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Abstract—In this paper, we introduce and evaluate two dif-
ferent mechanisms for efficient online updating of user-specific
destination prediction models. Although users can experience
long periods of regular behavior during which it is possible to
leverage the visitation time to learn a static user-specific model of
transportation patterns, many users exhibit a substantial amount
of variability in their travel patterns, either because their habits
slowly change over time or they oscillate between several different
routines. Our methods combat this problem by doing an online
modification of the contribution of past data to account for this
drift in user behavior. By learning model updates, our proposed
mechanisms, Discount Factor updating and Dynamic Conditional
Probability Table assignment, can improve on the prediction
accuracy of the best non updating methods on two challenging
location-based social networking datasets while remaining robust
to the effects of missing check-in data.

I. INTRODUCTION

Mechanisms for learning predictive models of human trans-

portation patterns are often foiled by the conflict between

two forces: 1) strong correlations between destination and

visitation time 2) long periods of disruptions when regular

habits are not observed. People are often at work at 10:00

am, in bed at 1:00 am, and have numerous regular periodic

commitments. This characteristic can dominate the error met-

ric on the training set, and most feature selection paradigms

will identify time and day as important features for predicting

destinations.
However, there always exist long periods of disruption when

regular habits are not observed. Users go on trips, experience

deviations in their work and home routines, or change their

lifestyles. In some cases, their behavior patterns will return

to the learned baseline, but often the disruption represents

a permanent change. During this period of time, visitation

time and temporal dependencies will not be informative, and

overreliance on those cues is punished. In this case unless the

model can adapt to these changes in behavior, the accuracy

will plummet since the majority of samples will be predicted

incorrectly. In the case of a non-adaptive model, the learning

mechanism will attempt to learn the model that predicts the

majority of the samples, effectively sacrificing the samples that

occur during those period of time.
To combat this problem, we introduce methods for online

learning of user-specific destination prediction models, Dis-
count Factor updating and Dynamic Conditional Probability

Table assignment. The key to our methods is the use of effi-

cient online updating procedures that modify the contribution

of past data to the current prediction of the user’s behavior. The

baseline non-adaptive learning mechanism used in this paper is

a Bayes net, which for these location-based social networking

datasets achieves comparable performance to the a set of

specialized methods for modeling human mobility [1]. Our two

adaptation mechanisms perform online modifications of the

conditional probability tables used for the inference to model

the user’s current transportation patterns; however the ideas

behind the adaptive mechanisms could be generalized to other

types of classifiers as well. This paper demonstrates that the

use of online adaptation can offer significant improvements in

prediction accuracy, particularly for users with certain mobility

profiles.

This paper is organized as follows. Section II presents

a selection of related work on learning models of human

transportation patterns. Section III describes the location-

based social media datasets and our proposed online learning

methods. In Section IV, we present an evaluation of our

proposed methods against several specialized methods for

learning human mobility patterns before concluding the paper.

II. RELATED WORK

Learning techniques that leverage temporal dependencies

between subsequent locations can perform well at modeling

human transportation patterns from GPS data. Although the

assignment of GPS readings to road segments can be a noisy

process, GPS generally provides a good continuous stream of

data that can be used to learn a variety of models such as

dynamic Bayesian networks [2], hidden Markov models [3],

or conditional random fields [4]. The problem can also be

formulated as an inverse reinforcement learning problem [5]

in which the users are attempting to select trajectories that

maximize an unknown reward function. Another predictive

assumption that can be made is that the users are operating

according to a steering model that minimizes velocity changes;

this model can be combined with hidden state estimation

techniques to predict future user positions [6].

However, in this paper, the datasets that we are using contain

user check-ins collected from defunct location-based social

networking sites (part of the Stanford Large Network Dataset
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Collection [7]). Unlike in the Reality Mining dataset [8] or

the Microsoft Multiperson Location Survey (MSMLS) [9],

the user must voluntarily check-in to the social media site to

announce his/her presence to other users. If the user doesn’t

check in, no data is collected. Thus, there are often significant

discontinuities in the data when the user neglects to check in,

and it is likely that the users opt to underreport their presence

at certain locations. For this type of dataset, we found that the

dynamic Bayes network which utilizes temporal dependencies

actually performs slightly worse than the simple Bayes net

used as the baseline for our model. Our proposed techniques

are dynamic in the sense that they change their predictions

over time, but they do not explicitly maintain conditional

dependencies between subsequent check-ins.

Rather than trying to learn temporal dependencies, our

aim is to use the visitation time as the key feature, which

is less sensitive to discontinuous data but very sensitive to

local changes in the users’ habits. These patterns can be

discovered by doing an eigendecomposition analysis of the

data [10], and interestingly can be predictive of users’ activities

several years into the future as shown in [11]. Cho et al. [1]

demonstrate that a large section of this dataset can be fitted

using a two-state mixture of Gaussians with a time-dependent

state prior (Periodic Mobility Model), which we use as one

of our comparison benchmarks; the two latent states in their

model correspond to the user’s home and work locations. The

main contribution of this paper is to demonstrate how online

learning can improve destination prediction by making the

learned models more robust to temporary disruptions in user

behavior patterns.

III. METHOD

This section describes:

1) the location-based social network datasets used to learn

and evaluate our destination prediction models;

2) our baseline non-adaptive Bayes net model;

3) our first proposed method, Dynamic Conditional Proba-
bility Table assignment (DCPTA), for creating multiple

region-specific models for each user;

4) Discount Factor adaptation (DF), our second proposed

method for diminishing the effects of stale data in the

conditional probability tables with a discount factor.

A. Datasets

The datasets used in this research were extracted from two

location-based social networking websites called Gowalla and

Brightkite. Cho et al. [1] have made both datasets publicly

available at the Stanford Large Network Dataset Collection [7].

Gowalla (2007-2012), gave the users the option to check in at

locations through either their mobile app or their website, and

Brightkite was a similar social networking website that was

active from 2007 to 2011. The data from these two websites

consists of one user record per check-in that stores the user

ID, exact time and date of the check-in, along with the ID

and coordinates of the check-in location. Table I shows some

features of these datasets, and Figure 1 shows a map of user

activity within the United States.

Fig. 1. The scope of user check-ins across the United States for the Brightkite
location-based social networking dataset. This location-based service was
primarily active in the United States, Europe, and Japan between 2007 and
2011.

TABLE I
LOCATION-BASED SOCIAL MEDIA DATASETS

Dataset Gowalla Brightkite

Records 6,442,857 4,492,538

Users 107,092 50,687

Average check-ins per user 60.16 88.63

Median check-ins per user 25 11

B. Baseline Model

For our non-adaptive model, we implemented a simple

Bayes net with our modified version of the Bayes Net toolbox

in Matlab. A Bayes net is a probabilistic graphical model that

represents random variables and their conditional dependen-

cies in the form of a directed acyclic graph. Figure 2 shows

the Bayes net structure that we identified after experimenting

with other more complicated model structures and dynamic

Bayes networks in which the variables were conditioned on

their values from the previous time step.

Fig. 2. Structure of the Bayes net used as the baseline model for inferring
the user’s latitude and longitude from the check-in day and time.

In this paper we use a fast simple method for training

the network and extracting the most probable values of the

output variables (the latitude and longitude nodes). The data

structure of the network consists of h × d × l matrices for

the CPTs (Conditional Probability Tables) in which h and
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d are respectively the hour and day of the week at which

the observation occurs and l is the list of possible check-in

locations. For parameter learning, the corresponding cells of

the CPT of the output nodes are incremented; predictions

are made by looking up the argmax latitude and longitude

values for the user’s location based on the check-in time.

This method is feasible given the simple independence

assumptions in this model and the large size of the dataset.

The main problem with the non-adaptive model is the large

distortions which occur in the probability table when the user

makes a long-range trip. Imagine a particular user being at

some specific location, and following a repetitive pattern of

activities for some months. If the user goes on vacation for a

month, then the non-adaptive model will deliver a series of in-

correct predictions based on the previously learned CPT, only

slowly adapting to the new situation. Even once the user is

back from the vacation, the effect of the probability distortion

(caused by check-ins during the trip) is still clearly visible.

We propose two new online learning algorithms capable of

overcoming this problem, described in the next sections.

C. Dynamic Conditional Probability Table Assignment
(DCPTA)

The movement pattern of most users in the dataset con-

sists of a regular pattern of periodic short-range movements

punctuated by occasional long-range movements. The average

distance between subsequent check-ins ends up being a good

measure of the user’s mobility. When the user’s movement

exceeds twice the average distance between check-ins, it

generally signals the start of a new mobility pattern. DCPTA

(Dynamic Conditional Probability Table Assignment) uses

this measure to determine when to learn a new user profile.

By dividing the data into sections each time this jump in

movement occurs, we can segment the movement of any user

into sections with a relatively low variance which are stored in

separate conditional probability tables and can be recovered if

the user returns to those regions. Algorithm 1 describes how

the DCPTA algorithm works.

D. Discount Factor Adaptation (DF)

DCPTA is most effective when the user returns to re-

gions governed by previously learned conditional probability

tables, and least effective when the user keeps changing

his/her habits. For instance, users who are unemployed have

a greater flexibility in their daily schedule which translates

into a data series with a less defined temporal structure. To

learn prediction models for users that exhibit erratic check-in

behaviors, we introduce a discount factor, γ, into the process

of updating the CPT such that the existing entry is discounted

before incrementing the entry for the new observation. γ can

range between 0 and 1; our results indicate that the use

of the discount factor improves the online learning but that

the learning is relatively insensitive to the magnitude of the

parameter. Algorithm 2 gives the procedure for discounting

conditional probability tables.

Data: Check-ins of a particular user

Result: Dynamic Conditional Probability Table

Assignment

Let D be the set of observed check-in distances

Let S be the set of observed stored segments

for every new check-in do
Determine the distance of the current check-in from

the initial check-in;

di = dist(coordinatesi − coordinates0);
if di ≤ 2 ∗mean(D) then

load CPT (argmins∈S |di − s|)
else
S ← S ∪ CPT (di);

end
end

Algorithm 1: DCPTA (Dynamic Conditional Probability Ta-

ble Assignment). This algorithm maintains a running average

of the user’s movements relative to an initial location and

creates a new location-specific conditional probability table

whenever the user’s relative movements exceed a certain

threshold.

Data: Check-ins of a particular user

Result: Discounted Conditional Probability Table

for ∀h, d, l do
CPTLatitude(h, d, l) = ∗γ;

CPTLongitude(h, d, l) = ∗γ;

end
Algorithm 2: DF (Discount Factor Adaptation). Before the

CPT is updated with the incoming observation, the discount-

ing procedure is applied. Discounting the conditional prob-

ability table reduces the effect of older check-ins on future

predictions. This technique works well if the user’s behavior

changes slowly over time, rather than rapidly switching

between destination-specific transportation patterns.

The discount factor reduces the effect of previous observa-

tions on the network, making the most recent check-ins more

influential on the location prediction procedure. The advantage

of this method compared to the previous proposed method

is its lower computational and programming complexity. Ap-

plying the discount factor limits the location prediction to a

few previous observations while discarding the stale data from

older check-ins.

IV. RESULTS

We employ two datasets, Gowalla and Brightkite, containing

data from real users’ check-in information [1]. Our evaluations

are performed over the subset of users with greater than 100

check-ins, corresponding to 7600 and 8800 from Brightkite

and Gowalla, respectively. We directly compare our methods

against the techniques proposed by Cho et al. [1] and Gonzalez

et al. [12].

Figure 3 compares the location prediction results from our

methods to the following five recent methods described in the
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literature:

1) Periodic mobility model [1], denoted as PMM;

2) Periodic and social mobility model [1], denoted as PSSM;

3) Gaussian Mixture Model [12], denoted as G;

4) Last-known location model [1], denoted as RW;

5) Most frequent location model [1], denoted as MF.

The Periodic Mobility Model (PMM) assumes the majority

of the human movement in a network is based on a periodic

movement between a small set of locations. The Periodic
and Social Mobility Model (PSMM) also adds additional

parameters to model movement driven by one’s social

relationships with other members of the network.

Our Bayes net methods are denoted as BN, BN&DCPTA,

and BN&DF, and the comparison employs a tolerance level

of 2.7%. We observe that the BN without enhancement (36%)

performs almost as well as the best of the state-of-the-art

approaches, PMM (36.5%) and PSMM (36.3%). However,

with our enhancements, we see that accuracy increases by

almost 6%, with BN&DF at 42%, slightly outperforming

BN&DCPTA at 41%. The remaining baselines (B, RW, MF)

are not competitive.

Fig. 3. Prediction performance of the Bayes net predictor and the proposed
enhancements on the Bayes net along with the performance of prior art on
the Brightkite dataset.

V. CONCLUSION

In this paper we present two new algorithms for online

learning of user-specific destination prediction models, Dy-

namic Conditional Probability Table Assignment (DCPTA)

and Discount Factor updating (DF). Although we describe the

use of our online update procedures for a Bayes net model, the

same intuitions behind the discounting of stale data and thresh-

old switching between multiple models can be applied toward

online learning procedures for other types of classifiers. Our

proposed destination prediction model leverages the predictive

power of visitation times while rapidly adapting to schedule

changes by the users. Adapting to changing user habits allows

our model to achieve better predictive performance than the

best static models which are continually penalized by non-

stationary user behavior.
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