Generally Genius: A Generals.io Agent Development and Data Collection
Framework

Aaditya Bhatia®, Austin Davis*, Soumik Ghosh*, Gita Sukthankar

Department of Computer Science,
University of Central Florida
4328 Scorpius Street,
Orlando, Florida, 32816-2362 USA
{aaditya.bhatia, austinleedavis, soumikghosh} @knights.ucf.edu, gita.sukthankar@ucf.edu

Abstract

We present an agent development and data collection frame-
work for Generals.io (GIO)-a real-time strategy game with
imperfect information in which players attempt to gain
control of opponents’ starting positions within a 2D grid
world. The framework provides event-based communication
amongst several modules implemented as microservices, en-
abling real-time data collection from GIO’s streaming data.
Its modular design facilitates rapid bot development and test-
ing, while the emphasis on data collection makes it easy to
analyze agent performance. We use this framework in a case
study of a top-performing GIO agent called Flobot. Our anal-
ysis demonstrates that Flobot’s performance varies based on
its starting position. Based on the analysis performed with our
framework, we propose a modification to Flobot’s pathfind-
ing algorithm. Statistical tests show that the new algorithm
results in a significant reduction in performance variance.

Introduction

Real-Time Strategy (RTS) games provide a complex and
challenging environment for Al systems. Traditional choices
in this domain, such as StarCraft, exhibit an array of com-
plexities such as game theoretic counter-play, partial ob-
servability, long- and short-term planning, real-time deci-
sion making, and large action spaces (Ontafién et al. 2013).
These games increase the complexity even further by requir-
ing players to manage resources, micromanage units, and
understand the complex interplay between multiple species
or factions. Taken together, these characteristics impose a
steep learning curve for both the players and those desiring
to advance Al research.

In an effort to reduce this barrier to entry while retain-
ing the substantial complexity inherent in RTS games, we
turned our attention towards Generals.io (GIO). GIO is a
fast-paced, web-based, real-time strategy game of conquest
where players maneuver their armies to conquer their op-
ponents’ starting locations. With a reduced action set, GIO
can be learned in mere minutes, yet it still elicits strategic
complexity akin to that found in other popular RTS games
like StarCraft; the depth of strategic possibilities make GIO

“These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a promising platform for Al research delivered in a much
more accessible setting.

Originally released in 2016, GIO has a large audience
boasting 115k monthly visitors during the first quarter of
2023 (SimilarWeb 2023). GIO was adopted by the U.S.
Army Captains’ Career Course to assist officers in learn-
ing principles of warfare such as mass, maneuver, surprise,
and economy of force. The game is free to play and is
hosted online at https://generals.io, where players compete
in either a one-on-one or free-for-all format. GIO also sup-
ports Al-vs-Al matches on a separate, dedicated bot server
(https://bot.generals.io). The online format allows players to
play in competitive ladders where Elo ratings (Elo 1967) can
be used to compare players’ relative skill levels.

Still, several factors exacerbate efforts to build a thriving
research community around Al development for the game of
GIO. First, is the lack of documentation for the bot server’s
API. Second, is that most previously released agents are ei-
ther no longer available or use deprecated (or defunct) soft-
ware packages. Third, there does not currently exist a well-
designed end-to-end framework for designing, building, and
deploying agents to the GIO bot servers. Finally, the lack
of data collection make it difficult for researchers to collect
performance statistics for their agents.

Our contributions are the Generally Genius (GG) frame-
work, a comprehensive and user-friendly bot development
and data collection framework for GIO. The GG framework
can be found on our website!. The GG framework uses
an event-based architecture and a key-value store database
to collect and store game data. This framework provides a
straightforward interface for creating, testing, and analyz-
ing Al agents within the game. We designed it with acces-
sibility and flexibility in mind, catering to researchers at all
levels of proficiency. Furthermore, we implemented a robust
data capture system to facilitate the collection and analysis
of gameplay data. This system records in-depth gameplay
statistics, enabling researchers to study game dynamics and
agent performance in unprecedented detail. The captured
data provides invaluable insights into RTS game strategies,
Al behavior, and agent learning processes.

"Further details about the GG Framework are available at
https://CorsairCoalition.github.io

Background

GIO is played on a 2D grid world with four tile types: start-
ing tiles, impassible mountain tiles, land tiles, and city tiles.
Players maneuver their armies throughout the map to wrest
control of the starting tiles from their opponents. When a
player loses control of their starting tile (represented by a
crown icon in Figure 1) all their territory and half their re-
maining armies are reassigned to their conqueror, and the
player is eliminated from the game. The player who con-
quers all starting tiles wins.

Players maneuver their armies in the grid by submitting
commands to a movement queue. One queued movement is
executed each game tick (every half second), limiting total
movement by a player to at most 2 tiles per second. Players
can move their armies along the four cardinal directions (up,
down, left, and right) into any tile not obstructed by impas-
sible terrain. When a player moves an army from one tile to
another, they must leave behind part of their army to “de-
fend” the originating tile. Thus, movement is only possible
if an army has a strength of at least two. As a result of this
mechanic, when armies move across the map, they leave a
snail-like trail of occupied tiles, typically with only a single
unit to defend.

When an attacking army (with strength s4) moves into
territory occupied by a defending army (with strength sp),
then ownership of the tile is determined according to the fol-
lowing rules:

1. If sy > (sp +2), the attacker conquers the tile, but loses
$p units in the process. So, s4 <+ (s4 — (sp + 1))

2. Otherwise, sp < sp — (sa — 1) and s4 + 1. In this
case, the defender retains control of the tile. As a result,
whenever sp = (s4 — 1), the occupied tile of a defender
can have an zero army strength after the attack.

Territorial control is a key concept in GIO. A player’s
army grows over time based on the type and number of tiles
they control. Each city and starting tile owned by a player
gains one unit per second (2 game ticks); all other con-
quered land tiles only gain a single troop at the end of each
25-second round (50 ticks). As such, cities (which start the
game with a sizeable strength near 45) become an important
source of recruitment in the late game.

Strategies

The game mechanics described above gives rise to many
complex interactions and strategies that have evolved in the
player and bot communities. Viable GIO strategies follow
similar principles to those from other strategy games such
as chess, but with key differences because GIO is played
in real-time under imperfect information. GIO players must
nonethless adapt their strategies to suit early, mid, and late
game and the variations in map terrain. A screenshot cap-
tured during the early-game of a free-for-all match is shown
in Figure 1.

In the early game (tick 1-100, i.e., the first 50 seconds
on standard speed), players typically focus on territorial ex-
pansion to maximize their tile recruitment on tick 50 and
tick 100. Their armies often explore in tentacle-like fashion

AN AN
/N A
AN ' AN 2 AN ° ANANAN
/N AN
TANTAN A
/N A
A A AN
A A AN AN
A A
AN
AN AN
A A A A
AN

Figure 1: Screenshot of a typical GIO game. This particular
map is 13 x 13 tiles wide and consists of three players: blue,
red, and green, with starting tiles (indicated by crown icons)
at coordinates (4,2), (13,3), (2, 10), respectively from the
top-left corner. Green player controls the most territory, hav-
ing sent multiple excursions across the map (evidenced by
the long trail of 1’s emanating from their base), whereas red
player has adopted a turtle strategy.

from their starting tile (represented by crowns in Figure 1),
spreading their armies to capture adjacent tiles. This tentacle
spreading phase typically occurs after a brief 24-tick build-
up and aims to maximize the tile-based recruitment earned
on turns 25 and 50. If armies are spread in too many di-
rections during this phase, free-for-all players risk revealing
their position to multiple opponents (see the Green player
in Figure 1). The goal in this phase is to discover a single
opponent and begin amassing forces for an attack.
Over-expansion can leave a player exposed during any
phase, but it is especially risky during the mid-game. Dur-
ing this phase, players must balance between exploration of
the map and exploitation of an opportunity. Projecting forces
to far-reaching positions on the map can leave a player’s
starting tile exposed (cf. green’s crown strength vs. its op-
ponents’ in Figure 1). Overemphasizing rapid territorial ex-
pansion or city conquest (represented as dark-gray cities in
Figure 1) requires the player to spend long periods reconsti-
tuting forces. Furthermore, when one player expends a sig-
nificant amount of units to capture a city, it often leaves them
in a weakened state, making them vulnerable to attacks from
other players. Since only the original attacker bears the bur-
den of paying the unit cost to capture the city, newly cap-
tured cities become enticing targets for opportunistic oppo-
nents seeking to take advantage of the depleted resources
and weakened defenses. Thus, players must balance both the
timing and the opportunity cost of capturing cities. Scrim-
mages are frequent during this phase of the game as players
search for their enemy’s starting tile. Once an enemy general
is exposed, players must concentrate their forces to capture

it. Interestingly, having a large army does not necessarily
help if the general is poorly defended. Thus, this phase re-
quires a mix of tactical and strategic thinking.

By the late game (roughly any turn beyond 100), army
recruitment primarily comes from starting tiles and/or city
control, and total army strength can reach into the thousands.
This makes control of a map’s natural choke points less valu-
able in this stage than in the mid-game. As in many other
grid-based strategy games, control of the map center is crit-
ical in the late-game because it enables a player to rapidly
reinforce their units and easily access any position on the
board. Combat against non-city tiles is typically conducted
to clear the fog of war, and although conquering cities can
affect unit recruitment rates, the net impact is diminished
due the massive size of the armies.

Related Work
Generic Frameworks

Although agent-based machine learning techniques have
been possible for many years, advances in RL-based neu-
ral architectures and GPU acceleration have contributed to a
surge in interest in recent years. As such, many tools have
been released to assist the community in designing, devel-
oping, testing, and deploying agents in both real-world and
simulated, game-based environments. The aim of these tools
is varied. For example:

* Dopamine (Castro et al. 2018) from a team of Google
employees focuses on fast-prototyping of RL agents.

* TF-Agents (Guadarrama et al. 2018), also from Google
employees emphasizes production ready deployment of
RL agents.

e RLLib (Moritz et al. 2017) from the Ray project empha-
sizes ML software scalability for the Python community.

e Keras-RL (Plappert 2016) provides high-level imple-
mentations for many popular RL algorithms.

* TRFL (Hessel et al. 2018) (pronounced “truffle”) is
Google Deepmind’s open-source extension to Tensor-
flow focused on low-level implementations of RL algo-
rithms.

* Horizon (Gauci et al. 2019) is Facebook’s PyTorch-based
framework for off-policy, model driven RL with deep
learning.

* Coach (Caspi et al. 2017) by Intel uses Keras to provide a
highly modularized collection of DL and RL algorithms
with support for Kubernetes deployment.

* MAgent2 (Zheng et al. 2018) is an engine for high per-
formance multi-agent environments with very large num-
bers of agents, along with a set of reference environ-
ments.

Developers of these frameworks face many trade-offs,
but they commonly aim to provide modularity, class hier-
archies and abstractions, implementations of popular algo-
rithms, mechanisms for performing data collection and/or
data analysis, and standardized environments. These frame-
works provide many communities the tools needed to accel-
erate agent development and testing while also improving
repeatability, reliability, scalability, and transparency.

Our framework delivers several of these features to the
GIO community: it emphasizes modularity, usability, and
data collection.

GIO Agent Development

GIO bot developers face several obstacles. First, is a
lack of documentation. An official API and a rudimentary
JavaScript library are available to support bot development,
but the official documentation does not cover the protocol
in sufficient detail. So, bot developers must reverse engi-
neer the communication protocol over the WebSocket con-
nection. Second, many of the bots which have been open-
sourced have not been maintained and require significant
experience with JavaScript to bring up-to-date. Third, there
are very few extant online resources, tools, or tutorials that
can be used to bootstrap a development effort. These factors
have become barriers to entry for researchers and enthusiasts
interested in developing bots for GIO.

Because of the limitations above, only a few Al agents
have been released publicly. AlphaGenerals (Sayers and Li
2017) employs behavioural cloning with data augmenta-
tion built on a CNN to build a policy that mimics player
actions. The GeneralsNet (XBattleFan 2017) bot and the
A3C (Du 2017) bot both used a convolutional policy net-
work to play GIO, although A3C used a custom simulated
environment during training rather than the official GIO
servers. The reigning champion among publicly-available
bots is Flobot (Lan 2017), originally released in 2017.

Flobot is a simple, rule-based agent which consistently
ranks in the top two on the competitive bot ladder owing
to several simple, yet effective strategies: early-game, mid-
game, spread, infiltrate, and end-game.

* The early-game strategy handles the first fifty game ticks.
It waits 25 game ticks to build a sizeable army on its
general, then projects them toward the center of the map
to clear fog. This branching behavior occurs twice: once
on tick 25 and once on tick 50.

* The mid-game strategy focuses on reinforcing Flobot’s
general by collecting its movable armies on its general
tile.

* The spread strategy occurs every 25 ticks, when terri-
torial reinforcements are awarded. Flobot uses the extra
armies on its border tiles to move forward, slowly push-
ing back the fog of war.

* The infiltrate strategy is activated once an enemy tile is
discovered and before the enemy general is revealed. In-
filtration finds a path of least resistance to explore the
enemy’s territory.

* The end-game strategy activates once the enemy gen-
eral is revealed. It computes the army strength required
to conquer the enemy general (even accounting for tick-
based reinforcements) and collects its armies on Flobot’s
own general. Once sufficient forces are amassed, it sends
them directly toward the enemy general. This strategy is
repeated until the enemy general falls.

Methodology

Our goal was to build a framework for GIO that facilitates
agent development and evaluation. To that end, we present
the GG framework, a collection of services and utilities that
enable researchers to develop and analyze Al agents for
competitive GIO.

Architecture

We designed a bot framework from ground up using the mi-
croservices architecture. It is composed of a set of services
that communicate over the Internet using a message broker.
While the framework is language agnostic, the majority of
the code was written in TypeScript to maximize code reuse
and benefit from a rich package library and advanced de-
velopment tools. We drew our inspiration from Robot Op-
erating System (ROS) (Berger and Wyrobek 2021) and used
an entirely event-based architecture for maximum efficiency.
Our framework includes the following components:

1. Core Strategy Module: This module processes all game
data, maintains the state, synchronizes all other modules,
coordinates and receives action recommendations, makes
decisions of selecting the best action, and instructs the IO
module to communicate the game moves with the GIO
servers. This module can generate strategic recommen-
dations based on reinforcement learning, heuristics, or
simple rule-based play. When it receives a set of recom-
mended moves, it scores them based on the priority and
confidence level of the recommender, and selects the ac-
tion with the highest scores.

2. Action Generators: A collection of scripts (turtle,
spread, explore, mass, capture, and attack) that receive
game state updates and independently generate recom-
mended moves. These scripts resemble some of Flobot’s
strategies, and their modular design them to serve as a
starting point for GIO agent strategy development.

3. Message Broker: We chose Redis (Sanfilippo 2009) as
a message broker and a database for our framework due
to its lightweight implementation and extremely fast re-
sponse. Redis is an open source, in-memory data store
that enables low-latency communication at scale. It pro-
vide the communication backbone for all components
and enable the event-driven architecture through pub-
lisher/subscriber based messaging channels and a built-in
database.

4. 10 Module: A server component that provides a link be-
tween the game server and our message broker. Once ini-
tialized, it connects to the game server and awaits com-
mands on Redis to join a game. It tracks high-level game
state events, such as game started, lost, won, but simply
relays detailed state updates without making any game-
related decisions.

This distributed architecture allowed us to write language-
agnostic modules that interacted through a common
message-passing Redis backend. It simplified the debugging
process by making it easy to isolate issues, test individual
components, and make incremental updates.

Name Type Update Frequency
width int Once
height int Once

size int Once
playerIndex int Once
usernames string[] Once
teams int[] Once
ownGeneral int Once
enemyGeneral int Once
ownQuadrant int Once
enemyQuadrant int Once

turn int Every Turn
armies_map int[] Every Turn
terrain_map int[] Every Turn
cities_map int[] Every Turn
armies_enemy int[] Every Turn
armies_self int[] Every Turn
land_enemy int[] Every Turn
land_self int[] Every Turn
moveCount int[] Every Turn
ownTiles int[] Every Turn
enemyTiles int[] Every Turn
discoveredTiles int[] Every Turn
maxArmyOnTile int[] Every Turn
enemyGeneralLocated bool Once
victory bool Once
totalMoves int Once

Table 1: List of data collected by the GG framework

Data Collection

Our GG framework automates many downstream tasks for
rapid development of Al agents including detailed logging,
comparison experiments, organizing and searching exper-
iment metadata. All together, these capabilities improve
agent development, debugging, reproducibility, collabora-
tion, and model sharing. During execution, our framework
collects several summary and detailed metrics listed in Ta-
ble 1. All data is available in real time and also persisted to
the Redis database for later analysis.

Development Tools

We developed the following additional components to sup-
port bot development and data analysis:

1. The event-based communication protocol is published on
GitHub

2. A playback utility to record game events on demand and
play them back on Redis as needed to emulate on-going
games and conduct real-time analysis.

3. Jupyter notebooks capture ongoing game events, aggre-
gate data, and facilitate analysis and visualization of the
gathered data.

We have containerized the entire environment using
docker to bundle our services in one unit, provide a ready-
to-go environment for new developers, and reduce the com-
plexity of setting up a distributed environment for develop-
ment and testing. This is essential for our architecture that

involves running multiple components as stand-alone pro-
grams that should not be exposed over the Internet without
proper security measures. Together, these tools lower the
barrier to entry and enable less experienced developers to
begin Al agent development.

Evaluation

In this section, we demonstrate the effectiveness of our
framework to analyze agent in-game performance. To this
end, we present a case study where we analyze the perfor-
mance of the well-known Flobot Al agent. Based on this
analysis, we proposed and implemented modifications to the
Flobot decision-making processes. We then evaluate the im-
pact of these modifications on agent performance. The in-
sights driving these modifications were only made possi-
ble due to the metrics gathered by the GG framework, and
the modification process was greatly accelerated due to GG
framework’s modular design.

Case Study

In GIO, terrain and player starting locations are randomly
generated. Both of these factors can have a major impact on
the outcome of the game. For instance, players who start in
an area surrounded by many mountain (impassible) features
typically struggle to spread their armies in the early game;
this often leads to a power differential that cannot be over-
come. There are many other variations that can influence a
game’s outcome (e.g., city placement, choke point defensi-
bly, access to the map center, exposure to multiple oppo-
nents).

In this case study, we investigated the 1-on-1 performance
of Flobot based on its starting location. Specifically, we sub-
divided the GIO map into four quadrants, the top left (TL),
top right (TR), bottom left (BL), and bottom right (BR). The
goal of this experiment was to determine if Flobot favored
starting in a particular quadrant. The null hypothesis (H)
for this experiment was that Flobot is invariant to the start-
ing configuration on the map, i.e., that Flobot would perform
equally well regardless of its starting position. The alterna-
tive hypothesis (H,) is that Flobot’s performance varies de-
pending on the starting qaudrant.

To test this hypothesis, we competed Flobot against itself
in 102 games, recording the quadrant on the map in which
Flobots starting tile was placed and relative position of the
opponent. Each game took approximately 1-minute to com-
plete, but since these were mirror-matches, we could investi-
gate the data from both sides’ perspectives, i.e. this produced
204 outcomes for our sample data set. We compared the win
rates of Flobot across these samples based on the starting
tile’s quadrant. The results are summarized in the Table 2
below.

Table 2 summarizes how Flobot’s performance varied
across different starting configurations. Specifically, we
found that Flobot performed best when it started in the left
side of the map, with a win rate of 64% when in the top-left
quadrant and a win rate of 67% when starting in the bottom-
left quadrant. When Flobot began the game in the right side
of the map, the win rates dropped considerably. It achieved

Left | Right
Top 0.64 | 040
Bottom | 0.67 | 0.29

Table 2: Flobot Win Rate by Starting Quadrant

a 40% win rate from the top-right quadrant and Flobot’s win
rate was only 29% from the bottom-right quadrant.

We performed a Pearson’s chi-square (y2) goodness of
fit test (Pearson 1900) on the categorical data to evaluate
how likely it is that the observed differences arose merely
by chance. The test returned x? = 21.32 as the test statistic
with df = 3, giving us a p-value of 9.02 x 1075 Thus, we
reject the Hy because the data provides support for the alter-
native hypothesis that Flobot’s performance does depend on
its starting quadrant. We hypothesized that the difference in
performance across the quadrants was due in part to a bias
introduced during pathfinding.

Flobot uses the A-star algorithm with an admissible
heuristic. Therefore, the paths Flobot selected were guar-
anteed to be optimal in terms of movement cost; however,
since movement costs are equal for all tiles in GIO, there are
many paths that are equally optimal (see Figure 2). We ob-
served that Flobot always added adjacent tiles to its pathfind-
ing algorithm’s open queue in the same order, namely {up,
right, down, left}. This selection mechanism biases Flobot’s
path selection toward those paths that had many contiguous
moves in the up and right direction as compared to the down
and left direction (i.e., P is favored over P, in Figure 2).

When starting in the bottom-right quadrant, Flobot’s open
tile selection algorithm favored moves that explored the top-
right quadrant, ignoring the left half of the game map. We
theorized that the bias in Flobot’s selection process put it at
a disadvantage whenever its starting tile was located on the
bottom right side of the map.

In order to test our theory, we adjusted the algorithm that

Figure 2: Two optimal paths from the starting tile, S, and
terminating at the target tile, 7. Path P, was generated using
Flobot’s biased tile selection, and path P is an alternative
optimal path. Flobot was biased to select P;, despite the fact
that P, provides better exploration of the center of the map.

Algorithm 1: RotatingFlobot Tile Expansion Sorting

GETORDER(z, y, mapWidth, mapH eight):
quadrant < 0
if y > height then:
quadrant < quadrant + 2
if y > width then:
quadrant < quadrant + 1
switch quadrant do:
case O:
return {right, down, left, up}
case 1:
return {down, left, up, right}
case 2:
return {left, up, right, down}
case 3:
return {up, right, down, left}

populates the open queue of the A-star algorithm so that it
cycles the order in which adjacent tiles are added. We call
the agent which uses this new unbiased tile selection algo-
rithm UnbiasedFlobot.

We played 100 mirror-matches between UnbiasedFlobot
and UnbiasedFlobot. The null hypothesis of this experiment
(Hy) is that UnbiasedFlobot’s win rate does not depend
upon the starting quadrant, with the alternative hypothesis
(Hp) being that the starting quadrant does affect the bot’s
win rate. The results of our second experiment are summa-
rized in Table 3.

Left | Right
Top 046 | 0.44
Bottom | 0.54 | 0.59

Table 3: UnbiasedFlobot Win Rate by Starting Quadrant

Once again, we performed a Pearson’s y? goodness of fit
test on the data to determine the probability the observed dif-
ferences in win rates between quadrants could be explained
by chance. The test returned y? = 3.086 as the test statis-
tic (p = 0.3785) given df = 3. So, we fail to reject Hj.
Thus, by changing the algorithm which controlled the or-
der in which tiles are added to A-star’s open queue, we no
longer observed a bias in performance based on the starting
tile’s quadrant.

Since the original Flobot performed best on the bottom-
left quadrant due to its bias toward up-right movement
(i.e., toward the opposite corner), we theorized an algorithm
which adapts its tile selection priority according to its start-
ing tile quadrant would be able to exploit the fixed bias
of Flobot’s, especially in the bottom right quadrant (where
Flobot is weakest).

To test this theory, we developed a new agent, dubbed Ro-
tatingFlobot, which analyzes its starting tile’s quadrant at
the beginning of the game and uses that information to ad-
just its tile selection prioritization. The pseudocode for this
algorithm is given in Algorithm 1 below where x and y rep-
resent RotatingFlobot’s starting tile coordinates.

Agent Flobot Unbiased Rotating

Opponent Flobot Unbiased Flobot
Match Type Mirrored Mirrored 1vl
Sample Size 204 200 160
TL win rate 66% 50% 57%
TR win rate 36% 50% 46%
BL win rate 52% 48% 65%
BR win rate 16% 52% 49%
p-val (x?) 0.00168 0.9929 0.3785
WinRate 44% 50% 53%
p-val (Binom) - - 0.38

Table 4: Summary of Case Study Settings and Results

To test RotatingFlobot’s performance, we competed it
against the original Flobot and recorded the results using
our framework’s data management tools. The two bots com-
peted in 160 games during which we recorded the outcome
and starting quadrants for each bot. We performed a Pear-
son’s x? test against the null hypothesis (H>) that there was
no statistical difference in performance across the quadrants.
Given the test statistic Y? = 3.086 and three degrees of free-
dom, we failed to reject Hy (p = 0.3785), i.e., we saw no
statistical evidence that RotatingFlobot’s performance var-
ied across its starting quadrant.

We then evaluated RotatingFlobot’s performance against
Flobot with regards to win rates. RotatingFlobot won 86
games during the 160 matches vs Flobot (a 53.75% win
rate). We performed a binomial test to determine if the pro-
portion of wins by RotatingFlobot deviates from the theo-
retical expectation given the two agents are evenly matched.
Here, our null hypothesis (H3) is that the proportion of wins
for RotatingFlobot are equal to Flobot’s. Given n = 160 and
k = 86, our binomial test gave a p-value of 0.385, thus we
fail to reject Hs; there is no evidence of a difference in win
rates between RotatingFlobot and Flobot.

To be clear, this does not necessarily mean the two bots
are equals, only that our tests failed to detect a statistical
difference in their win rates. Since our algorithm represents
a relatively minor change in comparison to the numerous
other factors that could affect a game’s outcome, it would
likely require a test with much higher statistical power (i.e.,
many more samples) to detect a difference.

The results of our case study are summarized in Table 4.

Conclusion

In this paper, we introduced the Generally Genius (GG)
framework, a comprehensive agent development and data
collection framework for Generals.io (GIO). We designed
the GG framework from the ground up, leveraging an
event-based microservices architecture and drawing inspi-
ration from the Robot Operating System (ROS) (Berger
and Wyrobek 2021) inter-module communication. This
language-agnostic framework supports bot development in
over 100 programming languages using simple API calls.
Altogether, these design choices facilitate rapid bot devel-
opment and testing through reusable action modules, a com-
mon protocol for real-time updates, and persistent access

to historical game data. By providing a robust platform for
agent development and data collection, the GG framework
significantly enhances the process of developing and testing
Al game agents in GIO.

We gave a detailed description of GIO and characterized
the status quo for agent development in GIO. We described
the GG frameworks architecture and the improvements it
provides over extant development tools for GIO, and the
data collection components it includes. We released an im-
plementation of one of the top performing agents in GIO,
Flobot, using the framework’s modular design.

By leveraging the framework’s data collection compo-
nents, we conducted a case study with an in-depth analy-
sis of Flobots performance versus its board starting position.
We identified variations in Flobot’s performance across the
four quadrants on the game board, and confirmed these vari-
ations were not due to random chance via a Pearson’s x?
goodness of fit test (p-value: 1.68 x 10~3). We theorized
the variation in performance was introduced by a bias in
Flobot’s implementation of the A-star algorithm used to per-
form pathfinding. We presented an unbiased selection mech-
anism and showed that it eliminated this bias. We concluded
the case study by presenting a third bot, RotatingFlobot,
which aims to exploit the bias in the original Flobot’s tile
selection algorithm. However, statistical tests on win rates
could not confirm RotatingFlobot outperformed Flobot in
1-on-1 matches.

References

Berger, E.; and Wyrobek, K. 2021. Robot Operating System.
https://ros.org/. Accessed: 2023-05-22.

Caspi, L.; Leibovich, G.; Novik, G.; and Endrawis, S. 2017.
Reinforcement Learning Coach. https://doi.org/10.5281/
zenodo.1134899. Accessed: 2023-05-26.

Castro, P. S.; Moitra, S.; Gelada, C.; Kumar, S.; and Belle-
mare, M. G. 2018. Dopamine: A Research Framework for
Deep Reinforcement Learning. arXiv:1812.06110.

Du, Y. 2017. Generals A3C. https://github.com/yilundu/
generals_a3c. Accessed: 2023-05-26.

Elo, A. E. 1967. The proposed USCEF rating system. Its de-
velopment, theory, and applications. Chess Life, 22(8): 242—
247.

Gauci, J.; Conti, E.; Liang, Y.; Virochsiri, K.; Chen, Z.; He,
Y.; Kaden, Z.; Narayanan, V.; and Ye, X. 2019. Horizon:
Facebook’s Open Source Applied Reinforcement Learning
Platform. ICML 2019 Workshop RL4RealLife.

Guadarrama, S.; Korattikara, A.; Ramirez, O.; Castro, P.;
Holly, E.; Fishman, S.; Wang, K.; Gonina, E.; Wu, N.;
Kokiopoulou, E.; Sbaiz, L.; Smith, J.; Barték, G.; Berent, J.;
Harris, C.; Vanhoucke, V.; and Brevdo, E. 2018. TF-Agents:
A library for Reinforcement Learning in TensorFlow. https:
/lgithub.com/tensorflow/agents. Accessed: 2023-05-26.

Hessel, M.; Martic, M.; de Las Casas, D.; and Barth-Maron,
G. 2018. Open sourcing TRFL: a library of reinforcement
learning building blocks. https://www.deepmind.com/blog.
Accessed: 2023-05-26.

Lan, F. 2017. Flobot. https://github.com/flo-lan/generals.io-
Bot. Accessed: 2023-04-12.

Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.;
Liang, E.; Paul, W.; Jordan, M. L.; and Stoica, I. 2017. Ray:
A Distributed Framework for Emerging Al Applications.
CoRR, abs/1712.05889.

Ontafién, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game Al Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and Al in
Games, 5(4): 293-311.

Pearson, K. 1900. On the criterion that a given system of
deviations from the probable in the case of a correlated sys-
tem of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of
Science, 50(302): 157-175.

Plappert, M. 2016. Keras-RL. https://github.com/keras-rl/
keras-rl. Accessed: 2023-05-26.

Sanfilippo, S. 2009. Redis In-memory Data Structure
Server. https://redis.io. Accessed: 2023-05-22.

Sayers, T.; and Li, S. 2017. AlphaGenerals: A Generals.io
Al Agent. https://github.com/TySayers/generals-io-bot. Ac-
cessed: 2023-05-26.

SimilarWeb. 2023. Generals.io traffic analytics & mar-
ket share. https://www.similarweb.com/website/generals.io.
Accessed: 2023-04-12.

XBattleFan. 2017. Generals Net. https://github.com/
XBattleFan/generals-net. Accessed: 2023-05-26.

Zheng, L.; Yang, J.; Cai, H.; Zhou, M.; Zhang, W.; Wang,
J.; and Yu, Y. 2018. MAgent: A many-agent reinforcement
learning platform for artificial collective intelligence. In
Thirty-Second AAAI Conference on Artificial Intelligence.

