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Abstract

Crowdsourcing platforms offer a practical solution to the problem of afford-
ably annotating large datasets for training supervised classifiers. Unfortunately,
poor worker performance frequently threatens to compromise annotation reliabil-
ity, and requesting multiple labels for every instance can lead to large cost increases
without guaranteeing good results. Minimizing the required training samples us-
ing an active learning selection procedure reduces the labeling requirement but
can jeopardize classifier training by focusing on erroneous annotations. This paper
presents an active learning approach in which worker performance, task difficulty,
and annotation reliability are jointly estimated and used to compute the risk func-
tion guiding the sample selection procedure. We demonstrate that the proposed
approach, which employs active learning with Bayesian networks, significantly
improves training accuracy and correctly ranks the expertise of unknown labelers
in the presence of annotation noise.

1 Introduction
Our work is motivated by the recent interest in the use of crowdsourcing [3] as a source
of annotations from which to train machine learning systems. Crowdsourcing trans-
forms the problem of generating a large corpus of labeled real-world data from a mono-
lithic labor-intensive ordeal into a manageable set of small tasks, processed by thou-
sands of human workers in a timely and affordable manner. Services such as Amazon’s
Mechanical Turk (MTurk) have made it possible for researchers to acquire sufficient
quantities of labels, enabling the development of a variety of applications driven by
supervised learning models. However, employing crowdsourcing to label large quanti-
ties of data remains challenging for two important reasons: limited annotation budget
and label noise. First, although the unit cost of obtaining each annotation is low, the
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overall cost grows quickly since it is proportional to the number of requested labels,
which can number in the millions. This has stimulated the use of approaches such as
active learning [6] that aim to minimize the amount of data required to learn a high-
quality classifier. Second, the quality of crowdsourced annotations has been found to be
poor [7], with causes ranging from workers who overstate their qualifications, lack of
motivation among labelers, haste and deliberate vandalism. Unfortunately, the majority
of popular active learning algorithms, while robust to noise in the input features, can be
very sensitive to label noise, necessitating the development of approaches specifically
designed for noisy annotations. In this paper, we focus on the causal factors behind
noisy crowdsourced annotations, worker quality and task difficulty.

A common simplifying assumption is that of identicality: all labelers provide an-
notations with the same accuracy and all annotation tasks pose the same difficulty to all
workers. Under this assumption, a good way to combat annotation noise is to request
multiple labels for each selected task and then to apply majority voting. The simplest
approach of requesting the same number of labels for each instance is not usually the
most cost-effective since label redundancy increases the overall cost by a multiplicative
factor of at least three.

Better results can be obtained by applying weighted voting which assigns different
weights to labelers based on their previous performance [7, 12, 13]. In this paper, we
use the Generative model of Labels, Abilities, and Difficulties [10] in which labeler
expertise and the task difficulty are simultaneously estimated using EM (Expectation-
Maximization) to learn the parameters of a probabilistic graphical model which repre-
sents the relationship between labelers, tasks and annotation predictions. Rather than
using previous performance to assign weights, the estimated labeler expertise is used
to allocate weights to annotator votes. This paper focuses on the problem of reducing
the label budget used by the GLAD model with active learning.

Theoretically the most straightforward and effective strategy for active learning is
to select samples that offer the greatest reductions to the risk function. Thus, “ag-
gressive” criteria such as least confidence, smallest margin, or maximum entropy can
enable active learning to obtain high accuracy using a relatively small number of labels
to set the decision boundary. Unfortunately, the existence of label noise can trigger
failures in aggressive active learning methods because even a single incorrect label can
cause the algorithm to eliminate the wrong set of hypotheses, thus focusing the search
on a poor region of the version space. In contrast, the proposed combination of the
probabilistic graphical model and active learning, avoids explicitly eliminating any set
of hypotheses inconsistent with the label provided by annotators.

Specifically, this paper makes two contributions:

1. we propose a new sampling strategy which iteratively selects the combination
of worker and task which offers the greatest risk reduction between the current
labeling risk and the expected posterior risk. The strategy aims to focus on sam-
pling reliable labelers and uncertain tasks to train the Bayesian network.

2. we present comprehensive evaluations on both simulation and real world datasets
that show not only the strength of our proposed approach in significantly reduc-
ing the quantity of labels required for training the model, but also the scalabil-
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ity of our approach at solving practical crowdsourcing tasks which suffer large
amounts of annotation noise.

2 Related Work
Howe et al. [3] coined the phrase “crowdsourcing” to describe the concept of outsourc-
ing work to a cheap labor pool composed of everyday people who use their spare time
to create content and solve problems. Doan et al. [1] define crowdsourcing as enlisting
a crowd of humans to help solve a problem defined by the system owners. Crowdsourc-
ing annotation services, such as Amazon’s Mechanical Turk, have become an effective
way to distribute annotation tasks over multiple workers [9]; however, Sheng et al. [7]
noted the problem that crowdsourcing annotation tasks may generate unreliable labels.

Several works [2, 11, 5] propose different approaches to model the annotation ac-
curacy of workers; all of these approaches assume there are multiple experts/annotators
providing labels but that no oracle exists. Donmez et al. [2] propose a framework to
learn the expected accuracy at each time step. The estimated expected accuracies are
then used to decide which annotators should be queried for a label at the next time
step. Yan et al. [11] focus on the multiple annotator scenario where multiple labelers
with varying expertise are available for querying. This method can simultaneously an-
swer questions such as which data sample should be labeled next and which annotator
should be queried to benefit the learning model. Raykar et al. [5] use a probabilistic
model both to evaluate the different experts and also to provide an estimate of the actual
hidden labels.

Our work is strongly influenced by GLAD [10], which uses a probabilistic model to
simultaneously estimate the labels, the labeler expertise, and the task difficulty which
are represented as latent variables in the Bayesian network. The model can estimate the
label of a new task with a weighted combination of labels from different labelers based
on their expertise inferred in the training phase. However, the original GLAD model
does not use active learning, unlike our proposed approach which offers substantial
reductions to the labeling cost, without sacrificing annotation accuracy.

Tong and Koller[8] proposed a way to implement active learning in Bayesian net-
works with a simple structure. Tong and Koller chose Kullback-Leibler divergence as
the loss function to measure the distance between distributions. Their algorithm it-
eratively computes the expected change in risk and makes the sample query with the
greatest expected change. This strategy is guaranteed to request the label of the sample
that reduces the expected risk the most, but does not account for worker performance.
In this paper, we propose an alternate selection strategy which selects pairs of workers
and samples and uses an entropy-based risk function.

3 Method
In this section, we describe our active learning approach for jointly estimating worker
performance and annotation reliability. The first part of the section defines the prob-
abilistic graphical model for estimating the expertise of labelers and the difficulty of
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Figure 1: The structure of the Bayesian networks used to estimate the true labels,
worker expertise, and annotation task difficulty

annotation tasks before describing how EM is used to estimate the model parameters.
The second subsection introduces our active learning approach for sampling workers
and tasks using an entropy-based risk function.

3.1 Probabilistic Graphical Model
Our work utilizes the generative model proposed by Whitehill et al. whitehill2009whose.
The structure of the graphical model is shown in Figure 1. The same model is used to
estimate the expertise of workers, the difficulty of annotation tasks, and the true la-
bels. The expertise of worker i is defined as αi ∈ (−∞,+∞), which corresponds to
the worker’s level of annotation accuracy. As αi approaches +∞, worker i becomes
an increasingly capable oracle who almost always gives the correct label and as αi
approaches −∞ the worker almost always provides the wrong label. αi = 0 means
the worker has no capability to distinguish the difference between the two classes and
just randomly guesses a label. The difficulty of task j is parameterized by βj where
1
βj
∈ (0,+∞). For easy tasks, 1

βj
approaches zero, and it is assumed that practically

every worker can give the correct label for the task. As 1
βj

approaches +∞, the task
becomes so difficult that almost no one is able to provide the right answer. In this paper,
we only consider binary classification problems which assume that both the true label
Zj and the annotation lij provided by the worker i are binary labels. lij ∈ {−1,+1}
is defined as the label of task j provided by annotator i. This is the only observable
variable in the graphical model. Since in most crowdsourcing platforms, it is unlikely
that the same labelers will be responsible for annotating all tasks in the dataset, this
model also works well when the observation is incomplete. The true label zj of task j
is the variable that we are going to estimate to evaluate the labeling performance of the
model.

Given the definitions above, the probability of annotator i providing the correct
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label for task j is defined in Equation 1. For a more skilled labeler with a larger α, or
an easier task with a larger β, the probability of providing the correct label should be
larger. However, if the task is too difficult ( 1β → +∞) or the labeler has no background
in performing the task (α = 0), the labeler can only give a random guess (p = 0.5)
about the task label.

P (lij = zj |αi, βj) =
1

1 + e−αiβj
(1)

The set of parameters of the graphical model ααα = {α1, ..., αi, ..., αm} and βββ =
{β1, ..., βj , ..., βn} are represented as θθθ = {ααα,βββ}. L and z are defined as the set of
labels provided by the workers (observed) and the true labels (not known).

EM is an iterative algorithm for maximum likelihood estimation in a graphical
model with incomplete data. In this annotation task, the learning procedure starts with
the set of unreliable annotations L. The EM algorithm iteratively estimates the un-
known parameters θθθ with the current observations L and then updates the belief of the
true labels z using these estimated parameters. The description of the EM algorithm as
applied to this model is given below.

E-Step: At the expectation step, the parameters θθθ estimated in the maximization step are
fixed. The posterior probability of zj ∈ {0, 1} given θθθ is computed as:

p(zi|L, θθθ) ∝ p(zj)
∏
i

p(lij , αi, βj) (2)

M-Step: Given the posterior probability of zj , the maximization step uses the cost func-
tion Q(θθθ) to estimate a locally optimal solution of parameters θθθ:

Q(θθθ) =
∑
j

E[ln p(zj)] +
∑
ij

E[ln p(lij |zj , αi, βj)] (3)

The aim of the EM algorithm is to return the parameters θ∗θ∗θ∗ which maximize the
function Q(θθθ):

θθθ∗ = argmax
θθθ

Q(θθθ) (4)

θ∗θ∗θ∗ represents the optimal estimate of the expertise of labelers and the difficulty of
tasks with the current set of annotations.

3.2 Query-by-Uncertainty
The essential question in active learning is which criterion performs the best at identi-
fying the most valuable unlabeled sample under the present parameters. In this paper,
we employ the entropy of the label distribution to represent the risk of a particular label
assignment. We assume the class of labels is defined as C = {−1,+1}, and the risk
function is
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Algorithm 1 Active Learning Algorithm
Require:

Input:
A set of data along with a matrix of partial labels L
The initial set of parameters θθθ
B: labeling budget.
Output:
θθθ∗ = {ααα∗,βββ∗}: The set of parameters representing the expertise of labelers and the diffi-
culty of tasks.

1: while B > 0 do
2: Use the EM algorithm to update the parameters θθθ = {ααα,βββ} using Equations 2 and 3;
3: Find parameters θθθ∗ that maximize the function Q(θθθ) using Equation 4;
4: Calculate the risk of assigning label zj to task j with Equation 5;
5: Query the label lij by assigning task j with the maximum risk to the worker i with the

highest αi and lij 6= 0;
6: B ← B − 1;
7: end while
8: Return the optimal parameters θθθ∗.

Risk(zj) = −
∑
|C|

p(zj |L, θ∗θ∗θ∗)
|C|

log
p(zj |L, θ∗θ∗θ∗)
|C|

(5)

where zj is the true label and p(zj |L, θ∗θ∗θ∗) represents the probability of annotating task
j with label zj under the present parameters θ∗θ∗θ∗. This risk function evaluates the risk
of assigning sample j label zj . Our active learning algorithm preferentially selects the
sample that maximizes this risk function to be annotated.

The algorithm for using active learning within the Bayesian network is shown in
Algorithm 1. The algorithm begins with the data to be annotated and a partially com-
pleted label matrix L. The set of parameters θθθ is initialized at this stage, and the
labeling budget for the crowdsourcing is allocated. The goal of this algorithm is to
learn the set of optimal parameters θ∗θ∗θ∗ with a given label budget. At each iteration, our
algorithm selects the sample that maximizes the risk function defined in Equation 5
with the parameters θ∗θ∗θ∗ estimated using the EM algorithm. The sample is then anno-
tated by requesting label lij from the labeler i with the maximum current αi who had
not previously contributed a label to that task.

4 Worker Selection
Selecting the task to be labeled could be easily solved by applying active learning
strategies to identify the most uncertain or informative task to workers. However, how
to select the right worker to annotate the task has became another issue which is out
of the scope of active learning. Selecting the most “uncertain” worker may polish the
estimation of the worker expertise, but simultaneously reduce the speed to improve the
training accuracy, since such strategy inevitably pick workers who the system is most
unfamiliar with, rather than the best workers.
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The straightforward way we have used in Algorithm 1 is to ask the worker i with
the highest expertise estimation α∗i to provide the label. The experiment results shows
this strategy works well. However, there exists some arguments that challenge the
strategy since 1) α∗i is only the estimation of αi, which means picking the worker with
largest α∗ may ignore the real “best worker” and 2) the evaluation of other workers are
ignored since they will not be selected forever. The goal of this section is to investigate
the performances of different worker selection strategies.

Beside always sampling the best worker, we evaluate two other options: weighted
selection and ε-greedy selection. For the weighted selection strategy, the probability of
selecting worker i is proportional to the expertise α∗i .

p(i) =
α∗i∑
i α
∗
i

(6)

An alternative worker selection strategy is the ε-greedy selection algorithm, which
has been used in studying the exploration-exploitation tradeoff in reinforcement learn-
ing [4]. This algorithm selects the most possible worker i (with the highest expertise
αi) with probability 1− ε. and selects other workers with probability ε.

p(i) =

{
1− ε+ ε

m i = maxα∗i
ε
m otherwise

(7)

where ε ∈ [0, 1) represents how many weights to take from selecting the best worker
to other workers, and m is the number of workers available to the task in total.

5 Experiments
The aim of our experiments is to demonstrate that, in cases where the tasks are not
labeled by all labelers, our proposed sampling strategy in choosing samples to be la-
beled compared with the random sampling strategy. Although there are three sets of
parameters in the model: αi which is the expertise of the labeler i, βj which is the
difficulty of the task j and zj which is the true label of the task j, our proposed method
proves that focusing on estimating a better labeler expertise ααα is more important than
the task difficulty βββ in predicting the real label of the task z. Compared with random
sampling, given the same number of training labels, active sampling has advantages in
1) predicting more correct labels and 2) identifying a more correlated rank of labelers.

In the following experiments, we test the performance of our proposed active learn-
ing algorithm on 1) a pool of simulated workers and tasks and 2) a standard image
dataset crowdsourced by workers on Mechanical Turk. The algorithm is evaluated us-
ing the annotation accuracy of the predicted labels z and by comparing the actual and
predicted labeler expertiseαααwithααα′ using both Spearman rank and Pearson correlation
statistics. We omit results for evaluating the model’s predictions of task difficulty, since
its main importance is its contribution to label noise which we are measuring directly
through annotation accuracy.

Our experiments use the same evaluation protocol and dataset as Whitehill et al. [10]
while attempting to reduce the labeling budget required to reach the desired accuracy
level using three different active learning strategies:
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Table 1: Annotation accuracy of simulated workers

Type of Labeler Hard Task Easy Task

Good 0.95 1
Bad 0.54 1

proposed: selects the most capable worker and most uncertain task using Algorithm 1;

traversal: sequentially selects tasks and randomly selects workers;

random: randomly selects pairs of workers and tasks.

To investigate the performance of worker selection, we implement our proposed
active learning approach with different worker selection strategies on both simulated
workers and real workers on Mechanical Turk. The experiments compare worker ex-
pertise using both Spearman rank and Pearson correlation for simulated workers and
the annotation accuracy to evaluate real workers. Our experiments attempt to identify
good workers by using four different worker selection strategies:

best worker: the worker i with highest parameter αi will be selected;

weighted selection: the probability of the worker i to be selected is proportional to
the value of αi;

epsilon=0.5: the ε-greedy selection algorithm (Equation 7), with ε = 0.5;

epsilon=0.1: the ε-greedy selection algorithm (Equation 7), with ε = 0.1.

At the initialization phase of the active learning, all tasks are annotated by exactly
two labelers who are randomly selected for each task to seed the training pool. Using
this pool,ααα andβββ are estimated. At each iteration, one sample is selected from the pool
of unlabeled pairs (labeler and task). The selected sample is then added to the training
pool, and the parameters ααα, βββ and z′z′z′ are updated using the extended training pool.

5.0.1 Simulated Worker Pool

Since it is difficult to definitively determine the skill level of real human labelers, we
ran an initial set of experiments using a simulated worker pool. In the first set of ex-
periments, we evaluate a simple population that consists of workers with only two skill
levels and task with two difficulty levels. The pool of simulated workers consists of
24 labelers (8 good, 16 bad) annotating 750 tasks (500 easy, 250 hard). The probabil-
ities for each type of labeler correctly annotating different types of tasks are shown in
Table 1.

At the initialization stage, each task is labeled by 2 randomly selected labelers,
which produces a pool of 1500 labels before all sample selection strategies start run-
ning. Each strategy runs for 4000 iterations. Figure 2 shows a comparison of the train-
ing accuracy of the different sampling strategies (proposed, traversal, and random).
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Figure 2: Comparison of the annotation accuracy of different sampling strategies (pro-
posed, traversal, random) using the simulated worker pool with binary worker perfor-
mance levels.

Since the binary case is relatively simple, the training accuracy starts from a high level
(80%) with the 1500 initial samples. Our proposed strategy improves rapidly and con-
verges to almost 100% training accuracy in about 3300 (18.3%) labels. The traversal
strategy barely converges to the same accuracy level with 5500 (30.6%) labels. Un-
surprisingly the random strategy performs the worst and after selecting 5500 labels, it
reaches a 94% training accuracy.

Figure 3 and Figure 4 shows the result of using Pearson and Spearman rank corre-
lations to evaluate the estimation of α. Both Pearson correlation and Spearman rank
correlation measure the strength of a relationship between two sets of variables. A per-
fect correlation of 1 represents two set of variables that are perfectly correlated with
each other. Pearson correlation measures the correlation between the actual estimates
of worker performance, whereas the Spearman rank correlation compares the simi-
larity of the relative rankings. For practical purposes, having a good Spearman rank
correlation is sufficient for correctly selecting the best labeler from the pool.

The goal of this experiment is to evaluate the estimate of labeler expertise α com-
pared to the real value α′. The result shows, by using our proposed active learning
strategy, the correlation rapidly jumps to a high score only 200 iterations after initial-
ization. Although the random and traversal sampling strategies reach the same level of
correlation in the Pearson correlation, the active learning strategy wins a overwhelming
victory with the Spearman rank correlation. The correlation score jumps to the optimal
value after only 200 labels, compared to random and traversal who query more than
500 labels to approach the comparable correlation score. (Notice that the optimal value
of the Spearman rank correlation is as low as 0.82 because there are many ties in the
real rankings which inflate the differences between the real ranking and the estimated
ranking.)
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Figure 3: Comparison of the different sampling strategies at estimating worker per-
formance in the simulated pool with binary worker performance levels using Pearson
correlation.

Figure 5 and Figure 6 show the result of using Pearson and Spearman rank corre-
lations to evaluate the performance of different worker selection strategies. The results
show that no worker selection strategies shows an overwhelming advantage in this sim-
ple binary classification case.

However, in the real world there can be many different levels of labeler expertise
and task difficulty which makes the estimation problem more challenging. To model
this, in the second experiment, the worker pool is simulated using α′ and β′ that are
generated from a Gaussian distribution to simulate a more diverse population of label-
ers and tasks. We create 50 labelers and 1000 tasks in this experiment. The expertise
of labeler i is determined by α′i ∼ N (1, 1), and the difficulty of task j is determined
by β′j ∼ N (1, 1). At the initialization stage, each task was labeled by two randomly
selected labelers, which yields 2000 labels before all strategies start running. Each
strategy runs for 10000 iterations.

Figure 7 shows the training accuracy of different sampling strategies (proposed,
traversal, and random). Our proposed strategy still performs strongly at estimating the
training accuracy which converges to 97% with 10000 labels. The traversal strategy
not only converges slower but reaches a slightly lower accuracy rate around 96% with
10000 labels. The random strategy still performs the worst. After selecting 12000
labels, it reaches a 92% training accuracy.

Figure 8 and Figure 9 show the result of using Pearson and Spearman rank corre-
lation to evaluate the estimate of α. The results show that our active learning doesn’t
show an overwhelming advantage as in the binary classification case. The proposed
method reaches a high rank correlation (0.93) faster than other two methods but the
convergence score is a bit lower than other two methods after more labels have been
queried. However, it doesn’t necessarily means our algorithm will perform worse in
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Figure 4: Comparison of different sampling strategies at estimated worker performance
in the simulated pool with binary worker performance levels using Spearman correla-
tion.

selecting good labelers since the key is having an accurate estimate of the top labelers.
Our aggressive sampling approach does not do a good job of evaluating those bad la-
belers whose α value is also an important contributor in the rank correlation score. We
will discuss this phenomenon in more depth during the discussion.

Figure 10 and Figure 11 show the result of using Pearson and Spearman rank cor-
relation to evaluate the performance of worker selection strategies. As α′ and β′ gener-
ated to simulate a more diverse population of labelers and tasks, the weighted selection
and ε-greedy selection (with ε = 0.5) show a faster convergence to a higher correlation
score. The ε-greedy selection (with ε = 0.5) reaches a high rank correlation (0.92)
after 2000 iterations and finally converge at 0.96.

5.0.2 Dataset Crowdsourced with Human Workers

To evaluate our active learning strategy on a standard binary classification task bench-
mark, we used a facial image dataset crowdsourced with human labelers on Ama-
zon’s Mechanical Turk. Whitehill et al. [10] asked 20 real human workers on Me-
chanical Turk to annotate 160 facial images by labeling them as either Duchenne or
Non-Duchenne. A Duchenne smile (enjoyment smile) is distinguished from a Non-
Duchenne (social smile) through the activation of the Orbicularis Oculi muscle around
the eyes, which the former exhibits and the latter does not. The dataset consists of
3572 labels. The real worker may provide more than one label with opposite results to
the same task. To evaluate the performance of these workers, these images were also
annotated by two certified experts in the Facial Action Coding System. According to
the expert labels, 58 out of 160 images contained Duchenne smiles.

In this experiment with labels from real MTurk workers, we also initialized the ex-
periment by asking two people to annotate each task, which means there are 160×2 =
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Figure 5: Comparison of the different worker selection strategies at estimating worker
performance in the simulated pool with binary worker performance levels using Pear-
son correlation.

320(10%) labels before all strategies start running. Each strategy runs for 800 (22.7%)
iterations. Figure 12 shows the training accuracy with different sampling strategies.
Our proposed method rises quickly and converges to 75% training accuracy after so-
liciting 500 (14.0%) labels in total. Both traversal and random strategies converge to
the same level with 1000 (28%) labels, which would result in twice the labeling cost
of our proposed method.

Figure 13 shows the training accuracy with different worker selection strategies.
The experimental results indicate that the performance of ε-greedy selection algorithm
which rises quickly and converges to 76% training accuracy after soliciting 200 (5.6%)
labels in total is comparable good as the best worker strategy. However, although we
run 10 times for each strategy, the performance of weighted selection strategy is very
unstable with real crowdsourced annotations.

6 Discussion
In real-world crowdsourcing applications, annotation accuracy and budget limitations
are obviously the most important immediate criteria for evaluating the performance of
a learning model. However, identifying knowledgeable and reliable workers is poten-
tially useful because these workers could be employed in future annotation tasks. The
difficulty of tasks mainly serves as a discriminant for distinguishing between good and
bad labelers, rather than a evaluation score for how well the learning model performs.
Especially in active learning, aggressive sampling is unable to perform well on all cri-
teria so task difficulty should be sacrificed for performance gains on the other metrics.

Our algorithm aggressively opts to use the best workers possible which yields la-
beling improvements but makes it difficult to accurately assess the relative rank of the
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Figure 6: Comparison of different worker selection strategies at estimated worker per-
formance in the simulated pool with binary worker performance levels using Spearman
correlation.

Figure 7: Comparison of the annotation accuracy of different sampling strategies (pro-
posed, traversal, random) using the simulated worker pool with Gaussian worker per-
formance levels.

poor labelers. We believe that a simple analysis of the rank correlation may not the best
way to evaluate the estimation ααα′ since in most real-world applications labelers under
a certain performance level should be eliminated early. The pool of potential workers
that can be reached using MTurk is very large so devoting annotation budget to work-
ing with poor labelers is unecessary. Our proposed method is good at dividing labelers
into two groups (good and bad) which enables it to perform well in the first simulation
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Figure 8: Comparison of the different sampling strategies at estimating worker perfor-
mance in the simulated pool with Gaussian worker performance levels using Pearson
correlation.

Figure 9: Comparison of different sampling strategies at estimated worker performance
in the simulated pool with Gaussian worker performance levels using Spearman corre-
lation.

experiment while failing to make the subtle discriminations between relatively poor la-
belers required for assessing worker performance in the second experiment. However,
in practical crowdsourcing tasks, filtering out bad labelers is enough for collecting re-
liable labels in future tasks, and the bottom ranked workers are largely irrelevant to the
overall performance of the crowdsourcing pipeline.

14



Figure 10: Comparison of the different worker selection strategies at estimating worker
performance in the simulated pool with Gaussian worker performance levels using
Pearson correlation.

Figure 11: Comparison of different worker selection strategies at estimated worker per-
formance in the simulated pool with Gaussian worker performance levels using Spear-
man correlation.

7 Conclusion
Although crowdsourcing annotations using active learning is an attractive and afford-
able idea for large-scale data labeling, the approach poses significant difficulties. Sev-
eral studies in different research domains show that active learning approaches devel-
oped for noise-free annotations do not perform well with crowdsourced data. This pa-
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Figure 12: Comparison of annotation accuracy with different sampling strategies (pro-
posed, traversal, random) on the facial image dataset crowdsourced on Mechanical
Turk.

Figure 13: Comparison of annotation accuracy with different worker selection strate-
gies on the facial image dataset crowdsourced on Mechanical Turk.

per presents a practical approach for using active learning in conjunction with Bayesian
networks to model both the expertise of unknown labelers and the difficulty of annota-
tion tasks.

Our work makes two contributions that enable us to robustly train a probabilistic
graphical model under these challenging conditions. First, we propose an original and
efficient sampling criteria which iteratively assigns the most reliable labelers to the
tasks with the highest labeling risk. Second, we present comprehensive evaluations on
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both simulated and real-world datasets that show the strength of our proposed approach
in significantly reducing the quantity of labels required for training the model. Our
experiments using crowdsourced data from Mechanical Turk confirm that the proposed
approach improves active learning in noisy real-world conditions.
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