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ABSTRACT: An important part of classifying MOUT (Military Operations in Urban Terrain) team behaviors is recogniz-
ing subtle spatial relationships between physical entities: opponents waiting in ambush, teammates organizing around a
rendez-vous point, and potentially dangerous cul-de-sacs. In this paper, we present a RANSAC (Random Sampling and Con-
sensus) based algorithm for identifying spatial relationships of MOUT entities based on a model library; possible configura-
tions are scored based on a similarity function that incorporates information on entity type matching, transform validity, spa-
tial proximity, and preservation of visibility constraints. Configurations can include both static entities (doors, buildings, haz-
ards) and dynamic ones (opponents, teammates, and civilians). The output from our algorithm is used as a state feature for
our behavior recognition system to recognize team behaviors from sequences of state transitions. We demonstrate that our al-
gorithm is robust to spatial variations, generalizes across scenarios, and can be executed in real-time.

1. Introduction

Although there has been some work on the problem of com-
bining spatial representations with cognitive models to gen-
erate realistic human behavior, less attention has been de-
voted to the inverse problem of creating spatial models to
recognize high-level behaviors from sequences of low-level
physical movements. Ideally the same model can be used
to generate human-like behavior and reused as part of a
recognition system to evaluate the human trainee’s perfor-
mance. This approach is often employed in model-tracing
tutoring systems such as the MOUT tutor described in (Li-
vak, 2004); however we believe that efficient recognition of
complex behaviors is best achieved by creating models op-
timized for the recognition task.

The capability to correctly infer the human trainee’s inten-
tion from sequences of actions is useful in many applica-
tions. For certain teamwork tasks, synthetic teammates must
anticipate their human teammates’ intentions to function as
effective partners, particularly in the absence of communi-
cation. In adversarial domains, computer-generated oppo-
nents must be able to predict the actions of their human
adversary to simulate the experience of competing against

a domain expert. Although this is commonly achieved in
computer games by allowing the computer to “cheat” (pro-
viding the computer with extra information which is un-
available to the human), this approach can sabotage the
training experience. Also plan recognition is an important
prerequisite toward building “coaching” systems capable of
giving detailed commentary about a human trainee’s perfor-
mance.

Standard recognition techniques, such as (Pynadath, 1999),
exploit temporal regularities in action sequences generated
during plan execution to eliminate unlikely explanations. In
physical domains, plan execution also generates distinctive
spatial characteristics that can be used to facilitate behavior
recognition; in previous work (Sukthankar & Sycara, 2005),
we examined the use of geographic features and motion in-
formation to recognize physical behaviors generated by a
single simulated agent.

Due to the increase in number of actions generated, as-
suming that each team member is simultaneously execut-
ing actions, team behaviors have a more complicated tem-
poral structure than single agent behaviors. However, team
plans executed in physical domains often possess a distinc-



tive spatial structure which can be exploited to identify team
behaviors. This spatial structure includes the relative physi-
cal position of the team members and the physical position
of team members in relation to static entities such as build-
ings, hazards, and doorways.

In this paper, we present a model for representing the spa-
tial characteristics of physical human team behaviors and an
algorithm for rapidly identifying currently applicable mod-
els from a library of previously created models. We demon-
strate our approach by modeling and recognizing the phys-
ical behaviors in a simulated MOUT (Military Operations
in Urban Terrain) scenario of a firing team moving through
an urban area; recognition is performed by analyzing snap-
shots of an annotated 2D overhead map.

2. MOUT Domain: Building Clearing

Looking at the MOUT cognitive task analysis as given
in (Phillips, McCloskey, McDermott, Wiggins, & Battaglia,
2001), we notice that spatial cues dominate all the task-
focused decision requirements of building clearing MOUT
operations. The sixtask-focuseddecision requirements in-
clude: 1) securing the perimeter; 2) approaching the
building; 3) entering the building; 4) clearing the build-
ing; 5) maintaining and evaluating security; 6) evacuating
the building.

For these tasks, features such as proximity to other build-
ings, opportunities for cover, open spaces, windows in the
building, street layout, fortifications, height of buildings, lo-
cations of stairways, obstacles, potential booby-traps, and
doors, are critical cues that human decision-makers must
use to determine how to achieve the building clearing task.
Dynamic spatial features such as civilian activity and pre-
sumed enemy location also factor into several stages of the
decision making process.

Out of the fivetask-independentdecision requirements spa-
tial cues are used for three of them: 1) maintain the enemy’s
perspective; 2) maintain big picture and situation aware-
ness; 3) project into the future. For these three decision re-
quirements, important spatial cues include: location of hall-
ways, stairwells, general building layout, teammates’ loca-
tions, and last known enemy positions.

In this paper, we tackle the inverse problem—from a set of
spatial cues, we want to recognize which behaviors are be-
ing executed. Given the key importance of spatial cues for
the task decision requirements we believe that accurately
representing and generalizing spatial patterns is key to the
problem of efficient behavior recognition.

3. Related Work

There has been some recent work on combining spatial for-
malisms with cognitive architectures to generate tactical
team movement. Best and Lebiere (2003) created an au-
thoring interface for developing spatial team plans to be
executed with the ACT-R architecture; correspondingly in
SOAR, Pearson and Laird (2004) developed an example-
driven authoring tool to automatically create SOAR pro-
ductions from spatial diagrams of MOUT scenarios drawn
by SMEs (subject matter experts). Sukthankaret al. (2004)
created an interface for modifying motion capture data to
create synthetic MOUT soldiers with realistically variable
movement but did not create a general spatial representation
for directing movement. Although these spatial descriptions
could be reused to recognize behaviors in a limited range of
situations, we believe that they lack the power to general-
ize to large deviations in spatial layout engendered by the
use of a radically different map layout or missing spatial el-
ements produced by occlusion or incomplete detection. Our
spatial representation is designed to efficiently match be-
haviors to models that were originally designed for signifi-
cantly different spatial layouts and to robustly match behav-
iors even if key spatial entities are hidden.

4. Method

Our method requires an initial phase of constructing one
or more spatial models to correspond to each physical be-
havior; we designed an authoring graphical user interface
(GUI) to facilitate the model creation process (see Figure 1).
Once a library of spatial models has been constructed, they
can be used to classify formations of MOUT entities on
a 2D annotated map as being characteristic of a particu-
lar team behavior. The same technique can also be used to
classify spatial groupings of static entities (e.g., doors and
walls) to be used as decision cues for the building clearing
task.

4.1. Spatial Representation of MOUT Entities

To model MOUT team behaviors, we developed a tool that
enables the author to describe behaviors by designating a
set of characteristic spatial relationships that commonly oc-
cur during the execution of the behavior. The model con-
tains the following attributes:

behavior name: Behaviors are represented by collec-
tions of spatial models; however no particular tempo-
ral structure, or execution order, is attached to the col-
lection. Each spatial model can only belong to a
single behavior; we do not include models which ap-



Figure 1: Spatial model authoring and matching system.
The library of previously created spatial models are shown
to the right of the screen; the left side of the GUI displays an
annotated map to be analyzed. A fire team of soldiers (blue
circles) examining a hazard (orange inverted triangle) are
displayed on the map; a second fire team prepares to enter
the building through the door (marked by the white rectan-
gle). Our matching technique successfully associates both
groupings of soldiers with the correct spatial models; hol-
low circles and rectangles show the locations of the entities
as predicted by model projection. Note that the positions of
the entities as predicted by the projection of the hazard ex-
amination model are not precisely localized, even though
the model is correctly situated. A method for enhancing the
position estimation is discussed in Section 5.4.

pear in a large set of behaviors since they are unlikely
to help in discriminating between multiple behav-
iors.

spatial position of relevant entities: Entities are rep-
resented by a single (x,y) coordinate of their cen-
troid; larger entities are represented as groups of
points connected by a visibility constraint (see be-
low).

entity type: For our library of MOUT behaviors, we des-
ignated eleven types of entities along with a relation-
ship hierarchy which we use in scoring the compatibil-
ity between entity matches (See Section 4.3.2). Some
of the types (e.g., objectives and hazards) do not re-
fer to a specific physical type of object or area but are
used to designate the role that the object plays in the
world. Entity types include: person (unknown), civil-
ian, teammate, opponent, hard cover, soft cover, empty
area, windows, intersections, doorways, hazards, and
objectives.

pairwise constraints between entities:For certain behav-

iors, lines of visibility (or lack of visibility) between
entities are an important part of the spatial relation-
ships. We model these visibility relationships as line
segments between map entities that are either visibil-
ity preserving (cannot cross occlusions) or enforce lack
of visibility between entities (must cross an occlusion).

scaling limitations: Certain models are only valid at a lim-
ited range of scales. For instance, a model represent-
ing a formation of foot soldiers would remain valid if
the separation between soldiers was rescaled from 3m
to 10m; however if the separation between soldiers in-
creased to 1 km, the same model should no longer be
valid (even if visibility constraints were satisfied).

4.2. Using Spatial Transforms to Generalize Models

One consideration in developing models is generalization—
how well do models developed for one scenario match be-
haviors executed in a different spatial layout? Without gen-
eralization it becomes impractical to exhaustively enumer-
ate all possible spatial relationships that can occur across
different maps. To solve this problem, we define a set of le-
gal transforms to project models to new spatial layouts and
score the quality of the match.

For this domain, we define the set of legal transforms to be
the class of similarity transforms (rotation, translation, and
scaling); these can be parameterized in homogeneous coor-
dinates as follows:

T =

 scos(θ) sin(θ) x
−sin(θ) scos(θ) y

0 0 1


whereθ is the angle of rotation,s is a scale factor,x is the x-
translation, andy is the y-translation. This formulation can
easily be extended to model three dimensional transforms
by increasing the matrix to 4×4. The next section describes
a robust and efficient technique for searching the space of
possible transforms.

4.3. Robustly Matching Models to Maps

Given a set of spatial models and valid transforms, the prob-
lem of determining which spatial models are applicable to
the current map can be solved by searching the space of po-
tential transforms and models to find all the combinations
of model plus transform that result in a match of sufficient
quality. A commonly used approach is exhaustive template
matching (Ballard & Brown, 1982). Each templates is ap-
plied to all possible locations in the map using a sliding
window; the distance function is calculated over the win-
dow area and matches that score under the threshold are



retained. This process is exhaustively repeated for a range
of scales and rotations, over all models in the library. Un-
fortunately this process is time consuming, scales poorly to
higher dimensional transforms, and is sensitive to noise, oc-
clusion and misalignment.

Instead, we employ a statistically robust technique,
RANSAC (Random Sampling and Consensus) (Fischler
& Bolles, 1981), to efficiently sample the space of trans-
forms using hypotheses generated from minimal sample
sets of point correspondences. RANSAC can be summa-
rized as follows:

hypothesis generation:entities are drawn uniformly and
at random from the annotated map and associated with
randomly selected entities of the same type in the
model. Two pairs of corresponding entities are suffi-
cient to uniquely specify a transform hypothesis. This
data driven method of generating hypotheses is much
more efficient than uniformly sampling the space of
possible transforms or exhaustively searching a dis-
cretization of the transform space.

hypothesis testing: Given a transform hypothesis, we
project all of the entities in the model to the coordi-
nate frame of the map and assess the quality of the
match based on both spatial similarity and type match-
ing. This gives us the likelihood that the given hy-
pothesis generated the observed data in the map. Our
likelihood estimate is robust to missing data (enti-
ties in the model that are missing on the map) and to
outliers.

For each spatial model, we use RANSAC to randomly gen-
erate and test a large number of plausible transforms and se-
lect those hypotheses (a combination of a model and a valid
transform) with match quality better than a specified thresh-
old. Below, we describe the two phases of our algorithm in
greater detail.

4.3.1. Hypothesis Generation

Since our spatial transforms have four degrees of freedom,
they can be fully specified by two pairs of point corre-
spondences. First, we randomly select two entities from the
model under consideration; then based on the types of the
entities (e.g., civilians, hard cover, hazard) we randomly
select candidate entities on the map of compatible object
types. The positions of these entities is used as the mini-
mal set to generate a transform hypothesis as follows.

Given the minimal set{(x1,y1),(x2,y2)} from the model
and the corresponding set of points{(X1,Y1),(X2,Y2)} from

the map, we generate a third virtual pair of correspondences
(x3,y3) 7→ (X3,Y3) where

x3 = x1 +y2−y1

y3 = y1 +x1−x2

X3 = X1 +Y2−Y1

Y3 = Y1 +X1−X2

From these three correspondences, we can directly recover
T using matrix inversion. t11 t12 t13

t21 t22 t23

t31 t32 t33

=

 X1 X2 X3

Y1 Y2 Y3

1 1 1

 x1 x2 x3

y1 y2 y3

1 1 1

−1

This is a solution to a general affine transform (Hartley
& Zisserman, 2000) given three pairs of point correspon-
dences, howeverT is guaranteed to be a valid, orientation-
preserving similarity transform due to our construction of
the third point.

For this domain, we assume that models are valid for all ro-
tations and translations but are limited to a valid range of
scales. If the candidate point correspondences yield a trans-
form outside the valid scale range, it is discarded before the
hypothesis testing phase.

4.3.2. Hypothesis Testing

We score each sampled hypothesis as follows (illustrated
in Figure 2). First we transform the location of every en-
tity in the model to the map using the transformT. Each
model entity contributes a positive vote for the given hy-
pothesis if the distance from its predicted location to the
closest map entity of compatible type falls below a speci-
fied threshold. The quality of a hypothesis is defined as the
normalized sum of these individual votes. Additionally, we
enforce pairwise constraints between entities, such as visi-
bility and occlusion, as specified by the model. If the con-
straints are violated, we penalize the quality of the hypoth-
esis.

For our library of building clearing MOUT behaviors, we
designated eleven different types of entities and defined
three compatibility functions. Entity types include: person
(unknown), civilian, teammate, opponent, hard cover, soft
cover, empty area, windows, intersections, doorways, haz-
ards, and objectives. Compatibility functions are used to de-
termine how matches between two entities of different types
affect the quality score. We used three types of compatibil-
ity functions: 1) exact match—the type of the model en-
tity and map entity must match exactly to contribute pos-
itively toward the quality score; 2) categorical match—the
map entity and model entity have to belong to the same gen-
eral category, e.g., person, cover, empty space; 3) functional



Figure 2: Examples of hypothesis generation and testing using RANSAC. For the building entry maneuver model shown here,
we show two different sampled minimal correspondence sets. In (left),{P 7→ D,S 7→ A}, while in (right){P 7→ A,Q 7→ B}.
Given these correspondences, we derive the the transform,T. Applying T to each of the model entities, gives us their pre-
dicted locations on the map. Each predicted location casts a vote in favor ofT if there exists a map entity of compatible
type within range. The first hypothesis (left) receives no additional votes since the distances to compatible entities is too
great. The second hypothesis (right) is consistent with the map and receives many votes. Pairwise constraints, shown as dot-
ted lines, are then verified. In this case, they denote desired visibility constraints between MOUT soldiers, and we confirm that
the second hypothesis does not violate them. Although not shown in these simple examples, RANSAC is robust to large num-
bers of outliers and to missing data.

match—the map entity has to serve the same functional pur-
pose as the model entity. For our experiments, we speci-
fied that the random point correspondences used to gener-
ate candidate hypotheses must be drawn from the set of ex-
act matches; the more relaxed categorical match criteria was
used during to score the quality of the hypothesis.

Our current implementation supports two types of pairwise
constraints, visibility and occlusion. A visibility constraint
specifies that two entities on the map must have unob-
structed line of sight (or fire), while the occlusion constraint
specifies that no unobstructed line of sight should exist be-
tween those entities. Once a hypothesis has passed the ini-
tial screening stage, we can verify that the constraints are
obeyed using standard line intersection algorithms against
obstacles and entities on the map. This is shown on Fig-
ure 2 (right).

We apply RANSAC to all the models in the library and gen-
erate a set of hypotheses (transform plus model) whose nor-
malized match quality exceeds a specified threshold. These
hypotheses are all consistent with the observed data. If de-
sired, the transforms for each of these hypotheses can be
refined by applying standard least squares estimation tech-
niques to the set of inliers for each hypothesis (Hartley &
Zisserman, 2000). This is generally unnecessary for our ap-
plication, except as discussed in Section 5.4.

5. Evaluation

We implemented our spatial matching technique as a Java
application that supports authoring of model libraries and
automated matching of spatial models to annotated 2D
maps (see Figure 1). The models that we created for the
MOUT building clearing scenario contained 3–15 entities
and were matched to maps with approximately 100 annota-
tions.

5.1. Physical Team Behaviors for Building Clearing

The maps employed in our evaluation are motivated by
the building clearing scenarios described in (Phillips et al.,
2001) and the physical behaviors given in (Rhodes, 1980).
The physical team behaviors are: traverse street (stacked
formation), bypass window, enter building, flank enemy po-
sition, examine hazards, clear room, cross intersection (L-
shaped and T-shaped). We also model less structured physi-
cal behaviors such as enemy sniper placements and civilian
crowds.

We examine the effectiveness of our spatial matching tech-
nique on the following three dimensions:

generality: how well do spatial models developed for one
scenario generalize to scenarios with different layouts?

robustness: is our matching technique robust to noisy data,
mislabeled entities, and occluded points?



threat prediction: how can we use our model to pre-
dict the location of occluded elements such as enemy
snipers and missing team members?

Each of these points is discussed below in greater detail.

5.2. Generality

To examine how models developed for one spatial layout
generalize to different layouts, we developed several maps
that include instances of the flanking behavior. When exe-
cuting the flanking behavior two members of the team fire
at an enemy soldier to pin him down while the other two
team members move to a location that offers a better line of
fire. In the left panel of Figure 3, the original spatial model
for the terminal position of the flanking behavior is shown.
Our technique successfully identifies the correct instance of
flanking in the center panel despite significant spatial differ-
ences and the existence of outlier entities. The model eas-
ily generalizes to instances with different scale and rotation
because RANSAC can correctly identify (even in the pres-
ence of outliers) the similarity transform that accounts for
these changes.

The third panel shows an example of flanking where the an-
gle between the two friendly fire teams is significantly dif-
ferent from the model; in this scenario they have achieved a
crossfire position on the enemy opponent by moving around
a building. This instance of flanking fails to match since
no single similarity transform applied to the entire spatial
model can explain the observations on the map. This could
be addressed in several ways. The simplest solution is to
provide additional spatial models for this behavior to ac-
count for the diversity. Another approach is to employ a
broader class of transforms, either global (affine or projec-
tive) or non-uniform (elastic graphs). The trade-off of em-
ploying a broader class of transforms is discussed in Sec-
tion 6.

5.3. Robustness

Since each map contains multiple models in addition to ex-
traneous entities that don’t match any of the models, our
matching technique must be able to ignore these outlier en-
tities. In the maps we analyzed, about 95% of the entities
were effectively “outliers”, unrelated to the model under
comparison. Fortunately RANSAC handles outliers very
well by generating hypotheses only using minimal subsets;
as the number of outliers increases, we can compensate by
iterating more times as described by the formula given in
Section 6.

Maps generated from the perceptual viewpoint of a syn-
thetic character are incomplete, due to occlusion and limited
sensor range. Our technique should be able to match mod-
els to partially populated maps as described in Section 5.4;
to do that we must examine the role of the model’s nor-
malized quality score and how it relates to the match ac-
ceptance threshold. Currently, we set the normalized quality
threshold at 0.75; effectively this means that approximately
three-quarters of the points in the model must be success-
fully matched. In Section 5.4 we discuss strategies for set-
ting this threshold on a individual model basis according to
signal detection theory.

5.4. Threat Prediction

We can exploit our technique’s robustness to missing data
to predict the potential locations of unseen threats. A com-
plete spatial model can match a partial set of entities on
the map if the normalized sum of the existing votes is suf-
ficiently high. For instance, given a spatial model describ-
ing commonly occurring enemy sniper vantage points, our
technique can predict likely sniper positions even if the en-
emy forces themselves are not visible. This is useful in the
case where the map is incomplete and reflects only the ac-
cumulated observations from one team’s agents.

To predict the location of hidden entities, we simply project
all the unmatched entities in the matching model to the map
using the similarity transform; no additional computation is
necessary since the transform was already computed during
the hypothesis generation phase. However this initial trans-
form was computed from a minimal set of two point corre-
spondences. To produce a more refined estimate of the sim-
ilarity transform, we can incorporate information from all
the points matching the model to create an overconstrained
system of equations that can be solved using standard least
squares techniques. This additional effort is justified only if
we need extremely accurate estimates of the positions of en-
tities within the model.

Figure 4 shows a fire team of soldiers (denoted as blue cir-
cles) moving in a stacked formation toward the building en-
try. To the left hidden behind a clump of trees (denoted by
the green rectangles) is an enemy sniper covering the build-
ing. Although the sniper itself is not visible, its likely posi-
tion is detected (marked by the empty red circle) by a suc-
cessful match of the model shown in the top right hand cor-
ner.

Applying spatial reasoning for threat prediction typically
entails a trade-off; as the number of unmatched entities in
the model increases we must lower the matching threshold
to enable these partial matches to be detected. Increasing the



Figure 3: Three examples of team flanking behavior in different scenario layouts. The spatial flanking model (shown in the
right hand side side of the GUI) was originally designed for the layout displayed in the left panel. The center panel shows
the flanking behavior occurring in different spatial layout that includes more opponents and an additional fire team. Our tech-
nique successfully matches the flanking model to this new situation in spite of the differing spatial layout and the addi-
tion of extraneous entities (marked as outliers). The right panel shows an instance of the flanking behavior that fails to match
the model because no single similarity transform applied to the entire spatial model can explain the observations on the map.

Figure 4: Using the best hypothesis match to predict unseen
threat locations. A fire team of soldiers (denoted as blue cir-
cles) is shown moving in a stacked formation toward the
building entry. To the left hidden behind a clump of trees
(denoted by the green rectangles) is an enemy sniper cov-
ering the building. Although the sniper itself is not visible,
its likely position is detected (marked by the empty red cir-
cle) by a successful match of the model shown in the top
right hand corner. The transform found by RANSAC dur-
ing the matching process is used to project all the entities of
the spatial model to their hypothesized locations.

sensitivity in this manner also increases the number of false
alarms (i.e., hallucinating threats where none exist). It may
be useful to set matching thresholds on a model by model
basis to correctly reflect the cost of false alarms vs. missed
matches. For detecting enemy behaviors (snipers, enemies
concealed in crowds) the matching threshold should be set
lower to reflect the high cost of missing enemy threats.

6. Discussion

Since RANSAC stochastically searches the space of possi-
ble transforms it is not guaranteed to find the best match.
However the following formula can be used to determine
how many iterations are necessary to achieve the best match
with a specified probability of success:

m=
⌈

log(1−P)
log[1− (1− ε)s]

⌉
P is the target probability (e.g.,P = 0.99 means the best
match is found 99% of the time).s is the number of ele-
ments required to define the minimal set (s= 2 since a sim-
ilarity transform requires 2 pairs of point correspondences).
ε is the expected fraction of outliers in the data set. In tra-
ditional RANSAC applicationsε is typically only about 0.1
(10% of the points are expected to be invalid). For our appli-
cation, the fraction of outliers refers to the number of map
annotations that do not match a single model; since each
map actually contains multiple models in addition to en-
tities that do not match any model the fraction of expected
outliers is approximately 0.95. From the formula above, this
indicates that the number of RANSAC iterations required to
reliably find the best match is 1840 which is computation-
ally inexpensive, especially compared to exhaustive search-
ing on a large map.

The number of iterations is relatively small due to the low
value of s, the number of elements required to define the
minimal set which completely specifies the spatial trans-
form. If we expanded the class of allowable transforms, ei-
ther to include 3D similarity transforms or a broader class
of 2D transforms (e.g., affine), the number of elements re-
quired to specify the spatial transform would increase to
s= 3 and the iterations required would increase to 36841.



7. Conclusion and Future Work

Our spatial matching technique is designed to be incorpo-
rated into a larger recognition system that recognizes high-
level team behaviors from sequences of low-level move-
ments. In addition to using spatial cues our system incor-
porates motion information from dynamic human entities
by classifying frames of motion capture data (Sukthankar
& Sycara, 2005). By developing composite spatial mod-
els for team behaviors, we avoid an exponential expansion
of state space; instead of representing each team member’s
state separately we collapse the state of the team into a sin-
gle spatial model representing the total state of the team.
Currently our spatial model does not include a representa-
tion of how each behavior evolves over time; without this
it is difficult to identify repetitive behaviors such as bound-
ing overwatch that are defined by a combination of tempo-
ral and spatial relationships. In the future, we hope to ex-
tend our model to track team formations as they evolve over
time.

Our current spatial model is robust to outliers, invariant to
many types of spatial transforms, and can express a wide
variety of static relationships and constraints between phys-
ical entities. For a given model and quality function, we can
guarantee that 99% of the time RANSAC finds the best po-
tential transform within 2000 iterations which can be exe-
cuted in a fraction of a second.
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