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Abstract. Mechanistic interpretability (MI) studies aim to identify the
specific neural pathways that underlie decision-making in neural net-
works. Here we analyze both the horizontal and vertical information
flows of a chess-playing transformer. This paper introduces a new tax-
onomy of chessboard attention patterns that synchronize to guide move
selection. Our findings show that the early layers of the chess transformer
correctly identify moves that are highly ranked by the final layer. Exper-
iments conducted on human chess players laid the foundation for much
of our current understanding of human problem-solving, cognition, and
visual memory. We believe that the study of chess language transformers
may be an equally fruitful research area for AGI systems.
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1 Introduction

This paper presents a mechanistic analysis of the operation of a chess language
transformer model. In contrast to other surface-level forms of interpretability
that simply correlate inputs with outputs or highlight which features were im-
portant for a decision [13], the mechanistic interpretability community [14] seeks
to uncover the computational processes that occur within a neural network, lit-
erally reverse-engineering the algorithms to reveal how the model arrived at its
conclusions. This approach moves beyond treating the model as an opaque “black
box" and instead examines the model’s choices through the lens of its internal
operations. Reverse-engineering transformer models has become an important
area of research interest for two reasons:

1. transformers are a key building block for many of the SOTA vision, language,
and multimodal visual-language systems (e.g., ViT [7]), ChatGPT, Gemini,
and CLIP [17]);

2. the architectural elegance of the transformer makes it more amenable to
certain types of circuit analysis. Elhage et al. [8] note that if MLP layers
are removed, the residual stream of a transformer is composed of linear and
additive operations, in which the attention heads operate independently.

This paper specifically examines the operation of the attention heads in a chess
language transformer and proposes a taxonomy of chess attention mechanisms.
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Although there are several chess language transformer models, we selected Tosh-
niwal et al.’s Learning Chess Blindfold (LCB) model [20] for our analysis, due to
its manageable size. LCB uses the GPT-2 small architecture [18] and is trained
on sequences from human chess games. This paper explores the distribution of
attention patterns per layer. Our results show that early layers of the LCB are
very successful at predicting moves that are ultimately highly ranked by the final
layer.

2 Related Work

2.1 Chess and Cognition

There is a long tradition of using chess as a benchmark for artificial intelligence
systems ranging from specialized parallel search algorithms like Deep Blue [3] to
more generalized machine learning approaches such as AlphaZero [11]. However,
our work is inspired by research from the cognitive science community that
endeavors to model chess mastery in humans. Charness [4] quantified the impact
of chess on cognitive science by doing a literature review of published studies
referencing the seminal article by Simon and Chase [5] that proposed the usage of
chess for cognitive science research. Neural imaging studies [9] on human chess
players have shown that expert chess players exhibit some differences in grey
matter within the occipitotemporal junction (OTJ), a region linked to various
perceptual processes. FMRI studies of chess [2] show increased activity in brain
regions associated with spatial reasoning (parietal areas) with less activity in
the frontal lobe. These findings suggest that spatial processing may play a more
prominent role than decision-making in human chess cognition. Our study of
chess attention patterns in transformers parallels these human fMRI studies.
However most of the human fMRI studies are conducted by simply showing the
subjects images of chess boards, whereas we examine average attention patterns
across many games.

2.2 Mechanistic Interpretability (MI)

In this paper, we apply several techniques from the MI community to a chess-
playing language model. Mechanistic interpretability is a newer area of explain-
able AI in which the aim is to reverse engineer neural circuits [14]. This can be
accomplished through a variety of techniques including linear probes, ablation
studies, and activation patching [19]. However, all these methods rely heavily
on human inspection. To ameliorate this limitation, Conmy et al. [6] recently
proposed a method for automating the circuit detection step that successfully
rediscovered circuits in GPT-2, identified by prior work.

Many researchers believe that large language models obey the linear rep-
resentation hypothesis [16]. This theory suggests important concepts that the
model learns are encoded in a linear way within its hidden layers, facilitating
the probe training process. Linear probes have been used in several of the prior
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studies on game play language models to determine how the transformer encodes
game state [10,15,20]. In this paper, we ignore the question of world state and
simply examine the horizontal and vertical information flows.

3 Method

3.1 The Learning Chess Blindfolded (LCB) model

Toshniwal et al’s Learning Chess Blindfolded (LCB) model [20] utilizes the
GPT-2 small architecture [18] with 12 attention heads in each of its 12 trans-
former layers. LCB is a causal language model trained to minimize loss in pre-
dicting the next token in chess games. Its inputs are sequences of chess moves
(game traces) given in Universal Chess Interface (UCI) notation. UCI notation
describes chess moves by specifying the starting and ending square of a piece’s
movement. For example, the move of a knight from bl to ¢3 is noted as “b1c3”.
Figure 1 shows how a game trace in UCI notation correspond to the chess board
state.

Partial game trace in UCI notation:

e2e4 c7c5 glf3 d7d6 d2d4 c5d4 f3d4 g8f6 blc3 a7a6 cle3 e7e5 d4b3 c8e6 f2f3
f8e7 dld2 e8g8 elcl a6a5 flb5 b8a6 clbl a6c7 ...

Board state after each complete move:

44422121212

Initial board

Fig. 1. UCI notation of a partial game trace and the resulting board states after each
move. The game starts from the initial board position, and the first move shown in
red moves the white pawn from e2 to e4. LCB treats the start and end tiles of a single
move as separate tokens. Thus, each move requires two tokens.

To input a game trace into the LCB model, each UCI move is divided into
two tokens: one for the starting tile and another for the destination tile, each
processed separately. The model outputs a non-normalized vector over its vo-
cabulary (see Table 1), which is converted into a probability distribution using
the softmax operation. Predicting a chess move involves inputting a game trace
prefix and prompting the model twice. In the first forward pass, the starting tile
is selected from the output probability distribution, appended to the trace, and
the model is prompted again to determine the destination tile. This interactive
process is facilitated through a Google Colab notebook!.

! See colab.research.google.com/drive/125y4MpnSWAakoSESMy9jGMtBExbjqTpW
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Table 1. LCB Vocabulary

Type Examples Count
Square names ed, d1 64
Promotion type q, r,b,n 4
Special symbols BOS, EOS, PAD 9
Total 77

LCB predicts legal moves with an accuracy of 97.7% [20]. In practice, we find
it can regularly play thirty complete moves before it recommends an illegal move.
This is impressive when considering that the model was trained with no a priori
knowledge of the game of chess; it was trained exclusively to minimize loss when
predicting the next token in UCI move sequences. Consequentially, LCB does
not play to win; it simply anticipates which move is most likely to occur next.
As a result, LCB plays stronger moves if the input sequence resembles high-
skill gameplay and weaker moves when the input sequence resembles low-skill
gameplay.

Our intent was to localize the internal mechanisms which allow it to generate
legal moves with such high accuracy. Importantly, our use of the LCB model is
strictly out-of-the-box, meaning we have not modified its configuration or pa-
rameterization. In a similar way that a neural scientist might localize a cognitive
function by stimulating a patient with sound or images during an MRI scan, we
stimulate the model by performing forward passes on a large number of chess
games and record the values of the model’s hidden states.

3.2 Dataset

We utilize a dataset of 1000 chess games sourced from the lichess.org open
database. The games were converted into UCI notation and deduplicated. Each
game in the dataset is truncated to the first 20 tokens (representing the first
10 moves) to center analysis on opening move sequences, provide consistency
when computing metrics, and focus on games without pawn promotions since
promotion is handled differently by the model and tokenizer.

3.3 Activation Caching and Direct Logit Attribution (DLA)

During each forward pass, the hidden state hge) is captured post each transformer
layer in an activation cache. This activation cache is the set

Activation Cache = {hy) ;i €[1,12] and ¢ € [1,numTokens]}

We employ DLA [1] to assess the impact of each layer on the decision-making
process of LCB. By applying the GPT’s unembed matrix directly to the captured
hidden states, we can back-translate these intermediate representations from the
latent embedded space to the output vocabulary. By analyzing the evolution of
these intermediate states, we can uncover how each layer influences the final
move prediction. This process is illustrated in Figures 2 and 3.
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Fig. 2. Caching hidden states within the GPT-2 architecture. DLA applies the unembed
matrix to a vector in the activation cache to transform latent hidden state vectors into
a vector in the vocabulary (output) space. By comparing DLA vectors across layers we
can see how each layer contributes to the final output of the LCB model. The unfolded
representation of the GPT-2 architecture was inspired by [12].
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Fig. 3. DLA visualization. The model selects the destination square for the bishop
on cl. Boards are colored according to the softmax of the unembedded hidden state
for each layer starting from the token embedding (top-left) through layer 12 (bottom-
right); richer blue colors indicate stronger activations. Layer 1 activations highlight the
bishop on c1 (the piece about to be moved), and intermediate layers process information
in the previous hidden states to select a destination for that bishop. The model’s final
(actual) output, e3, corresponds to the darkest tile on the bottom-right board. The
model’s preference for e3 is evident as early as layer 2.
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4 Results

We performed a forward pass on 1,000 unique game traces with at least 20
tokens, and cached the attention head activations for every head, layer, and
game trace. We averaged these activations over the 1,000 games to obtain a
20 x 20 activation pattern for all 144 (= 12 x 12) attention heads. Inspecting
these attention activations, we observed several, strong structural patterns shown
in Figure 4. Each pattern emerges from the training process and implies these
heads are selecting information in a very predictable way that corresponds with
the regular structure of UCI game traces.

a. Checkers b. Big Checkers c. Window Pane d. Columns
0 1 L
- '-. g i
|
|
e. Waffle f. Backslash g. Amorphous h. Polysemetic

lI -_--
: w
. u

.I .-I

Fig. 4. Structural patterns in LCB attention heads. Each pattern (a-h) is a prototypical
example. Values are averages over 1K game traces which range from 0 (white) to 1
(black) with o = 0.133. The top row includes the most frequently observed patterns.
The bottom row includes additional noteworthy patterns.

We interpret these attention patterns from the perspective of UCI game
traces. (Note: a full move is processed in either 2 forward passes (for a single
player) or 4 forward passes (to complete a full turn for both white and black
players).

The following patterns were observed multiple times in the attention heads
of the LCB model. Their frequencies are reported in Table 2:

a. Checkers. When selecting a source/destination tiles, these heads attend to
the history of previous source/destination tiles. These heads do not appear
to have a limited context window, and the full history of moves are typically
attended to.

b. Big Checkers Similar to the checkers pattern, except rather than attend-
ing to the history of tiles, these heads attend to the history of full moves.
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Depending on the horizontal offset of the grid, these heads either attend to
the current player’s move history or the opponent’s move history.

c. Window Pane These heads have two modalities. In the prototypical exam-
ple above, LCB attends only to white player’s destination tile history exactly
when selecting the destination tile for white player pieces. During the other
phases of movement, the head attends approximately equally to all positions.

d. Columns These heads attend to the history of a single phase of movement,
i.e. either destination or source tile selection depending on the horizontal
offset of the columns.

The following patterns were observed at least once, and were noteworthy
because of their strong structural regularity:

e. Waflle This pattern occurred once in layer 3 head 5 (L3H5). When selecting
a destination, the head attends only to the previous source tile (because of
the strong diagonal), and when selecting a source tile, the head attends to
both players’ previous destinations equally.

f. Backslash (L1H5 and L1H12) This is a special case of the checkers pattern,
but instead of looking back one phase, these heads look back four tokens to
the player’s own source/destination history.

g. Amorphous (L12 H1-H3) These heads occurred exclusively in the final
layer. Unlike other heads which have a high variance, these heads are diffuse,
indicating the head is likely highly state-dependent.

h. Polysemetic Many heads can be described as a combination of multiple
other patterns, encoding multiple modalities at once. The head pictured
here (L4H12) is simultaneously a Big Checkers and a Backslash pattern.

Table 2. Frequency Counts by Layer for Top Four Attention Patterns

Layer Checkers Big Checkers Columns Window Pane
Layer 1 1
Layer 2 1 1
Layer 3 1
Layer 4 1
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10 1
Layer 11
Layer 12
Total 3 20 7 7

W ot ot W N
— e e

[y
w
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4.1 Comparing DLA Output Vectors Across Layers

A key question is when the LCB model completes its computation during the
forward pass. By comparing the final output vector with a DLA vector from any
layer, we can use their similarity as an indicator. A small metric value between
layer ¢ and layer 12 suggests that computation is largely complete by layer £.

We employ three metrics to evaluate similarity between DLA vectors and
the final output. Cosine similarity measures vector alignment, with higher
values indicating greater similarity. Precision at K (PQK) evaluates how well
the top K predictions from earlier layers match the final prediction, at levels
K =1, K =2, and K = 5. To address gaps left by these metrics, we introduce
Magnitude Precision at KX (M-P@K), which considers vector magnitudes.

Let S be the scores tensor and T be the target tensor (i.e. the unnormalized
output of layer 12). Define T as the softmax-normalized version of T Select the
top k entries from S and T, denoted as Sy and T}, respectively. Let idxy be the
indices corresponding to the top k entries from S. The corresponding targets
from 7" at these indices are T'[idx]. Compute the following magnitudes:

Mag,., = ZT/ [idxz], and Mag, = ZT,;

Then the Magnitude Precision at K (MP@QK) is the ratio of these magnitudes:
MP@K = Mag,,,/Mag,,. Figure 5 and Figure 6 show the values of these metrics
over the 1000 game traces used to perform the attention head analysis, the mean
is taken over token positions i = 1, ...20.

1.00 1 = = = —

= F FF
0.75 = +
0.50 - T
0.25 -

0.009 =
Embed 1 2 3 4 5 6 7 8 9 10 11 12

Cosine Similarity

Fig. 5. Cosine similarity for DLA of h{ versus output at layer 12. Embed is the hidden
state vector prior to layer 1, just after embed() on the token id.

Figure 5 reveals significant insights. The embed () function’s vector is nearly
perpendicular to the final output vector, aligning with observations from Figure 3
that the Embed layer indicates the moved piece based on the latest input token
cl, rather than its destination. By layer £ = 9, much of the computation is
already complete as the median cosine similarity reaches 92%.

In interpreting Figure 6, note the presence of multiple viable chess moves per
position, affecting the stability of rank-based metrics like PQK and M-P@K. The
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Fig. 6. Precision at k and Magnitude (M-)Precision at k by layer. E=FEmbed

large inner quartile range of P@1 across all layers, which narrows significantly
for k > 1, suggests that while the model often identifies several plausible moves
early, the optimal move typically emerges in the last three layers. Additionally,
the relative stability of the M-PQK metric from k£ = 1 to k = 2 indicates that
even if the top-ranked move at earlier layers differs from the final layer, the
quality of alternative choices remains high.

5 Conclusion

This paper presents a mechanistic analysis of the LCB chess-playing transformer.
We introduce a new taxonomy of chessboard attention patterns and describe how
they can be used to guide chess play. The first seven layers of the transformer
use our attention patterns frequently. According to our ranked move analysis,
these are also the layers that contribute the most to move selection. High metric
values for layers £ > 8, combined with the distribution of attention head patterns
in Table 2 and manual reviews of numerous DLA sequences such as those shown
in Figure 3, suggest a significant interaction between structured attention heads
and move selection in the LCB model. However, the function of the final five
layers remains inconclusive. They likely play a role in long-term strategy, which
is difficult to analyze using current techniques.

Acknowledgments. The conclusions and opinions expressed in this research
paper are those of the authors and do not necessarily reflect the official policy
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