2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Improving Code Review with GitHub Issue
Tracking

Abduljaleel Al-Rubaye
Department of Computer Science
University of Central Florida
Orlando, FLL USA
Email: aalrubaye @knights.ucf.edu

Abstract—Software quality is an important problem for tech-
nology companies, since it substantially impacts the efficiency,
usefulness, and maintainability of the final product; hence, code
review is a must-do activity for software developers. During the
code review process, senior engineers monitor other developers’
work to spot possible problems and enforce coding standards.
One of the most widely used open-source software platforms,
GitHub, attracts millions of developers who use it to store their
projects. This study aims to analyze code quality on GitHub
from the standpoint of code reviews. We examined the code
review process using GitHub’s Issues Tracker, which allows team
members to evaluate, discuss, and share their opinions on the
proposed code before it is approved. Based on our analysis, we
present a novel approach for improving the code review process
by promoting regularity and community involvement.

Index Terms—social coding platforms, GitHub, code review,
issue tracking

I. INTRODUCTION

Quality is the degree to which a software implementation
fulfills specifications and customer expectations. However, it
may be argued that there is no uniform definition of code
quality since developers have various ideas about what con-
stitutes excellent code. When it comes to analyzing software
and quantifying its quality, there are many different viewpoints
to consider [1]. Common code desiderata include: extensi-
bility, maintainability, readability, documentation, testability,
efficiency, reliability, portability, and reusability. But almost
everyone believes that code quality is a crucial concept,
regardless of how we define it.

Code review is one of the best approaches for improving
overall code quality. The quality measures mentioned above
may not be feasible if the code is not adequately reviewed.
GitHub’s Issue tracking system provides a process to manage
the code base bugs, general project tasks, and action items
collaboratively.

Any GitHub user may start an Issue and moderate it. Dis-
cussion forums allow developers to track work, ask and answer
questions, share expertise, and disseminate new ideas. Users
can attach one or more pull requests to Issues for the team
to evaluate before approving the new proposed modifications
to the main code branch. Figure 1 shows the overall flow of

the GitHub Issue Tracker system. Issues provide more than
IEEE/ACM ASONAM 2022, November 10-13, 2022

http://dx.doi.org/10.1145/X XXX XXX XXXXXXX
978-1-6654-5661-6/22/$31.00 © 2022 IEEE

Gita Sukthankar

Department of Computer Science
University of Central Florida
Orlando, FL
gitars@eecs.ucf.edu

commits

GDGDGsmmitfupdate PR

P

Feature
Branch

_link PR(s)”
5
Discussions
& Reviews
- - open Issue
-a“

Issue Tracker

Fig. 1.

Issue tracking on GitHub.

just a mechanism to report defects, since they allow others to
participate and improve the work’s quality. More significantly,
the Issue tracking method helps participants comprehend the
project’s overall goal and disseminate new ideas for improving
the code.
This study aims to answer the following research questions
using GitHub Issues:
« RQ1: How can we improve the regularity of the code
review process?
o RQ2: What is the relationship between Issue frequency
and community interaction?
« RQ3: How involved are the experienced reviewers in
Issues?
+« RQ4: Do more experienced GitHub users receive fewer
comments?

II. RELATED WORK

Code quality is critical in the software development process,
and no one can deny its significance. It is one of the most
crucial stages in the “done-ness” of software. Ray et al. inves-
tigated the impact of programming languages on code quality
in GitHub. After experimenting with various techniques and
regression methods on bug problems reported on major GitHub
projects, they discovered a direct correlation between code
quality and the programming language used by developers [2].

Several studies have considered adding features to social
coding platforms to improve code quality. Yu et al. examined

the usage of GitHub’s pull request mechanism to reduce po-
tential bugs. They proposed a new comment-based approach to
investigate developers’ social communication before merging
the code into the main code-base. When they combined their
new proposed approach and GitHub’s existing mechanisms,
code quality improved [3]. In another study, Yu et al. in-
vestigated the impact of user rules on code quality and how
users’ popularity can be related to the issues they introduce [4].
The relationship between code review coverage and reviewers’
engagement in software quality was examined by Mclntosh
et al. They looked at both current techniques and formal
code reviews to demonstrate that both procedures are strongly
linked to code quality [5]. Our paper focuses exclusively on
the effect of Issue tracking on the code review process and
proposes a new mechanism for improving the existing system.

III. METHOD

For this project, we collected a large dataset of GitHub
repositories and their associated events including Issues, Com-
ments, and Commits!. To obtain our dataset, we used GHTor-
rent [6], an online archive of public repositories that collects
all public data from GitHub on a daily basis. We collected
three categories of repositories:

1) Random Repositories: We retrieved about 4,000 public

repositories at random between March and June 2020.

2) Popular Repositories: The majority of the popular
GitHub repositories are operated by large projects, orga-
nizations, or tech firms. These teams adhere to business
criteria that maintain a high bar for code quality. Thus,
they may be a useful benchmark to compare to other
GitHub repositories. To identify a diverse collection of
popular repositories, we first looked at The State of the
Octoverse’s list of the top five programming languages
utilized on GitHub [7]. The top 20 repositories for each
language were then picked using GitHub’s Trending page,
and the data was retrieved using the GitHub API [8].

3) ROS-Related Repositories: ROS, or Robot Operating
System, is an open-source platform for robotics applica-
tion development [9]. It provides a stable environment for
coding complicated inter-component calculations. When
creating robotics-related software, developers must main-
tain a high degree of quality, which led us to investigate
GitHub repositories of this type and create a new bench-
mark to assess code quality. GitHub topics [10] were
used to find such repositories. They are subject-based
labels that allow users to browse GitHub repositories by
various categories. Using the GitHub API, we retrieved
3,000 public repositories with the term “ROS” in at least
one of their topics.

Table I shows statistics from our three different repository
categories. In comparison to the other two repo categories,
the popular repositories have more Issues open, as seen in
Table 1. This is unsurprising and may be linked to the fact

! Available at http://ial.eecs.ucf.edu/TeamComms/

frequency

dispersed Issues

%(—J'

dense Issues

\
median

Fig. 2. Time interval between open Issues

that large projects or developer teams have more contributors
than smaller projects or teams.

Although large teams generate greater numbers of Issues,
the code review process is still completed by a small number of
reviewers: the contributors who review and comment on code
through Issues. On ROS-related and Random repositories, the
average number of reviewers is slightly lower than that of large
teams on Popular repositories. This might explain why, on
average, all types of gathered repositories have approximately
the same amount of comments per issue. The Sentiment Score
of an Issue comment indicates whether the comment is likely
to be positive or negative. This number ranges from -1 to
1, with the greater the sentiment score, the more positive
the comment’s context. To calculate this number, we used
TextBlob, a Python sentiment analysis tool [11].

Given that developers submit code updates through commits
before each Issue, it’s worth noting that the number of added
and removed lines of code in Random repositories is slightly
greater than in ROS-related or Popular ones. To put it another
way, developers on Random repositories are more likely to
make a large number of code changes before committing them
to the repository. When it comes to code review, however,
Issues on Random repositories receive fewer comments than
other types of repositories. When comparing the lines of
new code to the number of comments through open Issues,
this finding might be an indicator of lower quality work on
Random repositories.

Developer activity is a good place to start examining Issues
on GitHub repositories. As shown in Table II, teams with a
higher number of contributors are more likely to have more
Issues than repositories with a lower number of contributors.
Popular vs. less popular repositories exhibit a similar pattern:
repositories with more Stargazers, Watchers, or Forkees are
more likely to have more Issues opened. In addition, the
number of total reviewers on a repository is related to the
number of Issues. More Issues being opened may result
in increased Contributor participation, suggesting improved
collaboration and teamwork.

Rather than examining the total number of Issues, we
hypothesize that examining the time intervals between GitHub
Issue opening events might provide a more accurate picture of

TABLE I
GENERAL STATISTICS OF THE COLLECTED REPOSITORIES.

General Statistics (Avg) Random Repos ROS Repos Popular Repos
Issues per repository 40 130 2155
Closed Issues 89% 88% 89%
Comments per closed Issue 1.19 1.68 3.15
Comments per non-closed Issue 1.36 1.95 3.42
Comments Sentiment Score [—1,1] 0.073 0.085 0.083
Reviewers per Issues 1.31 1.42 2.24
Repository contributors 5.5 10 146
Repository owner followers 81 211 771
Issue opener followers 51 82 213
Issue closer followers 89 185 785
Added / Removed lines per Issue 1690 / 670 1300/650 1330/432
Days prior to the first Issue 128 102 71
Hours to open an Issue 450.94 170.5 25.2
Hours to close an Issue 13.88 15.61 15.38
Commits per repository 216 695 10776
Commits prior the initial Issue 83 102 753
Commits between Issues 5.42 6.35 8.48

TABLE I
CORRELATION BETWEEN THE TOTAL ISSUE COUNT AND OTHER FEATURES FOR ALL THREE TYPES OF REPOSITORIES.

Random Repos ROS Repos Popular Repos

R-Val P-Val | R-Val P-Val | R-Val P-Val
Repo Age 0.217 1.28~% 0.216 1.89733 0.406 1.547°
Contributors 0.46 8.757213 0812 0 0.765 7.59715
Issue Comments 0914 0 0.925 0 0.781 4.93—21
Commits 0.438 8.43~191 0728 0 0.451 1.21°6
Reviewers 0.194 8.56—36 0.194 3.41—27 0.254 0.008
Commits before the first Issue 0.058 0.00019 0.166 4.15=20 0.139 0.154
Commits between Issues —0.019 0.216 —0.026 0.142 0.107 0.271
Issue Opener Followers Count 0.053 0.0006 0.045 0.129 0.142 0.146
Repo Owner Followers Count 0.077 6.9°7 —0.013 0.446 —0.246 0.010
Stars 0.387 5.76—146 0.457 7.79156 0.311 0.001
Forks 0.351 1.19—118 0.409 1.43—122 0.452 1.1376
Watchers 0.391 6.737149 0.404 4.187119 0.328 5.774

how a team’s activities affect code quality. We have divided
the Issues into three categories: dense, regular, and dispersed,
based on how close they are to the median of the time distance
distribution.

Dense issues reflect rapid team activity through Issue Track-
ers. Contributors participate in activities and conversations
to examine and evaluate new code quickly through various
Issue events. A variety of factors might cause many issues to
arise within a short period. This is, nevertheless, normal team
behavior, particularly when a significant new feature is merged
into the main branch via a series of pull requests. As a result,
the team will have to devote extra time to evaluate the code
quality before it can be accepted.

On the other hand, having numerous consecutive Issue
events that are separated from one other suggests that there
are fewer social interactions amongst the contributors of a
GitHub repository over time. In such cases, contributors may
not have completed a code implementation to discuss through
Issue tracking. When a team conducts multiple code merges
outside of the Issue tracking system, while the rate of dispersed
Issues is high, it can result in a substantial gap in knowledge
transfer, technical conversations, and thought exchange, all of
which can influence the team’s overall code quality.

Issues in the Regular distance range, on the other hand,
suggest continuous code review behavior, in which contrib-
utors frequently interact through Issue Trackers. We refer to
this team behavior as Regular Code Reviews. Repositories
with a greater rate of Regular Issues have a higher chance of
performing regular quality checks, which helps to maintain
and improve the code’s high quality. According to [12],
code review has been ranked as the most effective way to
achieve better quality. Several annual studies on software
quality looked at code reviews and attempted to determine
which elements had the most impact on quality improvement.
According to [12], regular code review has been the most
effective approach for improving quality; the next section
describes our proposed mechanism for promoting regular code
review.

IV. RESULTS

This section presents the results of our investigation into the
Issue Tracking system and the code review process.

A. Issue Regularity

RQ1: How can we improve the regularity of the code
review process?

The code quality of GitHub projects is affected by a
number of variables. As previously discussed, one of the most
important approaches to enhance quality is to perform frequent
code reviews, which may be conducted through the GitHub
Issues Tracking system. To do this, we study the repositories’
timeline and investigate the distribution of temporal distances
between Issues to create a reminder mechanism to attain
Regularity. We propose the New Issue Notifier (NIN), a new
mechanism that assesses contributors’ behavior over time
(Figure 3). To determine the timing of prompts, NIN leverages
the median of the Issues temporal distances distribution. The
suggested time to open an Issue is not static, as we continually
recalculate it based on the median over time. We use this
method to decide when to notify the team, reminding them
that it may be time to open an Issue, which they may either
accept or decline.

'

Let the team open Are
| enough Issues within [—< enough Issues
opened ?

set the Initial
Assessment Period
(IAP) the IAP

No—p»| Extend the IAP length

Yes

Set the wait time to Calculate the median
send the notification [®—— value (IDM) from the distances between all
(wait time = IDM) distances' distribution the Issues

¢)

Is the
wait Time
over ?

Extract the temporal Add the new Issue to

the list of Issues

Is
anew Issue
opened ?

Send a New Issue

s—J_> to the
-Ye: contributors

Reset the wait time

Fig. 3. Proposed Issue Notifier (NIN) mechanism

The process starts by retrieving the history of the repos-
itories’ Issue Opening events, as illustrated in Figure 4. To
initialize the system, we need enough Issue-related data to
begin evaluating the teams’ behavior regarding opening Issues.
The initial assessment period is defined as the time frame
during which we monitor the teams’ activities in terms of
opening new Issues for this purpose. The temporal distances
between the Issues opened during the assessment time frame
are extracted at the end of this period. Afterward, we calculate
the Issue Distances Median (/DM), which is the average
time contributors spend opening new Issues throughout the
development’s life cycle.

To determine the best time for the team to open a new
Issue, we utilize the IDM which is extracted from the team’s
activity pattern. The IDM is considered to be the waiting time
to push a notification to the contributors if the team has not
already opened an Issue. The notification suggests opening a
new Issue; however, the team can act upon the notification and
start a new Issue or ignore it and continue without opening any
Issue. The notification will be scheduled to trigger repeatedly
after the waiting time is over. If the team opens a new Issue
(before or at the notification time), the IDM is calculated
again, but this time for a bigger set of Issues, including the
new one. The more Issue data we have, the more accurate the
IDM becomes. We developed a simulation of the New Issues

TABLE III
THE PERCENTAGE OF DENSE, REGULAR, AND DISPERSED ISSUES AFTER
RUNNING THE SIMULATOR FOR EACH ACCEPTANCE PROBABILITY (AP).

| AP | Dense Regular Dispersed
0.3 9.60% 79.63% 10.77%
Popular Repos 0.6 9.78% 81.13% 9.09%
09 | 10.52% 81.10% 8.38%
0.3 | 16.15% 66.54% 17.31%
ROS Repos 0.6 | 14.26% 70.90% 14.83%
09 | 13.39% 74.47% 12.14%
0.3 | 12.12% 69.45% 18.43%
Random Repos | 0.6 | 10.89% 72.25% 16.86%
0.9 9.99% 74.95% 15.06%

Notifier, or NIN, considering the following key factors:

« The examination included all repositories from the three
repository categories.

o All repositories with an insufficient number of Issues
were deemed noisy data and were thus eliminated before
the simulator was run.

« The simulator was fed a collection of actual ground truth
Issue data from each repository for the initial assessment
period as its first input.

o Table I shows that contributors wait an average of 2 to
4 months before opening the first Issue across all three
types of repositories. After that, the pace of opening
Issues rises, and they tend to open Issues several times
per month. As a result, the initial assessment period (IAP)
has been set at six months from the day the repository
was created in order to allow us to collect adequate data.

o We defined three Acceptance Probabilities (AP): 0.3, 0.6,
and 0.9. They reflect the likelihood that the team will
accept the New Issue notification.

The simulator was used to recreate three years of GitHub
team activity. The simulator operates on three separate threads,
each with its acceptance probability (IAP). Once the execution
was completed, we retrieved the distribution of our reposito-
ries’ Dense, Regular, and Dispersed Issues. As indicated in
Table III, we can see an increase in the number of Issues that
are opened on a more frequent basis.

A higher acceptance ratio increases the numbers of Regular
Issues. This change is slightly less on Popular repositories
compared to ROS and Random repositories. Figure 5 shows
a collection of heat maps depicting the percentage of Issues
that are opened more regularly before and after the simulator
was performed. The figure indicates that the Regular Issues
rate rises over time as more Issues are opened, irrespective of
the chance of notification acceptance. The New Issue Notifier
method, (NIN), is an approach that uses the Issue Tracking
system to improve regularity. It nudges the team to collaborate
more frequently to discuss the new implementation and review
the submitted code before merging, which may improve code
quality over time.

B. Issues Community

RQ2: What is the relationship between Issue frequency
and community interaction?

the initial assessment period ‘ 3

Fig. 4.

Actual

Simulator (AP=0.3)

Random

% of Opened Issues within
6 hrs from the mean

1650

ROS

% of Opened Issues within
6 hrs from the mean

850 1300

Popular
% of Opened Issues within
6 hrs from the mean

50

100

IDM =4

New Issue Notifier mechanism (NIN) applied to a GitHub repository timeline. IDM stands for Issue Distances Median.

Simulator (AP=0.6)

Simulator (AP=0.9)

occurance <
kS

)
<

occurance =
S

ISy
<

=
£

occurance

Repositories (sorted by Issues count)

Fig. 5. The percentage of the Issues that fall within the regular area [median — a, median + o], where a = 6 hours, for all three types of the repositories
before and after running the simulator (for three different acceptance probabilities).

Contributors open Issues on GitHub to allow the team to
collaborate and exchange information. Issues may be seen as
parts of a larger community within a repository from a broad
perspective. As a result, when it comes to quality, we should
take into account the larger community, where users contribute
to a greater goal: a high-quality product. We constructed a
network of Issues and their reviewers to better comprehend
users’ engagement in repositories’ Issues and explore their
interactions. This network is a multi-layer network, with node
connections on the first layer defining connectivity on the
second layer. From the standpoint of code review, this network
reflects the Issues Community of GitHub repositories. The
network is formed as follows:

« Node type 1 (n1): represents repository I2’s opened Issues
{L, L2, ..., I,}, where n is the total number of the Issues.
o Node type 2 (n2): represents the users {ri,ro,...,Tm}
who reviewed the proposed code via Issues in repository

R, where m is the total number of the reviewers.

o Edge type 1 (e1): a weighted link that connects r, (ng
nodes) to I, (n1 nodes), if r, has reviewed the code
through I, where 1 < z < m, and 1 < y < n. The
more comments 7, has through I,, the greater weight
the edge (v, - 1) gets.

o Edge type 2 (e2): a weighted link that connects I; to I;
(n1 nodes) if ., has reviewed codes through both Issues
Ii and Ij.

Figure 6 shows a sample Issue Community of repository
R, with reviewer nodes r1, r3, and r4 connected to several
open Issues. In comparison to others, these nodes indicate
contributors who can provide help across Issues. These review-
ers are more likely to participate in conversations, share their
opinions, and, in general, help their teammates evaluate their
work and merge any code that meets high-quality standards.
Figure 7 depicts three separate Issue Communities along with

O Issues

O Reviewers

Fig. 6. A sample Issue Community (IC) network is formed by two types
of nodes that represent Issues, and reviewers. There are two layers: Layer 1
shows the edges of type e; that connect Reviewers to Issues, and Layer 2
shows the edges of type e2 that connect Issue to Issue.

their scores. The graphs only show edges of type F; to make
them more visually clear.

Reviewer collaboration behaviors vary depending on the
repository and the project they are working on. Some reposi-
tories have proactive and experienced team members who are
willing to participate in technical reviews and conversations
for the team’s benefit, while others have less active users.
As a result, we defined the Issue Community Score (ICS)
to assess each repository’s Issues Community in terms of
user involvement. The ICS represents the flow of information,
idea sharing, thought interchange, and the interconnectedness
between Issues and Reviewers. We have calculated the ICS
for each repository as follows:

[1Cr(e2)|

ICSp = ————
" |[Issuesp — 1]

where the numerator is the total number of the edges of
type (ez) within the Issue Community of the Repository R.
If all of the Issues nodes in a community are connected, it
receives a perfect score. A higher score indicates the extent
to which contributors’ expertise and knowledge are shared
through Issues. A lower ICS, on the other hand, shows that
there are distinct Issues that are not connected to other parts
of the community. Figure 6 shows an example in which I3
and [5 are separated from other Issues. I5 is reviewed by 7g
who is not involved in other issues, while I5 is opened and
closed with no reviews.

Table VI shows the correlation between ICS and other
features. In comparison to other characteristics like repository
contributors count, stargazers, or the total number of Issues,
we found that ICS strongly correlates with the total number
of Issues comments. This correlation appears to be stronger
on popular repositories, suggesting that repository contributors
use Issues to communicate, share ideas, and review codes. (See

Table I).

Unfortunately, teams who open Issues on a regular basis
may not always have higher code quality. From the standpoint
of Issue tracking, greater code quality necessitates not only the
opening of more Regular Issues, but also the participation of
more contributors through Issues and collaboration as a single
team. Investigating our data set, we have noticed that there are
repositories that have many of their Issues opened and closed
with only a couple or no reviews at all. User participation,
involvement, and communication is as crucial as the concept
of Issue Regularity.

C. Expertise Coverage

RQ3: How involved are the experienced reviewers in
Issues?

When code is submitted through an Issue to be evaluated
and discussed by other contributors, it is critical that the
highly experienced team members participate in the process.
With their seniority, expertise, ideas, and general high-level
vision, experienced contributors guide the team. The quality
of the work will be improved if more of these users contribute
directly to a larger number of Issues. A repository with highest
number of Issues reviewed by experienced individuals is likely
to have better code quality than one with the most of its Issues
reviewed by less experienced team members. We studied the
Expertise Issue Coverage on different types of repositories
based on this assumption.

TABLE IV
FOLLOWER COUNTS FOR USERS

Random Repos ROS Repos Popular Repos
Issue opener followers 51 82 213
Issue closer followers 89 185 785
Reviewer followers 71 180 542

When developers register a GitHub account and begin their
coding adventure, their publicly available coding material
usually attracts other users. In GitHub users can follow other
developers and receive notifications when the followee pub-
lishes new content; users are likely to be attracted to more
experienced developers who produce higher quality work.
As GitHub users maintain a high level of competence, their
popularity rises over time, and they acquire more experience.
As a result, the number of people who follow a user is roughly
proportional to their seniority and experience level. Table IV
shows the reviewers’ followers by repository type, as well as
followers for users who open and close Issues.

The Issue coverage by reviewers is depicted in Figure 8§,
with reviewers ordered from high experience to low experi-
ence. The graph demonstrates that all three types of reposito-
ries follow the same overall expertise coverage pattern, with
the most popular and experienced users representing roughly
20% of the total reviewers. Table V shows that on average,
90% of a repository’s users’ followers follow the most popular
20% of the reviewers. Regardless of repository type, the 20%
most popular reviewers cover around 60% of all Issues within
their repositories to assess other team members’ work and

Popular Repo R1)

ROS Repo R2)

Random Repo R3)

° o 0,069
°0 000 00 ©

°
eo0

e
®P0060 0 ©

©
Graphs ICS Nodes Edges Issues Comments
(a) Popular Repo (R1) 0.819 1502 2122 1241 3727
(b) ROS Repo (R2) 0.763 553 967 537 1687
(c) Random Repo (R3) 0.478 303 192 252 304

Fig. 7. Subgraphs of three different Issue Communities, with just the e; edges shown (layer 1 connections Reviewers-Issues). The reviewers are represented
by the red nodes, while the open Issues are represented by the blue nodes. The size of the node reflects its degree.

provide feedback and correction. Despite the fact that the
data indicates a similar Issue coverage pattern for Popular,
ROS, and Random repositories, the levels of popularity and
expertise vary. As shown in Table IV on Popular repositories,
contributors closing an Issue are far more popular and thus
experienced than on ROS and Random repositories. As a
result, regardless of the similar coverage pattern, the quality
of the review and assistance on the Popular repositories might
be significantly greater. Nonetheless, the expertise coverage
percentage shows that when it comes to code reviews, popular
reviewers play an essential role in spreading their opinions,
ideas, and experience through Issues, which assists other less
experienced developers in learning how to improve their work
quality.

8

High

~®Popular
-®-ROS
-0-Random

®
o

@
o

Reviewers
Expertise / Popularity
level

N
=3

% Issues Review Coverage
n
o

0 20 40 60

% Reviwers

80 100

Fig. 8. Issues coverage by Reviewers for all three types
Reviewers are sorted from high to low by their popularity.

of repositories.

TABLE V
POPULARITY RATIO AND THE PERCENTAGE OF ISSUES THAT 20% OF THE
MOST POPULAR REVIEWERS COVER. ON AVERAGE, 20% OF THE MOST
POPULAR COVER MORE THAN HALF OF THE ISSUES.

Repositories Type ~ Popularity Ratio Issue Coverage

Popular Repos 93% 59%

ROS Repos 90% 60%

Random Repos 87% 61%
TABLE VI

CORRELATION OF REPOSITORY PROPERTIES: ISSUES, CONTRIBUTORS,
STARS, ISSUE COMMENTS AND THE ISSUE COMMUNITY SCORE.

Random Repos ROS Repos Popular Repos

R-Val ~ P-Val | R-Val P-Val | R-Val P-Val
Contributors 0.146 0.061 0.226 0.001 0.296 2.78873
Stargazers 0.124 0.113 0.235 7.7037* | 0.167 0.095
Issues Count | 0.219 0.004 0.115 0.102 0.227 0.022
Comments 0.359 2.3377 | 0.259 1.9667% | 0.427 9.1776

D. Developer Popularity

RQ4: Do more experienced GitHub users receive fewer
comments?

When a contributor opens an Issue and links a pull request
to it, others can participate in reviewing, share their thoughts,
and suggest updating the code if a revision is needed. Now
imagine if a high-quality piece of code is linked to an Issue
for review. This code may receive fewer comments from the
reviewers compared to code that needs to be updated. Many
factors can impact the quality of the code, but we assume that
the seniority and the developer’s experience can significantly
impact his/her code’s quality.

To address research question 4, we examine the relationship
between Issues openers’ popularity and the comments they
receive through Issues, taking into account that a user’s

popularity is determined by the number of followers they have.
Only Issues in which their openers had submitted their code
for review were included in this investigation.

2 Popular ROS Random
S 3w 1
=] .
g . ‘.'
Q 08 0. Et
zg ¥ X
58 o8, 0ol &
B8 ..
EE s o :
5 04 04 .
A . s . .
g N 3
= 02] 02¢e .
5 &, e - " . ° .
.
E; 0 5000 10000 15000 0 2000 4000 2000 3000
2

Issues

Fig. 9. Correlation between Issue opener popularity and the comments they
receive, sorted by Issue count.

Figure 9 demonstrates the relationship between the popu-
larity of Issue openers and the number of comments that an
Issue receives, sorted by Issue number. Each data point on the
graph represents data from a single repository, with the higher
the data point, the more comments the popular Issue openers
will receive.

There is a considerable correlation between Issue openers’
popularity and the number of comments they receive, as shown
in Figure 9 for repositories with fewer Issues. This means that
even if a team member who opens an Issue is popular, he or
she will still receive a lot of feedback. This trend can be found
in most of the repositories that we have looked at.

On the other hand, we see a different pattern on the repos-
itories with a high number of Issues. On such repositories,
the popular users who open Issues, regardless of repository
category, receive relatively fewer comments. In such reposito-
ries, the less popular users may receive more attention when
their code is reviewed, suggesting that others may not initially
approve their code.

As a result, being a popular developer in most repositories
does not always imply receiving fewer corrections or getting
code reviewed with no comments. This behavior indicates that
most developers, including the experienced ones, will have a
thorough quality check on their code.

E. Threats to Validity

Our study assumes that using social coding platforms to
enforce good software engineering practices such as review
regularity, increasing community involvement in code review,
and recruiting more senior software engineers to participate
in the review process is likely to yield higher quality code;
however, following best practices is not a guarantee of ultimate
code quality. Moreover, reminder mechanisms such as the New
Issue Notifier may overload developers who are simultane-
ously involved in multiple projects. Team communications that
occurred via Slack or videoconference were not included in
our analysis.

V. CONCLUSION

This paper presents an analysis of the code review process
when conducted using the GitHub Issue tracking mechanism.

We collected data from three types of GitHub repositories: 1)
popular repositories (owned by very big tech projects, orga-
nizations, or companies) 2) ROS-related repositories (robotic
specific implementations with an active user community) and
3) randomly selected public repositories. First, an analysis was
conducted of how Issue frequency and timing is affected by
repository features such as age and number of contributors.
Based on these findings, we propose a mechanism, New
Issues Notifier (NIN) which nudges developers towards greater
regularity in the review process by prompting them to open
issues during dormant periods. This approach was simulated
and executed with three threads considering different user
acceptance probability on each thread; we show that even low
user acceptance yields greater regularity during code review.

This paper also introduces a new metric (Issue Community
Score) for evaluating community involvement and collabora-
tion in the code review process. Although we believe enforcing
regularity is an important aspect of the code review process,
it does not necessarily yield greater community involvement
since it is possible for repositories with high regularity to have
a low ICS score. Fortunately even with the current GitHub
Issue tracker, it appears that most repositories are successful
at recruiting senior software engineers to participate in code
reviews. Based on our research, we believe that it may also be
beneficial to offer other recognition-based incentives to ensure
a well functioning code review process with high levels of
collaboration.

REFERENCES

[

[1]1 D. Spinellis, Code quality: the open source perspective. Adobe Press,
2006.

[2] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in GitHub,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 155-165.

[31 Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, pp. 204—
218, 2016.

[4] Y. Lu, X. Mao, Z. Li, Y. Zhang, T. Wang, and G. Yin, “Does the role
matter? an investigation of the code quality of casual contributors in
GitHub,” in 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC). 1IEEE, 2016, pp. 49-56.

[5] S. MclIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014, pp. 192—
201.

[6] G. Gousios,
Working Conference on Mining Software Repositories (MSR).
2013, pp. 233-236.

[7]1 GitHub, 2020. [Online]. Available: https://octoverse.github.com/

[8] ——, “Github rest api.” [Online]. Available: https://docs.github.com/en/
rest

[91 M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[10] GitHub, “Classifying your repository with topics.” [Online].
Available: https://docs.github.com/en/github/administering-a-repository/
classifying-your-repository-with-topics

[11] S. Loria, “TextBlob documentation,” Release 0.15, vol. 2, p. 269, 2018.

[12] SmarterBear, “The state of code review 2020 report,”

2020. [Online]. Available: https://smartbear.com/resources/ebooks/

the-state-of-code-review-2020-report

“The GHTorrent dataset and tool suite,” in 2013 10th
IEEE,

