation targeted towards chil-
dren, there is a need for robust content moderation schemes
for video hosting platforms. A video that is visually benign
may include audio content that is inappropriate for young
children while being impossible to detect with a unimodal
content moderation system. Popular video hosting platforms
for children such as YouTube Kids still publish videos which
contain audio content that is not conducive to a child’s healthy
behavioral and physical development. A robust classification
of malicious videos requires audio representations in addi-
tion to video features. However, recent content moderation
approaches rarely employ multimodal architectures that ex-
plicitly consider non-speech audio cues. To address this, we
present an efficient adaptation of CLIP (Contrastive Lan-
guage–Image Pre-training) that can leverage contextual au-
dio cues for enhanced content moderation. We incorporate 1)
the audio modality and 2) prompt learning, while keeping the
backbone modules of each modality frozen. We conduct our
experiments on a multimodal version of the MOB (Malicious
or Benign) dataset in supervised and few-shot settings.

Introduction
There has been a remarkable surge in both the creation and
consumption of video content on the internet, making au-
tomated content moderation indispensable for video shar-
ing platforms. More than 80% of the internet usage glob-
ally is from video data streaming and downloading (Shewale
2024). In many countries, content moderation is mandatory
for video hosting platforms to remain compliant with le-
gal regulations. Recent findings indicate that around 2,500
videos are published per minute on YouTube, which is the
largest video sharing platform (Hayes 2024). Unfortunately,
there is a significant amount of content which can be detri-
mental to emotional and psychological well-being of the
viewer. Extensive consumption of malicious video content
has socio-economic impacts in addition to its effects on in-
dividual viewers.

Lawsuits have been filed against various online con-
tent sharing platforms for intentionally fostering addiction
among children through their content, thereby exacerbating

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

the mental health crisis among the youth (Ortutay 2023).
Video sharing websites combine both manual and automated
content moderation approaches to eliminate the presence of
published malicious content (YouTube 2024; TikTok 2024).
For this paper, we sampled the content currently available
for pre-schoolers on YouTube Kids and identified a number
of malicious videos that haven’t been flagged by the exist-
ing content moderation system. Figures 1 and 2 show snap-
shots from two different problematic videos which include
violence and disturbing music, respectively. These examples
highlight the need to develop robust and efficient tools for
video content moderation.

Young children, particularly toddlers and pre-schoolers,
are the demographic most susceptible to being adversely
affected by video content created with malicious intent.
Firstly, they are too naive to appreciate that certain audio-
visual features are deliberately incorporated in videos in or-
der to lure them to continue watching. Furthermore, con-
tinuous adult supervision is not pragmatic - in fact child’s
screen time serves as a babysitting tool, enabling parents to
attend to other responsibilities or take a break, as reported
by 32% of parents (Hinkley and McCann 2018). Numerous
psychological studies discuss the adverse effects of exposure
of inappropriate video content on a young child’s mental and
behavioral health.

Ahmed et al. (2023) provide a catalog of features that
characterize malicious video content including quick and
repetitive movements, frightening or repulsive appearance,
harmful or destructive actions, and inappropriate or indecent
behavior. They also note that malicious audio may include
high-volume music or noise, cries or shouts, sounds of ex-
plosions or gunshots, and the use of offensive language. Ex-
cessive exposure to these inappropriate videos poses a no-
table threat to the cognitive growth of preschoolers.

Recent works on content moderation for children’s videos
have attempted to address the problem with multimodal ap-
proaches. Chuttur and Nazurally (2022) analyze text in the
form of user comments and captions, along with image data.
Their method is unable to capture the spatio-temporal con-
text in videos as they use single images as inputs. Le, Tan-
don, and Oinar (2022) proposed a multimodal solution that
incorporates subtitles and video metadata as input. As the
subtitles do not contain information about music or sound
effects, Samba may classify a video with malicious audio



content as safe. Papadamou et al. (2021) rely on video meta-
data such as tags, title, statistics, in addition to video thumb-
nails. None of these models include audio inputs which is an
essential modality for devising a robust video content mod-
eration system. Tahir et al. (2020) and Alghowinem (2019)
combined audio spectrograms with video features to clas-
sify the video content being either appropriate or inappropri-
ate. However, the former focuses on detecting fake cartoon
videos, whereas the latter only introduces a high-level idea
without implementation.

Our proposed work bridges the gap in previous works by
adapting OpenAI’s CLIP architecture (Radford et al. 2021)
for videos, and enabling it to learn prompts for both the
vision and text branches. Furthermore, we incorporate a
pre-trained audio encoder from AudioCLIP (Guzhov et al.
2021b) to handle the audio modality while adding a fully-
trainable projection layer to improve performance on the
downstream task of detecting malicious videos. We also in-
troduce a multimodal dataset with both audio and video
modalities that includes annotations specifically targeted for
the problem of content moderation for children’s videos.

Psychological research indicates that prolonged expo-
sure to animated content featuring rapid movements can re-
sult in deterioration in performing everyday tasks (Lillard
and Peterson 2011). Likewise, the impact of loud noises
on a child’s brain development, particularly affecting read-
ing, writing, and comprehension skills, has been established
(Klatte, Bergström, and Lachmann 2013). The direct influ-
ence of violent cartoons on the behavior of preschoolers is
evident, leading to increased levels of aggression and anxi-
ety (Hapkiewicz 1979). Based on these psychological stud-
ies, in this paper we identify subtly harmful acoustic and vi-
sual features which makes the content alluring and addictive
to a young child. These include a) brightly-hued fast moving
objects with fast and loud music and b) split-screen anima-
tions with fast and loud music. A sample video snapshot for
a) is shown in Figure 2.

This paper makes the following contributions towards the
problem of content moderation of children’s videos:

1. Introduces a multimodal framework that includes the au-
dio modality for more robust content moderation of chil-
dren’s cartoon videos. We perform ablations to demon-
strate the enhanced performance of adding audio.

2. Adapts CLIP to enable learning of prompts in both vi-
sion and text branches across multiple layers of encoders,
along with AudioCLIP’s pre-trained audio encoder. We
integrate a learnable projection layer in order to efficiently
learn audio representations for the downstream content
moderation task, while keeping the weights in the core
models frozen.

3. Presents a comprehensive multimodal dataset MMOB
(Multimodal Malicious or Benign) which includes la-
beled cartoon video samples with annotations of vision
and audio labels. Baseline results for MMOB in super-
vised and few-shot learning settings are also showcased.
We have released the dataset to encourage further research
in the area.

Figure 1: One of the malicious video examples currently
available on the YouTube Kids platform that shows a furi-
ous cartoon character shooting at other cartoon characters
with a machine gun.

Figure 2: A sample video which includes fast and loud piano
notes. Usually in such videos, there is high tempo, a lack of
rhythm and varying pitches. The video also includes bright
and striking hues, and suggests the violent action of “hitting
the piano with a bat”.

Background
COPPA - Children’s Online Privacy Protection Act
The Children’s Online Privacy Protection Act (COPPA)
(COPPA 1998), enforced by the US Federal Trade Commis-
sion (FTC), establishes clear privacy and content guidelines
for online content publishers targeting children aged 13 or
younger. In 2019, additional provisions were incorporated
into COPPA, particularly addressing YouTube, to guarantee
the delivery of safe content for children. In January 2024, the
Federal Trade Commission (FTC) released a proposal revis-
ing the regulations that enforce the Children’s Online Pri-
vacy Protection Act (COPPA Rule). The proposed modifica-
tions aim to adapt to technological changes, and strengthen
protections for children’s personal information based on the
FTC’s review of public comments and enforcement experi-
ence (FTC 2024). Therefore, the problem of publishing age-
appropriate content that we address in this paper, has been
given high importance by FTC, which recommends avoiding
content that could be harmful or inappropriate for children.

CLIP - Contrastive Language-Image Pre-Training
CLIP (Radford et al. 2021) is a very large multimodal model
trained on a huge corpus of (image, text) pairs. Paired im-
ages and text are used for training both image and text
encoders, jointly. The user provides the CLIP model with
the text prompt that will elicit the best image classifica-
tion; this text may include ground truth class information.



While learning the combined multimodal embedding space
the model aims to maximize the cosine similarity scores of
the image with the ground truth text while minimizing the
cosine similarity between the embeddings of incorrect pair-
ings. CLIP is capable of performing zero-shot classification
and other downstream computer vision tasks efficiently us-
ing natural language supervision. In this work we modify
CLIP for video input, and augment it to learn prompts in
both the visual and textual branches of CLIP.

Related Work
Audio Modality
Audio is an oft neglected modality; however we believe
that raw audio provides valuable contextual clues that are
not included in the text transcription. This is particularly
true in children’s cartoons where sound effects are often
used in lieu of words to convey meaning to young chil-
dren with smaller vocabularies. Popular cartoon sound ef-
fects include springs, tires screeching, slide whistles, chat-
tering teeth, explosions, suction cups and rattles. Previous
work has looked explicitly at the problem of sound event
classification (McLoughlin et al. 2015), which could be po-
tentially used to detect violent actions in children’s car-
toons. A subcategory of this research focuses solely on en-
vironmental sound classification (Tripathi and Mishra 2021;
Piczak 2015), classifying the subset of sounds that people
experience in the everyday environment such as road noise
or music. These background sounds can add important con-
text to video and are robust to visual disturbances such as
occlusion and illumination changes.

Audio representations have progressed significantly from
the traditional signal processing representations such as
FFTs or wavelets. One popular representation is mel-
frequency cepstral coefficients (MFCC) which are extracted
from the discrete cosine transform of the log-mel spec-
trum (Vimal et al. 2021). In our work, we utilize the spec-
trogram which is a visual representation of the frequencies
across time. The spectrogram can serve as an input to convo-
lutional neural networks or transformers. The competition,
Holistic Evaluation of Audio Representations (Turian et al.
2022), conducted a head to head evaluation of the benefits of
different audio representations. BYOL for Audio (Niizumi
et al. 2023) tackled the problem of learning audio represen-
tations that are suitable for a multiple downstream tasks.

Since there are few labeled audio datasets, the emer-
gence of large multimodal datasets provides fertile oppor-
tunities for leveraging cross-modality information. Several
audio models have built on the success of the CLIP model
at exploiting video and language. For instance, Microsoft’s
CLAP (Elizalde et al. 2022) model learns a joint encoding
for audio and text and can ingest text prompts to perform
zero shot classification on audio data.

Prompt Learning
Performing fine-tuning on large pre-trained models like
CLIP (Radford et al. 2021) leads to overfitting, which deteri-
orates the generalization of the model. Furthermore, it is also
costly in terms of computation as all parameters of the model

need to be updated. Prompt learning is an efficient approach
where the pre-trained model parameters remain frozen while
introducing learnable vectors called tokens. This helps in
adapting the model to downstream tasks while while re-
taining the model’s knowledge gained during pre-training.
This approach is less computationally intensive and requires
less training time as compared to full fine-tuning a model.
Prompt learning was introduced by researchers in the NLP
area where the textual representations are similarly learned
in the word embedding space (Shin et al. 2020; Jiang et al.
2020; Zhong, Friedman, and Chen 2021; Li et al. 2022). The
approach was also adapted for vision tasks (Jia et al. 2022;
Wang et al. 2022; Zhang, Zhou, and Liu 2022) and for usage
within vision-language models (Zhou et al. 2022a; 2022b;
Zhu et al. 2024). Jia et al. (2022) compare deep prompting
in vision with shallow prompting and discuss the improve-
ments in model performance due to the former contribution.
Some works have discussed prompt learning in both text and
vision branches (Khattak et al. 2023; Rasheed et al. 2023;
Wasim et al. 2023). Khattak et al. (2023) also introduce a
connection between vision and language prompts to ensure
synergy while prompts are learnt.

Methodology
Our proposed multimodal architecture amalgmates the vi-
sual, text and audio transformer encoders. The former two
are adapted from Vanilla CLIP (Radford et al. 2021) whereas
the audio encoder is based on AudioCLIP (Guzhov et al.
2021b). During training, all encoder layers of all modalities
remain frozen, therefore retaining the model’s pre-training
knowledge while making it computationally efficient. To en-
hance the model’s capability to be effective on the down-
stream task of video content moderation, prompt learning
is enabled for the text and vision branches. We also intro-
duce a fully-trainable projection layer at the end of the audio
branch which learns the audio representations during train-
ing. Vanilla CLIP was tailored for the video input. We cal-
culate the aggregate representations from both audio and vi-
sion branches. The fused features along with the text features
are then learned contrastively during training - maximizing
the diagonal (Vi,Ti) of the cosine similarity matrix while
minimizing other pairs of fused and text features. Maximiz-
ing the diagonal implies that the similarity score with the
ground-truth class is maximized while others are minimized.
The following sections discuss the important components of
our proposed model.

Adapting CLIP for Audio and Video

Pre-training Audio Encoder The pre-trained audio head
which we include in our model is ESResNe(X)t (Guzhov
et al. 2021a) which is trained in four stages: 1) initialized
with ImageNet weights (Deng et al. 2009), 2) fine-tuned on
the AudioSet dataset (Gemmeke et al. 2017) as a standalone
model, 3) trained as part of the AudioCLIP model (Guzhov
et al. 2021b) keeping text and vision branches frozen, and
finally 4) fully trained with all three encoders of AudioCLIP
fully trainable.



Figure 3: Our proposed architecture incorporates the audio modality by adding a pre-trained audio encoder. The inputs of the
audio encoder are spectrograms which are visual representations of audio frequency signals. The trainable projection layer
learns audio representations for the downstream content moderation task. Temporal pooling outputs a combined representation
of T input video frames, hence adapting Vanilla CLIP for video. These audio and visual representations are fused together
within the Feature Fusion block. Vanilla CLIP’s text and vision branches are adapted to include learnable prompts (tokens)
through all layers. We keep all encoder layers of text, vision, and audio branches frozen. The input from the text branch is the
class name, e.g. “malicious” as shown in the figure.

Training Projection Layer In order to improve perfor-
mance on the downstream task of classifying malicious
and benign videos we introduce a fully-learnable projection
layer while keeping the audio head frozen. Freezing the au-
dio encoder layers not only helps in preventing catastrophic
forgetting of the knowledge gained during pre-training but
is also computationally efficient as the frozen parameters do
not need to be updated during training. The projection layer
dimensions are 1024×512. ESResNe(X)t uses the ResNet50
backbone (He et al. 2015) which has an embedding dimen-
sion of 1024. To make the output dimension compatible with
CLIP’s vision backbone we choose 512 as the projection
layer’s output dimension size.

Adapting CLIP for Video CLIP is jointly pre-trained on
images and text; in order to train on video input we perform
Temporal Pooling. The result of Temporal Pooling is a com-
bined representation of all T input frames of a video; the
temporal information is accumulated by averaging frame-
level features. Hence, the representation of visual features
of a video with dimension T × 512 transforms to 1 × 512.
Here, the dimension 512 denotes the embedding size of the
vision transformer base model ViT-B/16.

Feature Fusion The output of the audio and vision en-
coders are individual representations of the acoustic and
visual features respectively. Mixing both types of feature
representations provides the model with additional context
about the scene. During feature fusion we construct a joint

representation by adding the audio and visual feature repre-
sentations. The input (visual and audio) and the fused em-
bedding dimensions are 1× 512 .

Learning Prompt Representations
To reduce the training time and computation cost of fine-
tuning CLIP for the downstream task of video content
moderation we disable the learning of the pre-trained text
and video encoder parameters and employ learnable to-
kens on both branches. Figure 3 illustrates the proposed
model. Prompting in both branches helps prompt tokens
learn the context more effectively as the prompts adapt tex-
tual, in addition to vision representations jointly. Further-
more, we perform the learning of prompts in multiple lay-
ers, referred to as deep prompting (Khattak et al. 2023).
Learning deep prompts especially helps in boosting perfor-
mance for low data regimes. Since our benchmark dataset,
MMOB, is not very large, deep prompting has the potential
to improve performance as compared to shallow prompt-
ing where only prompting is performed in one or few lay-
ers. The dataset is available at https://github.com/
syedhammadahmed/mmob.

A series of experiments was conducted to explore how
activation or deactivation of prompt learning in the vision
branch of the adapted CLIP model affects overall accuracy.
We also investigate whether results improve if we increase 1)
the depth of prompt token training, and 2) the number of to-
kens. The results show that having prompt learning enabled



in both text and vision branches of our adapted CLIP model
gives the best accuracy. Similarly, increasing the number of
prompt tokens in a layer improves the classification accu-
racy. A similar trend was observed when we increase the
learning depth in terms of layers. The detailed discussion on
these ablations is included in the Experiments section of this
paper.

Malicious Benign Total

305 830 1135

Table 1: Distribution of malicious and benign videos in the
MMOB dataset.

Experiments

The Multimodal Malicious or Benign Dataset

We curate the Multimodal Malicious or Benign (MMOB)
dataset by selecting the samples containing malicious videos
with malicious audio tracks, and benign videos with benign
audio tracks. The samples have been adapted from the MOB
dataset (Ahmed et al. 2023). MOB is a cartoon video dataset
including visual annotations only. We extract the audio from
the videos and generate the test-train splits for this new mul-
timodal dataset. Table 1 shows the class-wise sample counts.

Training and Evaluation

We evaluate the model with the MMOB dataset in both su-
pervised and few-shot settings. For the supervised learn-
ing setting, we use the full training split of our dataset
while for the few shot learning settings, a subset of ki =
0, 1, 2, 4, 8, 16 videos is randomly sampled from the train-
ing split. For all experiments, we use ViT-B/16 as our base
model which is pre-trained using CLIP.

For the default setup, we employ 12 layers of prompt
learning for both the CLIP Text encoder and CLIP Video
encoder. Furthermore, each encoder utilizes prompt learning
with 12 tokens. It’s worth noting that, in our case, the pro-
jection layer at the end of the audio head is learned during
the training process.

During the training, we take 16 frames for each video
along with the associated sound spectograms and use the
class label as text. We also pass on learnable prompts to
both video encoder and text encoder where X represents the
number of tokens used by the video encoder while Y repre-
sents the number of tokens for text encoder. For most of the
experiments, the default value of 12 tokens for both video
encoder and text encoder is used. However, to analyze the
impact of these learnable prompts, we evaluate the effect of
decreasing the number of tokens. The learning rate is set to
8×10−5 in all experiments. Lastly, the depth of the encoders
is represented by D as depicted in Figure 3.

Results and Discussion
In this section, we present our empirical analysis using
the pre-trained Vanilla CLIP model, where the base model
ViT-B/16 is used, unless explicitly mentioned otherwise.
Throughout our experiments, we leverage all modalities for
both base models. Furthermore, we maintain the default
settings for the number of tokens and the depth of text
prompt layers i.e. 10 and 12, respectively. Notably, ViT-B/16
demonstrated superior performance compared to ViT-B/32,
achieving an improvement of over 5.5%. The reason ViT-
B/16 may exhibit better performance than ViT-B/32 can be
attributed to the finer details captured by the smaller patch
size. We fine-tune Vanilla CLIP with both base models for
20 epochs and report the accuracy in Table 3.

Modalities Learnable
Acc

Text Video Audio Text Video Audio

D D D D D D 81.49

D D ✗ D D ✗ 78.41

D D ✗ D ✗ ✗ 76.65

D D D D ✗ D 78.21

Table 2: Adding modality and learning prompts (text/video)
along with the projection layer (audio) improves the overall
accuracy of the model.

Impact of Adding Audio Modality and Learnable
Prompts We evaluate the improvement derived from
adding the audio modality, deep learnable prompts on both
vision and text branches, and enabling the learning of the
projection layer deployed at the end of the audio encoder.
Our approach involves systematically eliminating modali-
ties and learnable modules, one at a time in each experi-
ment. To better understand the impact of these configuration
changes we maintain a consistent number of prompts and
depth of prompt layers. The ensuing analysis of the model’s
performance is presented in Table 2. As anticipated, the in-
clusion of additional modalities and prompt learning con-
tributes positively to the overall accuracy. The baseline ac-
curacy of 81.49 % in the supervised setting was observed in
the configuration where we include 1) audio modality with
video, 2) prompting in language and vision branches, and 3)
learning of the audio projection layer.

Impact of Token Length To delve deeper into the model’s
performance, we systematically diminish the number of
tokens in our investigation. In this set of experiments,
we maintain the utilization of all three modalities, each
equipped with learnable prompt layers. The sole variation
lies in the adjustment of token quantity. Table 4 provides a
comprehensive summary of the results derived from these
experiments. Using a greater number of tokens positively
contributes to the learning of the model.

Impact of Prompt Learning Depth The role of prompt
learning is pivotal in recent vision-language models. In this



Base
Model

Modalities Learnable Prompts No. of Tokens Prompt Depth
Accuracy

Text Video Audio Text Video Audio Text Video Text Video

ViT-
B/16

D D D D D D 12 12 12 12 81.49

ViT-
B/32

D D D D D D 12 12 12 12 77.09

Table 3: Results of fine-tuning CLIP on our MMOB dataset with different base models and learnable prompts. ViT-B/16
achieves better accuracy in comparison to the other model. Both models have been fine-tuned for 20 epochs.

No. of Tokens
Accuracy

Text Video

10 10 81.49

10 8 80.17

10 6 79.29

10 4 77.97

Table 4: Increasing the number of learnable prompt tokens
improves performance.

series of experiments, we specifically explore the influence
of prompt learning depth. Once more, we employ all three
modalities, maintaining a consistent token count of 10 for
both text and video heads. The outcomes of these experi-
ments are detailed in Table 5. A discernible pattern emerges,
indicating that as the depth of prompt learning increases,
there is a corresponding enhancement in the model’s accu-
racy.

Depth of Prompt Learning
Accuracy

Text Video

12 12 81.49

8 8 80.61

4 4 77.97

2 2 75.77

Table 5: Multiple depth levels for prompt learning also en-
hance model’s performance.

Few-shot Setting Given that Vanilla CLIP is a pretrained
network, it lends itself well to few-shot learning. In these ex-
periments, we introduce the few-shot learning parameter, de-
noted as k, with values specified as ki = {0, 1, 2, 4, 8, 16}.
This means that for each class, we utilize ki samples, while
keeping the other parameters set to their original values. The
samples are drawn uniformly from each class without re-
placement.

ki Accuracy

0 59.47

1 63.01

2 64.75

4 63.87

8 61.67

16 54.18

Table 6: Few shot learning for various k samples of each
class.

In few shot learning experiments, we see an interesting
trend. For k = 2, the model achieves the highest accuracy
while as the value of k increases, the accuracy drops. This
trend is shown in Table 6. The choice of k affects the intrin-
sic dimensionality of the learned embedding space, hence
increasing k does not result in monotonic performance im-
provements (Cao, Law, and Fidler 2019).

Conclusion and Future Work
This paper highlights the importance of leveraging the au-
dio modality for the problem of content moderation of chil-
dren’s videos. We introduce a new multimodal architecture
that adds a pre-trained audio encoder with a learnable pro-
jection layer to the adapted CLIP model. Our adapted model
averages video frames to create a visual representation and
learns prompts on both branches of Vanilla CLIP (text and
vision). This contribution enhances the overall training and
performance of video content moderation. We also created a
multimodal dataset, MMOB, for this task that includes audio
annotations. In future work, we intend to extend our work
to other types of online video content including YouTube
shorts, Facebook reels, and TikTok videos. These short du-
ration videos are popular with viewers but may create nega-
tive impacts such as reducing attention span. Lastly, we plan
to work on the problem of moderating the advertisements
that accompany children’s videos. From personal experience
browsing these platforms, we observed that although a video
may be appropriate for viewing by young children the adver-
tisements occasionally contain unsuitable content.
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