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Abstract

Learning effective policies in multi-agent adversarial games
is a significant challenge since the search space can be pro-
hibitively large when the actions of all the agents are consid-
ered simultaneously. Recent advances in Monte Carlo search
methods have produced good results in single-agent games
like Go with very large search spaces. In this paper, we
propose a variation on the Monte Carlo method, UCT (Up-
per Confidence Bound Trees), for multi-agent, continuous-
valued, adversarial games and demonstrate its utility at gen-
erating American football plays for Rush Football 2008. In
football, like in many other multi-agent games, the actions
of all of the agents are not equally crucial to gameplay suc-
cess. By automatically identifying key players from historical
game play, we can focus the UCT search on player groupings
that have the largest impact on yardage gains in a particular
formation.

Introduction

One issue with learning effective policies in multi-agent ad-
versarial games is that the size of the search space can be
prohibitively large when the actions of all players are con-
sidered simultaneously. Hence, single-agent reinforcement
learning systems are relatively common, whereas multi-
agent learning systems are less prevalent. In this paper, we
demonstrate a multi-agent learning approach for generating
offensive plays in the Rush 2008 football simulator. Rush
2008 simulates a modified version of American football and
was developed from the open source Rush 2005 game.1

To succeed at American football, a team must be able to
successfully execute closely-coordinated physical behavior.
However, certain players, like the quarterback, clearly have
a greater impact on the success of a given play. Yet changing
the policy of the quarterback, without making corresponding
changes to other teammates, can lead to a catastrophic fail-
ure of the play, whereas by simultaneously making changes
in a subset of the players (e.g., the quarterback and a re-
ceiver) can amplify yardage gains.

Within the Rush football simulator, we observe that each
play relies on the efforts of different subgroups within the
main team to score team touchdowns. We devised a method
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Power vs. 31 Split vs. 2231

Figure 1: Two match-ups between offensive (bottom) and
defensive (top) formations. These lead to a variety of
plays, in which different subsets of players can affect the
play outcome. We identify frequently-observed coordina-
tion patterns from observed traces to guide multi-agent pol-
icy search.

to automatically identify these subgroups from historical
play data based on: 1) mutual information between the of-
fensive player, defensive blocker, and ball location 2) the
observed ball work flow. After extracting these subgroups,
we demonstrate how to determine which groups are the most
important and use those groups to focus the search for new
plays.

Recent advances in Monte Carlo search methods have
produced learning agents which effectively play games with
very large search spaces where evaluating the value of in-
termediate states is difficult. In particular, the UCT (Koc-
sis and Szepesvri 2006) algorithm has produced promising
results in a variety of games, ranging from Go (Gelly and
Wang 2006) to the real-time strategy game WARGUS (Balla
and Fern 2009). Using knowledge of key groups to bound
search, we illustrate how UCT can be used to create new
playbooks with user-defined levels of difficulty from novice
to expert.

Rush Football

Football is a contest of two teams played on a rectangular
field bordered on lengthwise sides by an end zone. Unlike
American football, Rush teams only have 8 players on the
field at a time out of a roster of 18 players, and the field is
100× 63 yards. The game’s objective is to out-score the op-
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ponent, where the offense (i.e., the team with possession of
the ball), attempts to advance the ball from the line of scrim-
mage into their opponent’s end zone. In a full game, the of-
fensive team has four attempts to get a first down by moving
the ball 10 yards down the field. If the ball is intercepted or
fumbled and claimed by the defense, ball possession trans-
fers to the defensive team. The Rush 2008 simulator only
runs one play with the line of scrimmage set to the center
of the field. Stochasticity exists in catching (i.e., whether
a catch is successful), fumbling, tackles, distance/location
of a thrown ball, and the selection of who to throw to if no
receiver is ”open” when the QB is forced to throw the ball.

The offensive lineup contains the following positions:

Quarterback (QB): given the ball at the start of each play.
The QB hands the ball off or passes it to another player.

Running back (RB): begins in the backfield, behind the
line of scrimmage where the ball is placed, with the quar-
terback and fullback.

Full back (FB): serves largely the same function as the RB.

Wide receiver (WR): primary receiver for pass plays.

Tight end (TE): begins on the line of scrimmage immedi-
ately to the outside of the offensive lineman and can re-
ceive passes.

Offensive linemen (OL): begin on the line of scrimmage
and are primarily responsible for preventing the defense
from reaching the ball carrier.

A Rush play is composed of (1) a starting formation and (2)
instructions for each player in that formation. A formation
is a set of (x,y) offsets from the center of the line of scrim-
mage. By default, instructions for each player consist of (a)
an offset/destination point on the field to run to, and (b) a
behavior to execute when they get there. Play instructions
are similar to a conditional plan and include choice points
where the players can make individual decisions as well as
pre-defined behaviors that the player executes to the best of
their physical capability. Rush includes three offensive for-
mations (power, pro, and split) and four defensive ones (23,
31, 2222, 2231). Each formation has eight different plays
(numbered 1-8) that can be executed from that formation.
Offensive plays typically include a handoff to the running
back/fullback or a pass executed by the quarterback to one
of the receivers, along with instructions for a running pattern
to be followed by all the receivers. An example play from
the split formation is given below:

• the quarterback will pass to an open receiver;

• the running back and fullback will run hook routes;

• the left wide receiver will run a corner right route;

• the right wide receiver will run a hook route;

• the other players will block for the ball holder.

Related Work

Rush 2008 was originally developed as a platform for eval-
uating game-playing agents and has been used to study the
problem of learning strategies by observation of real-world

football games (Li et al. 2009). A case-based reinforce-
ment learning approach for modifying the quarterback’s pol-
icy was demonstrated within Rush 2008 (Molineaux et al.
2009); note that all of the other players, other than the quar-
terback, always played the same strategy. (Laviers et al.
2009) created an online multi-agent play adaptation system
that modified the team’s policies in response to the oppo-
nents’ play. However, the play adaptation system always
utilized plays from the existing playbook, rather than creat-
ing new plays.

Monte Carlo rollout search algorithms have been used
successfully in a number of games (Chung et al. 2005;
Cazenave and Paris 2005; Cazenave 2009; Ward and Cowl-
ing 2009). The Upper Confidence Bound Tree (UCT) was
introduced in (Kocsis and Szepesvri 2006) and spawned a
host of research efforts (Gelly et al. 2006; Gelly and Wang
2006; Gelly and Silver 2007). Our work differs from previ-
ous UCT work in its use of key player subgroups to focus
search in a multi-agent, continuous-value domain.

A key element of our approach is the use of automatically
extracted coordination patterns from historical play data. In
the Robocup soccer domain, (Iravani 2009) performed an
in-depth analysis of interactions among players to identify
multi-level networks. This is conceptually very closely re-
lated to the idea of grouping players by movement and work-
flow patterns. His system constructed agent interactions be-
tween players based on closest teammate, Voronoi regions
and distance-based clusters. The identified networks were
used to model the teams and identify how interactions affect
team performance; however these networks were not incor-
porated into a play generation system.

Method
The basic idea behind our approach is to identify subgroups
of coordinated players by observing a large number of foot-
ball plays. Earlier work, such as (Laviers et al. 2009), has
shown that appropriately changing the behavior of a criti-
cal subgroup (e.g., QB, RB, FB) during an offensive play,
in response to a recognized defensive strategy, significantly
improves yardage. Our work automatically determines the
critical subgroups of players (for each play) by an analysis
of spatio-temporal observations to determine all sub-groups,
and supervised learning to learn which ones will garner the
best results.

Identifying Key Players

In order to determine which players should be grouped to-
gether we first must understand dependencies among the
eight players for each formation. All players coordinate to
some extent but some players’ actions are so tightly coupled
that they form a subgroup during the given play. Changing
the command for one athlete in a subgroup without adjusting
the others causes the play to lose cohesion, potentially re-
sulting in a yardage loss rather than a gain. We identify sub-
groups using a combination of two methods, the first based
on a statistical analysis of player trajectories and the second
on workflow.

The mutual information between two random variables
measures their statistical dependence. Inspired by this, our
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method for identifying subgroups attempts to quantify the
degree to which the trajectories of players are coupled, based
on a set of observed instances of the given play. However,
the naive instantiation of this idea, which simply computes
the dependence between player trajectories without consid-
ering the game state is doomed to failure. This is because
offensive players’ motions are dominated by three factors:
1) its plan as specified by the playbook, 2) the current posi-
tion of the ball, and 3) the current position of the defensive
player assigned to block him.

So, if we want to calculate the relationships between the
offensive players, we need to place their trajectories in a con-
text that considers these factors. Our method for doing this
is straightforward. Rather than computing statistics on raw
player trajectories, we derive a feature that includes these
factors and compute statistics between the feature vectors as
follows.

First, for each player on the offense, we determine the tra-
jectory of the defensive player assigned to block him. Since
this assigned defensive player is typically the opponent that
remains closest to the player during the course of the play,
we determine the assigned defender to be the one whose av-
erage distance to the given player is the least. More formally,
for a given offensive player, o ∈ {o1, . . . , o8}, the assigned
defender, d ∈ {d1, . . . , d8} is:

d = argmin
di

T∑
t=1

|o(t) − di(t)|2,

where o(t) and di(t) denote the 2D positions of the given
players at time t. Our feature f(t) is simply the centroid
(average) of o(t), d(t) and the ball position b(t). We can
now compute sets of features {fi} and {fj} from the collec-
tion of observed plays for a given pair of offensive players
oi and oj , treating observations through time simply as inde-
pendent measurements. We model the distributions Fi and
Fj of each of these features as 2D Gaussian distributions
with diagonal covariance.

We then quantify the independence between these feature
distributions using the symmetricized Kullback-Leibler di-
vergence (Kullback and Leibler 1951):

S(oi, oj) = DKL(Fi||Fj) + DKL(Fj ||Fi),

where

DKL(Fi||Fj) =
∑

k

Fi(k) log
(

Fi(k)
Fj(k)

)
.

Pairs of athletes with low S(.) are those whose movements
during a given play are closely coupled. We compute the
average S(.) score over all pairs (oi, oj) in the team and
identify as candidate subgroups those pairs whose score falls
in the lowest quartile.

The grouping process involves more than just finding the
mutual information between players. We must also deter-
mine relationships formed based on possession of the foot-
ball. When the quarterback hands the ball off to the running
back or fullback their movements are coordinated for only
a brief span of time before the ball is transferred to the next

player. Because of this, the mutual information (MI) algo-
rithm described above does not adequately capture this rela-
tionship. We developed another mechanism to identify such
workflows and add them to the list of MI-based groups.

Our characterization of the workflow during a play is
based on ball transitions. Given our dataset, we count tran-
sitions from one player to another. The historical data in-
dicates that, in almost all offensive formations, the RB re-
ceives the ball the majority of the time, except when the FB
is in play and in which case we see the ball typically passed
from the QB to either the RB or the FB. Consequently, the
{QB, RB, and FB} naturally forms as a group for running
plays which was identified in (Laviers et al. 2009) as a “key
group”. The same happens between the QB and the receiv-
ing player in passing plays, which forms another workflow
group {QB, LWR, RWR, and RTE}. The final list of candi-
dates is therefore simply the union of the MI candidates and
the workflow candidates.

To use these subgroups we learn a prediction for the
yardage impact of changing different extracted subgroups.
For these studies, we compared the performance of several
supervised classifiers and selected the K* instance-based al-
gorithm, which is similar to Knn, but uses an entropy-based
distance measure. To generate a training set, we ran the Rush
2008 football simulator on 450 randomly selected play vari-
ations. As the input features, we use the presence of possible
observable offensive player actions (runningTo, carrying-
Ball, waiting, charging, blocking, receivingPass, and sweep-
ing); training is performed using 10-fold cross-validation.

Play Generation using UCT

We use Monte Carlo UCT (Kocsis and Szepesvri 2006) to
generate new football plays. Using the top-ranked extracted
subgroups to focus action investigations yields significant
run-time reduction over a standard Monte-Carlo UCT im-
plementation. To search the complete tree without using our
subgroup selection method would require an estimated 50
days of processing time as opposed to the 4 days required
by our method.

Offensive plays in the Rush 2008 football simulator share
the same structure across all formations. Plays start with
a runTo command which places a player at a strategic lo-
cation to execute another play command. After the player
arrives at this location, there is a decision point in the play
structure where an offensive action can be executed. To ef-
fectively use a UCT style exploration we needed to devise
a mechanism for combining these actions into a hierarchical
tree structure where the most important choices are decided
first.

Because of the potentially prohibitive number of possible
location points, we have UCT initially search through the
possible combinations of offensive high-level commands for
the key players, even though chronologically the commands
occur later in the play sequence. Once the commands are
picked for the players, the system employs binary search to
search the runTo area for each of the players (Figure 2). The
system creates a bounding box around each players’ histor-
ical runTo locations, and at level 2 (immediately after the
high-level command is selected), the bounding box is split
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Figure 2: A representation of the UCT sparse tree.

in half. Following Monte Carlo expansion the location is
initially randomly selected (Figure 5). At level 3 the space
is again divided in half and the process continues until level
5 where the player is provided a runTo location which rep-
resents 1/16 of the bounding box area. The system takes a
sample only at the leaf.

Figure 3: Comparison of randomly selecting players for ac-
tion modifications vs. using the top-ranked subgroup. We
see in the case of the random groups (R1 and R2) most of the
reward values are close to the baseline of 2.8 yards while the
key groups (K1 and K2) are dispersed more evenly across
the yardage spectrum. This indicates that changing those
players has a greater impact on the play.

This two dimensional search was designed to maintain as
small a sampling as possible without harming the system’s
chance of finding solutions which produce large yardage
gains. To focus the search, the locations each player can
move to are bounded to be close (within 1 yard) to the re-

Figure 4: A detailed breakdown of the reward values above 5
yards. This chart clearly indicates that at the higher yardage
spectrum the key groups provide a significantly greater num-
ber of solutions than the random groups.

gion covered by the specific player in the training data. At
the leaf node the centroid of the square is calculated and the
player uses that location to execute the runTo command.
Our method effectively allows the most important features
to be searched first and the least important, last.

As mentioned, action modifications are limited to the
players in the top ranked subgroup identified using K*; the
other players execute commands from the original play. Our
system needs to determine the best plan over a wide range
of opponent defensive configurations. To do this, for each
rollout the system randomly samples 50% of all possible de-
fenses (evens or odds, one for testing and the other for train-
ing) and returns the average yardage gained in the sampling.
Since UCT method provides a ranked search with the most
likely solutions grouped near the start of the search, we limit
the search algorithm to 1000 nodes with the expectation that
a good solution will be found in this search space.

We perform action selection using a variant of the UCT
formulation, π(s, a) = argmaxa(Q+(s, a)), where π is the
policy used to choose the best action a from state s. Be-
fore revisiting a node, each unexplored node from the same
branch must have already been explored; selection of un-
explored nodes is accomplished randomly. We demonstrate
that it is important to correctly identify key players for the
formation by examining the effect of randomly selecting
players for action modification on the value of Q(s, a) (Fig-
ure 3).

Using a similar modification to the bandit as suggested
in (Balla and Fern 2009), we adjust the upper confidence

calculation Q+(s, a) = Q(s, a) + c ×
√

log n(s)
n(s,a) to employ

c = Q(s, a) + .ς where ς = .0001 for our domain. The
ς causes the system to consider nodes explored less often
with zero reward more than nodes with a greater number of
repeated zero rewards. Ultimately this allows us to account
for the number of times a node is visited and prevent the
search to remaining stuck on zero reward nodes, a problem
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Figure 5: This graph shows how the binary string generated in the search tree creates a location for a player to move to in the
runTo portion of the play.

we identified in early testing.
We implemented UCT in a distributed system constructed

in such a way to prevent multiple threads from sampling the
same node. The update function for n(s, a) was modified to
increment the counter after the node is visited, but before the
leaf is sampled. Since sampling takes close to one second
it’s imperative to other threads exploring the tree to know
when a node is touched to avoid infinite looping at a node.

After a node is sampled the update function is called to
update Q(s, a).

Q(s, a) ← Q(s, a) +
1

n(s, a)
(R − Q(s, a))

and

R =
∑I

i=0 γi

I
/15

where R is the reward, I is the total number of iterations
times the number of defenses sampled, and γ is the list of
yards gained in each sample. We normalize R by dividing
by 15 which is 30% more than the maximum unnormalized
reward.

Results
We evaluated the efficacy of this approach at generating
passing plays, which require tightly coupled coordination
between multiple players to succeed. Our version of UCT
was seeded with Pro formation variants (4–8). Figure 7 sum-
marizes experiments comparing UCT (limited by subgroup)
against the baseline Rush playbook and play adaptation.
Overall, the UCT plays consistently outperform the base-
line Rush system and play adaptation using domain knowl-
edge. Viewing the output trace of one UCT search reveals
some characteristics of our algorithm. First the system ran-
domly explores, then as promising nodes are found they are

exploited until UCT is confident it has a correct value for
that branch before it moves on to other parts of the tree and
repeats the process. Developers interested in automatically
generating a list of plays can easily pick football plans which
produce the level of difficulty the developer is interested in.

Conclusion

In this work, we presented a method for extracting sub-
group coordination patterns from historical play data. We
demonstrate our method in the Rush 2008 football simulator
and believe that it can generalize to other team adversarial
games, such as basketball and soccer. Although we have ac-
cess to the ground truth playbook information executed by
the simulator, the Rush plays do not explicitly specify sub-
group coordination patterns between players. The subgroup
patterns seem to emerge from the interactions between of-
fensive and defensive formations creating different player
openings which in turn affect play workflows when the quar-
terback chooses to pass or hand off to different players.
We demonstrate that we can identify and reuse coordination
patterns to focus our search over the space of multi-agent
policies, without exhaustively searching the set partition of
player subgroups. By sorting our candidate subgroups using
a ranking learned by K*, we can reliably identify effective
subgroups and improve the performance and speed of the
UCT Monte Carlo search.
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(a) At 100 iterations

(b) At 300 iterations

(c) At 500 iterations

(d) At 700 iterations

Figure 6: Our UCT variant expands in a very focused direc-
tion and quickly identifies a high yardage area of the tree.
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