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Abstract

Probing classifiers are a technique for understanding and
modifying the operation of neural networks in which a
smaller classifier is trained to use the model’s internal rep-
resentation to learn a related probing task. Similar to a neu-
ral electrode array, training probing classifiers can help re-
searchers both discern and edit the internal representation of
a neural network. This paper presents an evaluation of the use
of probing classifiers to modify the internal hidden state of a
chess-playing transformer. We demonstrate that intervention
vector scaling should follow a negative exponential according
to the length of the input to ensure model outputs remain se-
mantically valid after editing the residual stream activations.

Introduction

Recent methods enable translation from the latent space vec-
tors from a GPT’s residual stream (i.e., the hidden state) into
human-comprehensible features (Nanda, Lee, and Watten-
berg 2023). One technique that has shown promise trains
a linear probe classifier (Belinkov 2022) to predict domain
specific knowledge directly from the residual stream activa-
tions of a model. Our research explores the causal relation-
ships between weight vectors of a linear probe classifier and
the semantic validity of the GPT’s output. However, given
the complexities of natural language, we constrain our re-
search to GPTs trained in a domain characterized by strict
logical rules: the game of chess (Toshniwal et al. 2022).

In this paper, we train a linear probe to predict the board
state directly from the residual stream activations of a GPT
trained on sequences of chess moves. Once the residual
stream activations are decoded, we reverse the process: by
adding or subtracting scaled weight vectors from the linear
probe classifier to the residual stream, we effectively mod-
ify GPT’s emergent, internal model of the board, adding or
removing pieces at will (Karvonen 2024). Our goal is to in-
vestigate how the scaling of this intervention vector affects
the semantic validity (i.e. move legality) of the GPT’s post-
intervention output, and it has implications for controlling
the emergent representations of GPTs trained on NLP tasks.
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Methodology

We trained a 12-layer GPT-2 to perform next-token pre-
diction exclusively on UCI-encoded chess move sequences.
Our GPT was given no a priori knowledge about the game
of chess, but it was nonetheless able to recommend le-
gal moves 99.9% of the time across a hold-out evaluation
dataset of games played by human-players. We then trained
a linear model, Pf : X — Z, to classify board position
from the GPT’s intermediate activations at layer ¢, where
Zs € zZ = {Pa NaBaRvaKapvnvba TaQ7k7®} indicates
the type of piece positioned on square s using typical chess
piece abbreviations or else ) when no piece is present. The
probe training data is a set X = {x¢} of activation vectors at
position ¢ and layer ¢ cached from forward passes of the GPT
on a set of 120k games. The probe’s average classification
performance exceeds 0.90 according to the Fl-score, accu-
racy, precision, and recall metrics, and the probe exceeds
0.94 in each metric on layers 7 and 8.

To edit the residual stream, we select an intervention vec-
tor u! for each position i and each layer £ and modify the
GPT’s residual stream activation x/! as follows:
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where 7 € R and uf is simply one of the column vectors
from the weights of the linear probe. Since each column vec-
tor is associated with a piece type in Z, we can add/remove
piece k from square s by setting the intervention vector to
the positive/negative of the k-th column vector in the probe
weight matrix, i.e., uf = P![k], or when multiple edits are
required we simply sum these column vectors.

For instance, Figure 1 shows how probe-based edits to the
GPT’s activations cause it to make legal moves according to
a board which differs from that of the the input sequence. In
this instance, we constructed an intervention vector u from
the k™ column associated with black pawns from the probe
weight matrix as follows:
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This intervention vector precisely erases the white pawn on

e4 from the residual stream representation of the board.
We aim to measure the effect of 1 on output validity post-

intervention. To accomplish this, we first compute a forward



Post-Intervention

Pre-Intervention

Board Postions

GPT Output Heatma,

Figure 1: An intervention on the King’s Pawn opening that
removes white’s e4 pawn by directly editing latent space ac-
tivations of the GPT. Pre-intervention, the GPT recommends
moving white’s e4 pawn with probability mass 0.764, but
this is an illegal move post-intervention. Using n = 1, the
intervention moves 0.39 and 0.30 of the probability mass to
the d2 pawn and g1 knight, respectively. A heatmap of the
pre- and post-intervention outputs is shown at the bottom.

pass for 500 games pre-intervention to determine the square
s and piece type k the GPT recommends moving at each
token position 7. We then construct an intervention vector
u! + —P![k] to remove that piece from the GPT’s latent
board representation. This ensures the model’s top-1 output
pre-intervention is invalid as output post-intervention.

We performed the interventions while adjusting the inter-
vention vector’s scale € [0, 2] in increments of 0.05. We
calculate the post-intervention output’s validity according to
what the board state would have been had the intervention
been successful. Specifically, we reconstruct the board state
B; using an external chess engine and compute the set of
legal moves from the subgame up to token ¢ . We then com-
pute the legal move probability mass (LMPM) by summing
the softmax of the output logits post-intervention across only
the tokens which are legal according to B;. High values of
LMPM indicate a successful intervention where the model
reoriented its output probability distribution away from the
removed piece and toward other tokens that are legal for B;.

Results

We computed mean LMPM for the first 25 moves (50-ply)
of the 500 games in our sample. Mean LMPM varies based
on the move and intervention vector scale 7 (see Figure 2).
The first move is peculiar because it requires a larger 7 to
be effective and over-scaling 7 has few consequences. For all
other moves, when an appropriate 7 is chosen (e.g., 0.3), the
intervention succeeds 92% of the time (o = 0.02). Yet, the
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Figure 2: Legal move probability mass post-intervention.
Values are averaged over 500 random games of chess.

intervention is highly sensitive to 1 values outside a narrow
Goldilocks region which varies across moves. For a given
move x, the center of this region is well approximated by:
H(z)=0.3+0.7e"".

We hypothesize the middle of this region decays exponen-
tially over the input sequence because, on average, each sub-
sequent token contributes proportionally less to the residual
stream than its predecessor tokens. Furthermore, we conjec-
ture the region simultaneously narrows because the informa-
tion in the residual stream becomes more nuanced later in an
input sequence, and large 7 values risk overwriting that nu-
ance, corrupting the GPT’s internal, emergent world model.

Conclusion and Future Work
Our research demonstrates the effect of scaling on semantic
validity during latent space edits. Future work will investi-
gate these effects on GPTs trained on natural language.
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