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ABSTRACT

Human societies are inherently complex and highly dynamic, resulting in rapidly changing

social networks, containing multiple types of dyadic interactions. Analyzing these time-varying

multiplex networks with approaches developed for static, single layer networks often produces

poor results. To address this problem, our approach is to explicitly learn the dynamics of these

complex networks. This dissertation focuses on five problems: 1) learning link formation rates; 2)

predicting changes in community membership; 3) using time series to predict changes in network

structure; 4) modeling coevolution patterns across network layers and 5) extracting information

from negative layers of a multiplex network.

To study these problems, we created a rich dataset extracted from observing social inter-

actions in the massively multiplayer online game Travian. Most online social media platforms are

optimized to support a limited range of social interactions, primarily focusing on communication

and information sharing. In contrast, relations in massively-multiplayer online games (MMOGs)

are often formed during the course of gameplay and evolve as the game progresses. To analyze

the players’ behavior, we constructed multiplex networks with link types for raid, communication,

and trading.

The contributions of this dissertation include 1) extensive experiments on the dynamics

of networks formed from diverse social processes; 2) new game theoretic models for community

detection in dynamic networks; 3) supervised and unsupervised methods for link prediction in mul-

tiplex coevolving networks for both positive and negative links. We demonstrate that our holistic

approach for modeling network dynamics in coevolving, multiplex networks outperforms factored

methods that separately consider temporal and cross-layer patterns.
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CHAPTER 1: INTRODUCTION

The natural flux of people’s changing social ties and interests generates a dynamic social

network. This invisible network can be observed by capturing daily or weekly snapshots of user

activities on social media platforms and massively multiplayer online games (MMOGs), allowing

these environments to to serve as “laboratories” for studying large-scale human behaviors. It is

informative to visualize this data as a set of graphs for each time period, where vertices correspond

to users and edges represent interactions. Multiple types of dyadic associations can be represented

by encoding the data as a multiplex network, where the links at each layer represent a different

type of interaction between the same set of nodes. Often these network layers coevolve, due to

interdependencies between the social processes represented by different layers.

1.1 Datasets for Analyzing Large Scale Human Behaviors

The main goal in this dissertation is to study large-scale human behaviors in coevolv-

ing multiplex networks (Figure 1.1). Due to the lack of good standardized datasets, there has

been relatively little research on dynamic multiplex networks, as compared to static single layer

ones [16–18, 42, 44]. One of the contributions of this dissertation is the creation of a dynamic

multiplex network dataset from a massively multiplayer online game called Travian, which is po-

tentially useful for studying a variety of social phenomena. Most online social media platforms are

optimized to support a limited range of social interactions, primarily focusing on communication

and information sharing. In contrast, relations in massively-multiplayer online games (MMOGs)

are often formed during the course of gameplay and evolve as the game progresses [114]. Even

though these relationships are conducted in a virtual world, they are cognitively comparable to

real-world friendships or co-worker relationships [150]. The amount and richness of social inter-

course makes it possible to observe a broader gamut of human experiences within MMOGs such
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as World of Warcraft [134], Sony EverQuest II [70, 114], and Travian [73, 144] than can be done

with other data sources.

Figure 1.1: A dynamic multiplex network with changing community structure. Each person is
associated with a node in a network. The network structure is dynamic and changes over time
as new users join and social connections are formed. Adding multiple layers to the network al-
lows a variety of interactions to be represented within the same network. Users self-organize into
communities based on shared interests that also change over time.

1.2 Predicting Community Changes in Dynamic Networks

It is informative to study changes in the network at the community level, as well as the in-

dividual level. Communities are emergent groups that are created as people form highly connected

subnetworks with their families, co-workers, and friends. Often communities are formed by partic-

ipants with the same goals, interests, or a geographic location. For instance, in MMOGs, network

communities may emerge from guilds of players with common economic interests or alliances who

share strategic goals. As the network changes, user groups can grow, shrink, or disappear, causing

drastic changes in the total number of network communities.

Community detection can help us understand the hidden social structure of the user pop-

ulations, but the dynamic aspect of networks can pose problems for standard algorithms. The

method proposed in this dissertation, D-GT (Dynamic Game Theoretic community detection),

2



uses stochastic optimization to find the best community structure, assuming that the nodes are

modeled as rational players who seek to maximize their personal utility while playing a commu-

nity membership game with neighboring nodes. In this game, the active agent decides to join

or leave different communities; agents receive benefits from being part of the same community

as their network neighbors but are penalized for joining too many communities. The Nash equi-

librium of the current game corresponds to the community structure of the current snapshot. As

the network evolves, agents usually find it advantageous to modify their community membership

strategy. In this dissertation, we examine the performance of varying the amount of information

propagated from prior snapshots. Even in dynamic networks, there are many nodes that retain the

same community membership or rejoin their former communities. Thus propagating information

from previous snapshots can provide more favorable initialization conditions for the stochastic

optimization procedure.

1.3 Modeling Network Dynamics

Our next contribution is a link prediction model, RPM (Rate Prediction Model). The aim

of link prediction is to forecast connections that are most likely to occur in the future, based on

examples of previously observed links. A key insight is that it is useful to explicitly model net-

work dynamics, how frequently links are created or destroyed when doing link prediction. Not

only do different networks change at different rates, but individuals within a network can have

disparate tempos of social interaction. Modeling this aspect of network dynamics can ameliorate

performance on link prediction tasks.

Link prediction approaches commonly rely on measuring topological similarity between

unconnected nodes [5,54,138]. It is a task well suited for supervised binary classification since it is

easy to create a labeled dataset of node pairs; however, the datasets tend to be extremely unbalanced

with a preponderance of negative examples where links were not formed. Topological metrics are
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used to score node pairs at time t in order to predict whether a link will occur at a later time

t′(t′ > t). However, even though these metrics are good indicators of future network connections,

they are less accurate at predicting when the changes will occur (the exact value of t′). To overcome

this limitation, we explicitly learn link formation rates for all nodes in the network; first, a time

series is constructed for each node pair from historic data and then a forecasting model is applied to

predict future values. The output of the forecasting model is used to augment topological similarity

metrics within a supervised link prediction framework. Prior work has demonstrated the general

utility of modeling time for link prediction (e.g., [21, 67, 108]); our results show that our specific

method of rate modeling outperforms the use of other types of time series.

1.4 Cross-Layer Link Prediction

Networks extracted from social media platforms frequently include multiple types of links

that dynamically change over time; these links can be used to represent dyadic interactions such as

economic transactions, communications, and shared activities. Organizing this data into a dynamic

multiplex network, where each layer is composed of a single edge type linking the same underlying

vertices, can reveal interesting cross layer interaction patterns. Rather than organizing this data into

social networks separately chronicling the history of different forms of user interaction, dynamic

multiplex networks [71] offer a richer formalism for modeling the social fabric of online societies.

A multiplex network is a multilayer network that shares the same set of vertices across all layers.

This network can be modeled as a graph G =< V,E > where V is the set of vertices and E is

the set of edges present in the graph. The dynamic graph G = {G0, G1, ..., Gt} represents the

state of the network at different times. The network is then defined as: Gt =< V,E1
t , ..., E

M
t >

with Eα
t ⊆ V × V , ∀α ∈ {1, ...,M}, where each set Eα

t corresponds to the edge set of a distinct

layer at time t. Thus a dynamic multiplex network is well suited for representing diverse user

activities over a period of time. In coevolving networks, links in one layer result in an increased

4



probability of other types of links forming between the same node pair. Hence we believe that a

holistic approach in which all the layers are simultaneously considered can outperform a factored

approach in which link prediction is performed separately in each layer.

1.5 Signed Link Prediction in Multiplex Networks

While both positive and negative relationships clearly exist in many social network settings,

the vast majority of research has only considered positive relationships. On social media platforms,

people form links to indicate friendship, trust, or approval, but they also link to signify disapproval

of opinions or products. In online games it is even possible to directly attack other players’ avatars

or armies. The recent availability of signed networks in social media sites such as Epinions and

Slashdot or online games such as Travian and EverQuest has motivated more research on signed

network analysis [32,74,82]. This recent work has shown that negative links have significant added

value over positive links for various analytical tasks. For example, a small number of negative links

improves the performance of recommender systems in social media [90, 137]. Similarly, trust and

distrust relations in Epinions can help users find high-quality and reliable reviews [58].

In this dissertation, we address the problem of predicting future user interactions from other

layers of the network where a layer could represent either negative or positive user interactions.

To do this, it is crucial to determine the correlation between layers. Two network layers of op-

posite valence are likely to have negatively correlated link formation processes. To capture the

interdependencies between different layers, we use mutual information to determine the sign of

the correlation. Mutual information expresses the reduction in uncertainty due to another variable;

we demonstrate that the average value of a layer’s mutual information can be used to calculate the

correlation of link formation processes across network layers with unknown valences.

Link prediction algorithms [63, 85, 93, 117] have been implemented for many types of

online social networks, including massively multiplayer online games and location-based social

5



networks. Despite the fact that link prediction is a well studied problem, few link prediction tech-

niques specifically address the problem of simultaneously predicting positive links across multiple

networks [39, 66, 112, 133], and there is little literature available on predicting negative links in

such networks.
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CHAPTER 2: LITERATURE REVIEW

Network structure analysis has become an increasingly important aspect of understanding

user behavior on social media platforms. In the last decade, much work has been done in inves-

tigating and characterizing the dynamics of complex systems using massive network data from

diverse domains. This process poses relations and links among entities, or people, at the center

of investigation. Network analysis techniques have been applied to social networks, technology

networks, the WWW, and biological networks, and extensive research has been devoted to the ex-

traction of non trivial knowledge from such networks. Predicting future links among the actors of a

network [25,85], detecting and studying the structure of communities [7] and mining frequent pat-

terns of users behaviors [19, 36], are only a few examples of problems studied in complex network

analysis.

To capture the global properties of these networks and solve a variety of related prob-

lems, the first approach is to model them as graphs whose nodes represent the dynamical actors,

and whose links stand for the interactions/relationships between them. These graphs might be

static or dynamic on one hand and single layer or multiplex on the other. Many studies on on-

line social networks, WWW, and biological networks focused on the macroscopic properties of

static networks (e.g., degree distributions, diameter, clustering coefficient); work in this area in-

cludes [6, 26, 50, 125]. However, social networks are not static. They are dynamic structures that

evolve over time either by the addition of new vertices or nodes or by new links that form between

nodes. Thus, the study and modeling of the dynamics in the network structure are important and

the focus of a number of papers [12, 14, 81].

Most of the networks studied are single layer with only one link between nodes. Network

analytics on these graphs has focused on the measurement of local and global properties such as

diameter, degree distribution, centrality, and connectivity. However, in the real world, networks

are often multiplex, i.e there might be a variety of relationships between any pair of nodes and
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aggregating the different types might discard important information about the structure and func-

tion of the original system [27, 75]. For instance, the same set of individuals in a social system

can be connected through friendship, collaboration, communication and co-location relationships,

or in massively multiplayer online games (MMOGs), players might have variety of connections

with each other such as trade, message and attack. In these systems, each type of interaction may

have a different semantic meaning, relevance, importance, and cost, so that treating all the links as

being equivalent loses important information. A better description of such systems is in terms of

multiplex networks, i.e. networks where each node appears in a set of different layers, and each

layer describes all the edges of a given type.

Recently, a considerable amount of effort has been devoted to the characterization and

modeling of multiplex networks, with the aim of creating a consistent mathematical framework to

study, understand and reproduce the structure of these systems. A number of measures have been

proposed in the context of real-world multiplex networks such as air transportation systems [29]

and massive multiplayer online games [128]. Some other works use a statistical mechanics for-

mulation of multiplex networks [22]. Others simply extend classical network metrics to handle

multiple layers [47, 124] and to model the growth of systems of this kind [101]. Finally, another

active research direction is that of characterizing the dynamics and the emergent properties of

multilayer systems, especially with respect to epidemic [116] and information spreading [28, 94],

cooperation [57], diffusion processes [56] and random walks on multiplex networks [46]. A review

of recent papers in this field can be found in [72].

2.1 Community Detection

The problem of community detection in static networks has appeared in multiple disciplines

including sociology and computer science. This has yielded a diverse set of approaches ranging

from traditional network structure based algorithms [55, 96, 99], optimization techniques [8, 31],
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label propagation [111, 146, 147], propinquity [153] and information diffusion [59, 60]. Detecting

community structure in dynamic networks, on the other hand, has attracted less research attention

due to the complexity of the problem and dearth of good datasets. There are some community

detection algorithms originally designed for static networks that continue to perform well in dy-

namic datasets. For instance, Lancichinetti et al.’s OSLOM (Order Statistics Local Optimization

Method) works on single snapshots but also benefits from information from previous network par-

titions. Like D-GT, OSLOM’s optimization procedure can be initialized with the partition from the

previous snapshot; it aims to optimize cluster significance with respect to a global null model [78].

We use this method as one of our benchmarks, along with two other static community detec-

tion algorithms, Louvain [23] and InfoMap [113]. These algorithms perform well on many static

community detection problems and have the benefit of being fast to compute on a single network

snapshot.

Other network properties have also been used to perform dynamic community detection;

for instance Hui et al. [68] proposed a distributed method for community detection in which mod-

ularity was used as a measure instead of the objective function. QCA (Quick Community Adap-

tation) is a modularity-based approach that focuses explicitly on the changes in the network struc-

ture, rather than recomputing community structure from scratch at each time step [100]. Here, we

evaluate the use of personal modularity as an alternative gain function to neighborhood similarity.

Some studies have focused on studying the evolution of communities over time. For in-

stance, [65] identified subsets of nodes, “natural communities”, that were stable to small perturba-

tions of the input data. Communities detected in later snapshots were matched to earlier snapshots

using the natural community tree structure. Palla et al. [104] proposed an innovative method for

detecting communities in dynamic networks based on the k-clique percolation technique; in their

approach, communities are defined as adjacent k-cliques, that share k − 1 nodes.

Machine learning has also been employed to model changes in community structure; for

instance, [130] predict transitions in community structure by learning supervised machine learning
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classifiers. This requires data on past transitions to train the classifiers, which limits its applicability

to certain datasets. [126] adopt a data mining approach to detect clusters on time-evolving graphs;

community discovery and change detection are performed using the minimum description length

(MDL) paradigm.

Rather than independently detecting communities at each snapshot and matching them, an-

other option is to make a local decision to add nodes to existing communities when new edges

appear in the network. One of our benchmarks, iLCD (intrinsic Longitudinal Community Detec-

tion) [30], updates the community structure of the network based on time-stamped sets of edges.

Nodes are added to communities if its mean number of second neighbors and robust second neigh-

bors exceeds the current average for the community. However, this model is limited to certain

types of network changes, and cannot handle interconnected pairs of nodes being simultaneously

added or the removal of edges.

Optimization can be used to identify minimum cost community assignments in dynamic

graphs. FacetNet [87] is a framework for analyzing communities in dynamic networks based on an

optimization of snapshot costs. It is guaranteed to converge to a local optimal solution; however,

its convergence speed is slow, and it needs to be initialized with the number of communities which

is usually unknown in practice. [51] modeled dynamic community detection as a multi-objective

optimization problem. Their approach is parameter free and uses evolutionary clustering to op-

timize a dual objective function. The first objective selects for highly modular structures at the

current time step, and the second minimizes the differences between community structures in the

current and previous time steps. D-GT also uses a stochastic optimization procedure, but all of the

agents individually optimize their utilities based on local network information.

The Markov Cluster Algorithm (MCL) [136] identifies graph clusters by computing the

probabilities of random walks through the graph; flow simulations are performed by alternating

expansion (matrix squaring) with inflation operations (Hadamard powers). Due to its mathematical

simplicity, it is popular for community detection in many domains but is slow and often overesti-
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mates the number of communities in the dataset. Regularized-MCL [115] is a variant of MCL that

prevents overfitting by taking into account neighbor flows. It can also be used within a multi-level

framework (Multi-level Regularized MCL) to speed up computation by executing a sequence of

coarsening operations on the graph before executing R-MCL.

LabelRankT [145], shares some similarities with the MCL techniques described above

while improving upon them in several ways; it is a label propagation approach in which the infla-

tion operation is applied to the label distribution matrix rather than to the adjacency matrix. Each

node requires only local information during propagation making it more scalable than MCL and

amenable to parallelization. Due to LabelRankT’s strong performance and good implementation,

it was selected as the best label propagation benchmark for our work.

Our proposed method (D-GT) attempts to simulate the decision-making process of the in-

dividuals creating the communities, rather than focusing on statistical correlations between labels

of neighboring nodes. We believe that exploiting game theory for dynamic community detection

yields more realistic, fine-grained communities since intrinsically game theory is a good repre-

sentation for expressing the behavior of individuals and strategic interactions among them [3, 92].

We have demonstrated the success of game-theoretic approaches in static community detection

across several domains, including detecting guilds in massively multiplayer online games [10] and

predicting trust between users on e-commerce sites. Many of these domains featured overlapping

communities in static networks [8,9]; however in this dissertation the datasets are dynamic, but not

overlapping.

2.2 Link Prediction

Online social networks, such as Facebook, Twitter and Foursquare, have become more pop-

ular in recent years. Information entities in online social networks can be represented as nodes and

the relationships between the nodes can be denoted as links. Two types of common links are: social
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connections [151, 152] and location check-ins between users and locations [152]. Link prediction

has extensive applications in real-world social networks and many concrete social services can be

cast as link prediction tasks, e.g., friend recommendation services can be solved by predicting the

social links among users [40,41,43,117,139] and location recommendation services can be treated

as the location link prediction task [33, 149]. Link prediction problems in online social networks

can divided into two categories: (1) link prediction problems in single layer networks [85], (2) link

prediction problems in multiplex networks [33, 127, 148, 149].

2.2.1 Link Prediction Problem in Single Layer Networks

Approaches to the link prediction problem in single layer networks are commonly cate-

gorized as being unsupervised [67, 84, 141] or supervised [64, 86, 123, 140]. In unsupervised

approaches, pairs of non connected nodes are initially ranked according to a chosen similarity

metric (for instance, the number of common neighbors) [89, 95]. The top k ranked pairs are then

assigned as the predicted links. The strength of this paradigm is that it is simple and generalizes

easily to many types of data, but there are some limitations: for instance, how to a priori select the

cutoff threshold for link assignment? Implicitly, these approaches assume that the links with the

highest scores are most likely to occur and form the earliest; however this is often not the case in

many dynamic networks [95]. If the rank correlation between the selected metric and the sequence

of formed links is poor, the accuracy of this approach suffers.

In addition to node similarity metrics, random walk is often used as the basis of unsuper-

vised learning algorithms, most famously PageRank [103]. Another variant - Random Walk with

Restart (RWR) is also commonly used [105,135]. Though RWR performs well in many real world

problems, its unsupervised nature means that it doesn’t always adapt well to new domains.

Supervised approaches have the advantage of being able to 1) simultaneously leverage

multiple structural patterns and 2) accurately fit model parameters using training data. In this

case, the link prediction task is treated as a classification problem, in which pairs of nodes that
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are actually linked are assigned to class 1 (positive class), whereas the non-connected ones are

assigned to class 0 (negative class). The standard model assumes that feature vectors encapsulating

the current network structure at time t are used to predict links formed at t+ 1; in some sense, this

model is “amnesiac”, ignoring the past connection history of individual nodes.

Supervised learning based link prediction algorithms were first introduced by Liben-Nowell

and Kleinberg in 2003 [84], who studied the usefulness of graph topological features by testing

them on bibliographic data sets. Hasan et al. extended their work in 2006 [4] by identifying a list

of easily-computable features (specifically for the coauthorship domain) and compared different

models (namely decision tree, kNN, multilayer perception, SVM, RBF network) on the features

and data set. Cukierski et al. incorporated 94 distinct graph features in their random forest classifier

and achieved reasonable results in predicting links on Flickr dataset [37]. [13] proposed a super-

vised random walk algorithm for link prediction and recommendation in social networks. They

focus on learning weights for the edges in social network, on the basis of rich attribute informa-

tion of the nodes (e.g. users of Facebook), and then the problem of classification is transferred to

optimization. Although this method performs well on user recommendation in the Facebook net-

work, it requires rich information of user node features like age, gender and hometown, and edge

features like interaction activity. Additionally, their method is computationally intensive since it

tries to learn all of the weights in the matrix.

2.2.2 Link Prediction Problem in Multiplex Networks

Many interesting real-world systems form complex networks with multiple distinct types

of inter-related objects and relationships. Link prediction in these networks has typically been

performed by treating all relationships equally or by studying each relationship separately and

ignoring dependency patterns across types; both of these approaches potentially lose valuable in-

formation. Different edge types may have a different topology or link formation mechanisms but

nonetheless influence each other, such that various combinations have specific relevance to the
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link prediction task. In order to avoid this information loss, in this dissertation we try to use cross-

layer information to enhance the performance of our link prediction models. The process of using

cross-layer information for link prediction in multiplex networks can be treated as a transfer learn-

ing problem where information is learned from a source layer and applied to improve prediction

performance the target layer. Tang et al. [133] introduced a transfer-based factor graph (TranFG)

model which incorporates social theories into a semi supervised learning framework. This model

is then used to transfer supervised information from a source network to infer social ties in the

target network.

Another strategy is to create more general versions of the topological measures that capture

activity patterns in multilayer networks. Davis et al. [39] introduced a probabilistically weighted

extension of the Adamic/Adar measure for these networks. Weights are calculated by doing a triad

census to estimate the probability of different link type combinations. The extended Adamic/Adar

metric is then used, along with other unsupervised link predictors, as input for a supervised clas-

sifier. Similarly, Hristova et al. [66] extend the definition of network neighborhood by considering

the union of neighbors across all layers. These multilayer features are then combined in a super-

vised model to do link prediction. One weakness with the above mentioned models is their inability

to use temporal information accrued over many snapshots, rather than relying on a single previous

snapshot. Rossetti et al. [112] combined multidimensional versions of Common Neighbors and

Adamic/Adar with predictors that are able to utilize temporal information. However, like the stan-

dard version of these metrics, these extended versions do not necessarily generalize to networks

generated from different processes.

Finally, in another research proposed by Pujari et al., the authors extend their previous

method for single layer networks [109] to multiplex networks [110]. They compute topological

attributes for each network layer and combine them using 1) a simple aggregation of these scores

across all layers or 2) an entropy-aggregation of values. These combinations are then used as a

series of features in a decision tree model.
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2.2.3 Signed Link Prediction Problem

Recently several papers have begun to investigate negative as well as positive relationships

in online contexts. For example, users on Epinions express trust or distrust of others [58], and

Slashdot participants declare users to be either friends or foes [74, 77]. More generally, arbitrary

hyperlinks on the Web can be used to indicate agreement or disagreement with the target of the

link, though the lack of explicit labeling in this case makes it more difficult to reliably determine

this sentiment [106]. The sign of a given link in a social network is defined as positive or negative

based on the attitude from the source of the link to the recipient. A fundamental question is then the

following: How do negative links affect the formation of those with positive sign? Can we extract

information from negative relationships to predict positive relationships and vice-versa? Answers

to these questions can help us reason about how negative relationships are used in online systems.

When used correctly, negative link information benefits user searches. For example, the addition

of a small number of negative links has been shown to improve the performance of recommender

systems in social media [90, 137]. Similarly, trust and distrust relations in Epinions can help users

find high-quality and reliable reviews [58].

Our aim in this dissertation is to leverage correlations between layers to improve link pre-

diction in multiplex networks. More specifically, we present a theoretical analysis of the link pre-

diction problem from the perspective of information theory. This process of information extraction

from negative layers can be treated as measuring the average mutual information of a target layer

based on a negative or positive predictor layer. Tan et al. [131] developed a framework to uncover

missing edges in networks via the mutual information of network topology. They estimate mutual

information parameters for a node pair based on structural features of a network. Node pairs are

then sorted according to their mutual information and those with highest values are deemed the

best candidates to link in the future. Here, we use mutual information simply to determine the sign

of correlations between layers; the scoring process is done separately.
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CHAPTER 3: MULTIPLEX NETWORK DATA ANALYSIS: AN

INTRODUCTION TO TRAVIAN MMOG

Massively-multiplayer online games (MMOGs) can serve as a unique laboratory for study-

ing large-scale human behaviors. However, one question that often arises is whether the observed

behavior is specific to the game world and its winning conditions. In particular, inter-player ag-

gression is more openly expressed within MMOGs since combat often comprises a large portion

of gameplay. In this dissertation, we aim to study how conflict in MMOGs shapes the under-

lying social networks. In MMOGs, conflict and cooperation are inextricably linked since many

attacks are launched by coalitions of players to gain resources, control territory, or subjugate ene-

mies. For our analysis of conflict within MMOGs, we selected two browser-based games, Game

X and Travian, in which there have been extensive previous studies of cooperation between play-

ers [11, 49, 73, 76, 79, 144]. The two games differ in game objectives: there is no official winning

condition for Game X. In contrast, Travian players develop their civilizations over a fixed period

of time in order to be the first to build a magnificent Wonder of the World, a construct that can only

be erected through extensive collaboration among a team of players. Constant raiding is required

to amass the resources required to grow one’s civilization.

To analyze the players’ behavior, we constructed multiplex networks for both games, with

link types for attack, communication, and trading. Our research compares and contrasts the net-

work structure of players in both games; while there have been other studies of multiplex networks

in a single game (e.g., [79, 114]), there have been few studies that have looked for gameplay pat-

terns across multiple games. For instance, griefing behavior was compared between World of

Warcraft and Toontown, but not within the context of social network structures [143]. The over-

arching aim of our study is to understand the evolution of conflict in different game worlds. We

discuss how differences in MMOG game objectives shape the structure of conflict. Then we study
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how the attack networks differ from communication and trade networks. Finally, we analyze how

communication, trade, and geographic connections affect the likelihood of two players engaging

in hostilities.

In the next section, we present a short introduction to Massively Multiplayer Online Games

and recent research in the area. The, two games that we used in our data analysis and create mul-

tiplex networks from are introduced. Finally, we study the nature of conflict and communication

across two game worlds (Travian and Game X). We compare and contrast the structure of attack

networks with trade and communication networks. Similar to real-life, social structures play a

significant role in the likelihood of inter-player conflict.

3.1 Massively Multiplayer Online Games (MMOG)

Massively multiplayer online games (MMOGs) are highly graphical 2- or 3-D videogames

played online, allowing individuals to interact not only with the gaming software (the designed

environment of the game and the computer-controlled characters within it) but with other players

as well. Most online social media platforms are optimized to support a limited range of social

interactions, primarily focusing on communication and information sharing. In contrast, relations

in massively-multiplayer online games are often formed during the course of gameplay and evolve

as the game progresses [114]. Even though these relationships are conducted in a virtual world,

they are cognitively comparable to real-world friendships or co-worker relationships [150]. The

amount and richness of social intercourse makes it possible to observe a broader gamut of human

experiences within MMOGs such as World of Warcraft [134], Sony EverQuest II [70, 114], and

Travian [73, 144] than can be done with other data sources.

Massively-multiplayer online games have been a fertile testing ground for many types

of human studies, enabling scientists to overcome key difficulties in studying social dynamics

by providing an experimental platform for collecting high resolution data over longer time pe-
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riod [73, 114, 134, 144]. They have been particularly valuable for studying groups [134], teams,

and organizations [73], since banding together yields economic and combat advantages in most

games. Geographically-separated players must work together to achieve shared goals using a sim-

ilar combination of email, chat, and videoconferencing as remote employees, hence game guilds

can be viewed as analogous to virtual workplace organizations [73]. Trust between guild members

is positively correlated with group performance [49], and willingness to grant shared access to

property, items, or user accounts can be used to measure trust between players. Roy et al. [114]

demonstrated that network structures in multiplex networks are very useful for predicting trust be-

tween MMOG players. Similarly we believe that the network structure of multiplex networks is

correlated with the likelihood of conflict among players.

In real-life there are myriad potential motivations for choosing to fight. Humphreys and

Weinstein [69] categorized key determinants of participation in conflicts as being long-term grievances

(i.e. economic or political disenfranchisement), selective incentives (money or safety), and com-

munity cohesion. Community cohesion predicts that a person is more likely to join the conflict

if they are members of a tightly-knit community and their friends have already joined. This fac-

tor is the most relevant to fighting within MMOGs. Not only are there conflicts between guilds

and alliances, but pick-up groups may spontaneously form to tackle larger challenges such as boss

fights [20].

3.2 Introduction to Travian

Travian is a popular browser-based real-time strategy game with more than 5 million play-

ers. Games can be played in over 40 different languages on more than 300 game servers worldwide.

Players start the game as chieftains of their own villages and can choose to be a member of one

of three tribes (Gaul, Roman, or Teuton). Each of these three tribes has its own advantages and

disadvantages. For instance, Teutons produce the cheapest military units and are the best raiders,
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whereas Gauls are the best at living in peace and have fast units and merchants. Players seek to

improve their production capacity and construct military units in order to expand their territory

through a combination of colonization and conquest. Each game cycle lasts a fixed period (a few

months) during which time the players vie to create the first civilization to complete construction

on one of the Wonders of the World. In the race to dominate, actors form alliances of up to 60

members under a leader or a leadership team. Alliances are equipped with a shared forum, a chat

room and an in-game messaging system. Similar to the real world, teamwork and negotiation skills

play a crucial role in game success (see Figure3.1).

Each server is a closed game environment and holds approximately 25,000 users on maxi-

mum. Playing with up to 20,000 users on one server with scarce resources, actors soon find them-

selves in a social dilemma [45], which is typical for organizations, project teams and economies

where parties need to both coordinate and compete with one another. In the race to dominate,

actors form teams or alliances of up to 60 members under a leader or a leadership team. Teams are

equipped with a shared forum, a chat room and an ingame messaging system. Like in virtual teams

at work, teamwork and negotiation skills play a crucial role in this context. Given these charac-

teristics of Travian, the virtual teams in Travian afford an excellent opportunity to study various

facets of virtual organizations.

Figure 3.1: The virtual world of Travian (http://travian.us/)

Conflicts in Travian can be divided into two categories: attacks and raids. The goal of
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an attack is to destroy its target, whereas raids are meant to gather bounty and are much less

vicious. The armies will do battle until at least one side is reduced in strength by 50%, and

therefore the loss on both sides is usually smaller. For this dissertation, we construct an attack

network from the raid data. A trade is an exchange of different resources (gold, wood, clay, wheat)

necessary to upgrade a village’s buildings. In Travian, villages may trade their resources with other

villages if both villages have a marketplace. Travian has an in-game messaging system (IGM)

for player communication. IGMs can also include broadcast messages, i.e. messages sent to all

players by the game moderators. To study these processes we created trade and communication

networks. However, in this analysis, broadcast messages were not considered as their volume

could introduce bias in the results. For our analysis, we have used data collected from a server

in Germany specifically designed for research purposes. The data set contains variety of tables

including logs and reports from different actions of users.

3.3 Game X

Game X is a browser-based exploration game in which players act as adventurers traveling

a fictional game world in a vehicle. Similar to real-life, there is no absolute victory within the Game

X world; instead players are engaged in an ongoing process of exploring the game world, mining

resources, and engaging in commerce and battle with other players. Players can use resources to

build factory outlets and create products that can be sold to other players. Unlike other MMOG’s

like World of Warcraft (WoW) and Everquest (EQ), Game X has a turn-based play system. Every

day each player gets an allotment of turns. Every action (except communication) requires some

number of turns to execute; example actions include: 1) move vehicle 2) mine resources 3) buy/sell

resources 4) build vehicles, products, or factory outlets, 5) fight non-player characters 6) fight

player characters. Players can communicate with each other through in-game personal messages,

public forum posts and in chat rooms; they can also denote other players as friends or as hostiles.
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In Game X fighting is one mechanism for advancement, but since fighting expends turns,

the players must carefully weigh the tradeoffs between combat and pursuing an economic agenda.

Players can engage in combat with non-player characters, other players, and even market centers

and factory outlets. A player’s skills affect the ability to attack/defend, and they can modify their

vehicles to include new weaponry and defensive elements.

Game X contains four types of groups: 1) nations 2) agencies 3) races and 4) guilds. Wars

in Game X can only occur between nations. There are three nations in the game, which were

pre-defined by the game creators. Joining a nation provides access to restricted nation-controlled

areas, quests, and vehicles. Each nation can have one of the following diplomatic relations to all

others: benign, neutral, strained, or hostile. If enough members of a governing body select hostile

diplomatic relations against another nation, a war is declared between the respective nations. After

war has broken out, additional combat actions are available for the warring nations. In particular,

war quests are available, which provide medals of valor to the players that wish to undertake and

complete the quests. Any attack against the opposing nation results in accumulating a set number

of war points. When the war ends, these war points determine the “winner” of the large-scale

conflict. A war situation will (via the game’s design) gravitate towards a state of peace. Each of

the respective governing bodies must maintain a majority vote to continue the war effort. Over

time, the amount of votes required to continue is increased by the game itself. Eventually, no

amount of votes will suffice and the nations return to a state of peace.

Players also have a bidirectional “reputation” measure with the nations in the game. Com-

bat with members of other nations incurs a negative penalty to this measure. During the war period

this negative penalty is dropped for players of the two warring nations – allowing unrestricted

combat.
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3.4 Travian Dataset Analysis

The Game X dataset consists of data from 730 days, and the Travian data is composed

of one game cycle on a high speed server in an expedited game (a period of 144 days). The

experiments in this dissertation were conducted on a 30 day period in the middle of the Travian

game cycle. This period has fewer transient bursts of activity and a more stable network than the

early period (which has many less committed players who drop out) and the late period where the

focus is on the Wonder of the World construction.
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Figure 3.2: Frequency of attacks in the Game X dataset (730 days). The peaks in activity represent
the first and second declaration of war between nations.
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Table 3.1: Travian and Game X attack, message, and trade network statistics.

Travian Game X

Parameter/Network Attack Message Trade Attack Message Trade

# of Vertices 4,418 3,092 2,649 2,898 5,112 5,860

Frequency 633,105 451,669 271,039 14,270 907,868 389,629

Diameter 17 9 10 14 8 10

Avg. Path Length 5.312 3.471 2.849 4.476 3.402 4.218

Avg. Degree 7.998 14.591 32.828 8.375 27.645 25.01

Avg. Clustering Coefficient 0.065 0.319 0.154 0.012 0.137 0.117

To analyze the relationship between conflict and communication in Game X and Travian,

we identified a period of the game with comparable attack network statistics. First, for every day

of the two games, we created a vector of features (the network properties from Table 3.1). Then,

using the standard Euclidean distance measure, we find the most similar day from the Game X

data for every Travian day. The features included: 1) nodes, 2) edges, 3) average path length,

4) diameter, 5) local transitivity, and 6) global transitivity. Results of this comparison reveal that

the days found using this matching algorithm tend to fall in a 30 day period ([590,620]) within

the second major Game X war (Figure 3.2). Table 3.1 shows the statistics for attack, trade, and

message networks during the time period selected for this analysis.1 In these networks, each node

represents an individual player, and directed edges represent attacks, trades, and messages between

players. Attack graphs in both Travian and Game X have a higher diameter, lower average degree,

and lower clustering coefficient than either the message or trade graphs.

1This dataset has been made available at: http://ial.eecs.ucf.edu/travian.php
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Degree distribution (log-log scale) for (a) attack, (b) message, and (c) trade networks
from Travian (top) and Game X (bottom)

Although Travian and Game X possess many commonalities, an important difference be-

tween the two games is in the role of combat in gameplay. In Travian, attacking (raiding) is one of

the easiest pathways for gaining the necessary resources for growing one’s civilization. In Game

X, attacks between players cause a loss of reputation if they are performed outside of war peri-

ods. The role of time is different in the two games. In Travian, players need to rush to grow their

civilizations within a short period of time. In Game X, the players have infinite time to explore

the richness of the world, but they can only take a limited number of actions per day. Each action

spent fighting limits the number of actions available for economic development, hence Game X

has a lower absolute frequency of attacks.

Interestingly, the degree distributions of attack, messages, and trades in both games con-

form to a power law distribution (Figure 3.3). Clauset et al. [34] proposed a robust estimating

technique to estimate the parameters of a power law; to verify the distributions, we used this
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method which employs a maximum likelihood estimator. This model calculates the goodness-of-

fit between the data and the power law. If the resulting value is greater than 0.1 the power law

is a plausible hypothesis for the data, otherwise it is rejected. Visually the trades in Game X ap-

pear to follow a double pareto lognormal distribution, with an exponential decay for higher trade

values [120].

Assortativity is a preference for a network’s nodes to attach to others that are similar in

some way. Though the specific measure of similarity may vary, network theorists often examine

assortativity in terms of a node’s degree. Correlations between nodes of similar degree are found

in the mixing patterns of many observable networks. For instance, in social networks, highly

connected nodes tend to be connected with other high degree nodes. This tendency is referred to

as assortative mixing, or assortativity. On the other hand, technological and biological networks

typically show disassortative mixing, or dissortativity, as high degree nodes tend to attach to low

degree nodes [98].

(a) (b)

Figure 3.4: Travian (a) and Game X (b) node degree assortativity

For Travian, as shown in Figure 3.4, while the message network displays disassortative

mixing, attack and trade networks tend to show a non-assortative mixing. This suggests that play-
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ers who send more messages are in contact with others who rarely send messages; communication

in Travian often flows from alliance leaders outward to the other alliance members, reflective of a

spoke-hub communication structure. In contrast, the degree of the members appears to be an unim-

portant consideration in dictating connectivity in the attack and trade networks. Non-assortative

networks may arise either because the networks possess a balanced number of assortative and dis-

assortative links or because a greater number of links in one direction is counterbalanced by a

greater weight in the other [107].

For Game X, the attack and trade networks show a disassortative mixing while the message

network displays non-assortative mixing. This indicates that attack and trade activity is centered

around group leaders, whereas communication is more likely to be agnostic to node degree. Note

that Game X has a more complicated group structure since players can belong to nations, guilds,

and agencies.

Attacks in both Travian and Game X are generally inversely proportional to other types of

activity. In Travian, in 41% of cases, players do not attack other players with whom they have been

in contact at least once (Figure 3.5). On the other hand in Game X, the above statement stands for

only 17% of attacks. 21% of attacks occur between players who have exchanged one message.

In Travian a large number of players do not attack players with whom they have traded

resources. As shown in Figure 3.6, 28% of the attacks in Travian occurred between two players

without any trade history. However, this rate is surprisingly low in Game X; only 13% of attacks

occur between players who lack a trade history. Once players have traded together, there is a sharp

increase, followed by a slow decrease in attack frequency. Trading with other players indicates that

they have desirable resources, making them worth attacking, and after only one trade, the players

are unlikely to have established the sense of trust that may deter an attack. We believe that in some

cases players who have never traded together or exchanged messages are geographically separated;

hence they are less likely to attack each other because they are unaware of each other’s existence.
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(a) (b)

Figure 3.5: Probability of attacks occurring between a pair of users vs. the number of messages
they have exchanged (P(Attack and Message=x)) in Travian (a) and Game X (b)

(a) (b)

Figure 3.6: Probability of attacks occurring between a pair of users vs. the number of trades they
have made (P(Attack and Message=x)) in Travian (a) and Game X (b)

To test this hypothesis, we analyzed the probability of attack based on the distance between

player territories in Travian (Figure 3.7). It was not possible to conduct a similar analysis in

Game X, which has a spatial layout based on discrete tiles. To estimate distance, we calculated
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the territory centroids by averaging the latitudes and longitudes of the villages. Then, standard

Euclidean distance was used to measure the distance between each pair of players in the attack

network. Our analysis shows that attacks between immediate neighbors are frequent. Attacks

with close (but not immediate) neighbors are common, followed by a decay in attack activity with

distance.

Figure 3.7: Probability of attacks based on players’ distance from each other

Attacks are generally rare between alliance and guild members, indicating a strong level of

trust in those relationships. In Travian, 4% of the attack edges are between two players within the

same alliance. Surprisingly, the same rate stands for Game X, and only 4% of players attack their

guild-mates.

3.5 Summary

This chapter summarizes our findings across two massively multiplayer games with dif-

ferent game objectives, Game X and Travian. Despite the fact that Travian’s game structure en-

courages a higher level of combat activity than Game X, attack networks in both games possess a

similar network structure, and are distinctly different from message and trade networks. In sum-

mary, our analysis reveals the following:
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1. The attack networks in both Travian and Game X share a higher diameter, lower average

degree, and lower clustering coefficient than either the message or the trade networks.

2. All networks in both games have similar power law degree distributions, but different degree

assortativity. In Travian attack networks show non-assortative mixing, whereas in Game X

they are disassortative.

3. The general trend is that attacks are inversely proportional to message frequency, trade fre-

quency, and distance, with some specific exceptions. Players rarely attack fellow alliance or

guild members in either game.
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CHAPTER 4: IDENTIFYING COMMUNITY STRUCTURES IN

DYNAMIC NETWORKS

Most real-world social networks are inherently dynamic and are composed of communities

that are constantly changing in membership. As a result, recent years have witnessed increased

attention toward the challenging problem of detecting evolving communities. As the network

changes, user communities evolve and can grow, shrink, or disappear. Here, the word “community”

refers to the emergent groups that are created as people form highly connected subnetworks with

their families, co-workers, and friends. In this context, we regard the communities as simply

friendship networks in which the participants share common interests, activities, or a geographic

location. Intuitively we expect more edges inside the community compared to its outside, i.e. intra-

connections tend to be more common than inter-connections. Community detection can help us

understand the hidden social structure of the user populations, but the dynamic aspect of networks

can pose problems for standard algorithms. In this dissertation, we leverage the concept of game

theory to attack the problem of dynamic community detection.

4.1 Problem Formulation

Here, we provide the formal definition of the problem and the notations used throughout

the dissertation. Given snapshots T = {T t | ∀t, t = 1, ...,M} of a dynamic network and their

corresponding underlying graphs Gt = (V t, Et), with nt = |V t| vertices and mt = |Et| edges,

where t=1,...,M, we aim to detect community structure C = {Ct | ∀t, t = 1, ...,M} of the network.

Table 4.1 shows the symbols and definitions used throughout this chapter.
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Table 4.1: Definition of Symbols.

Symbol Definition
T set of snapshots
C set of communities
Gt graph of t-th snapshot with no self-edges
Ct community structure of t-th snapshot
Ct
k k-th community in Ct

mt, nt number of edges and vertices of Gt

At adjacency matrix of Gt

St profile of strategies of t-th snapshot
sti i-th agent’s strategy in t-th snapshot
gti i-th agent’s gain function in t-th snapshot
lti i-th agent’s loss function in t-th snapshot
uti i-th agent’s utility function in t-th snapshot
ctij similarity between i-th and j-th agents

in the t-th snapshot

Table 4.2: Definition of Possible Actions.

Action Definition
Join add a new label to sti
Leave remove a label from sti
Switch remove a label from sti and add a new one
No operation no action is performed

4.2 Proposed Method

We leverage a dynamic agent-based model to detect communities by optimizing each user’s

utility through a stochastic search process [8]. In this dissertation, we evaluate four different vari-

ants of the procedure: D-GT (Dynamic Game Theoretic community detection), D-GTP (D-GT

with passing one Previous Snapshot) D-GTS (D-GT with Separate Runs) and D-GTG (D-GT

with passing Ground Truth).
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4.2.1 Dynamic Game Theory (D-GT)

In this section, we present the framework for D-GT. We treat the process of community

detection as an iterative game performed in a dynamic multi-agent environment in which each

node of the underlying graph is a selfish agent who decides to maximize its total utility ui. Note

that hereafter we use the terms node, user, and agent interchangeably. The terms pool, list, or set

of agents are used to denote the set of nodes maintained during each game.

During the community formation game, each agent assesses whether taking an action (join,

switch, or leave) (Table 4.2) will increase its utility. An agent joins a new community ct ⊆ Ct by

adding its label to sti. It then gains utility utJoin and its community membership changes:

sti ← sti ∪ {ct}. (4.1)

It may leave one of its own communities, say c′t by removing its label from sti which results

in utility utLeave and changes the community membership as follows:

sti ← sti/{c′t}. (4.2)

The agent can also simultaneously switch communities:

sti ← sti/{c′t}, sti ← sti ∪ {ct}. (4.3)

Even though the switch action is not strictly necessary, having this additional action speeds up the

convergence of the stochastic search process.

The new utility u′ti for this agent is updated as follows:

u′ti ← max{utJoin, utLeave, utSwitch, utnoOp}. (4.4)
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To reduce computation time, only communities containing the agent’s nearest network neighbors

are considered as candidates for the join/switch operation, and we independently identify the best

communities for the join and leave operations. If no action improves the agent’s utility, it does not

change its strategy (no operation).

The set of all communities at the t-th snapshot is denoted by Ct. We define a strategy

profile St = (st1, s
t
2, ..., s

t
n) which represents the set of all strategies of all agents, where sti ⊆ Ct

denotes the strategy of agent i, i.e. the set of its labels at snapshot t. In our framework, for each

snapshot, the best response strategy of an agent i with respect to strategies St−i of other agents is

calculated as:

arg max
sti⊆Ct

uti(S
t
−i, s

t
i) (4.5)

Agents are selected randomly, without replacement, until all the agents have had the opportunity

to play the community formation game in order to guarantee adequate exploration of the strategy

search space. The utility function for each agent is calculated by combining the benefit of its

community memberships, based on a gain function and subtracting losses incurred:

uti(S
t
−i, s

t
i) = gti(S

t
−i, s

t
i)− lti(St−i, sti), (4.6)

We have experimented with two variants on the gain function for agent i.1 The first gain

function is based on similarity between agents:

gti(S
t) =

1

mt

∑
k∈sti

∑
j∈Ctk,j 6=i

ctij . (4.7)

Here, we use neighborhood similarity to quantify the structural equivalence between users

1We employ the notation for directed graphs, although it is straightforward to generalize to undirected graphs by
ignoring the in/out superscripts.
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at time t:

ctij =



wtij(1− d
in,t
i dout,tj /2mt) Atij = 1, wtij >= 1

wtij/n
t Atij = 0, wtij >= 1

din,ti dout,tj /4mt Atij = 1, wtij = 0

−din,ti dout,tj /4mt Atij = 0, wtij = 0

(4.8)

wtij is defined as the number of common neighbors possessed by nodes i and j, where common

neighbors are nodes with direct in-edges from both i and j. din,ti and dout,ti are the in- and out-

degrees of node i at snapshot t. mt and nt are the number of edges and nodes respectively and

primarily serve as normalization constants. Note that ctij assumes its highest value when two nodes

have at least one common neighbor and are also directly connected, i.e. Atij = 1. Hence agents

playing the community formation game benefit from joining communities containing connected

nodes with many common neighbors.

The second gain function measures the personalized modularity of the i-th agent:

gti(S
t) =

1

2mt

∑
k∈sti

∑
j∈Ct

k
,j 6=i

∑
k′∈stj

(Atijδ(i, j)−
din,ti dout,tj

2mt
|k ∩ k′|), (4.9)

where k ∈ sti and k′ ∈ stj refer to the community labels at snapshot t that agent i and j belong to

respectively; δ(i, j) is an indicator function that is 1 when i and j are members of the same com-

munity. More intuitively, this gain function explains how well the i-th agent fits the communities

it belongs to, compared to a randomly assigned community.

Similar to what happens in real life, we also consider the loss function lti for each agent,

which is linear in the number of labels each agent has, This can be used to model the intrinsic

communication overhead of belonging to multiple communities and prevents the agents from in-

discriminately joining every available community. Therefore we define the following loss function
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for agent i:

lti(S
t
−i, s

t
i) =

|sti|
mt

. (4.10)

Here sti = {1, 2, ..., k} is the set of labels at snapshot t which agent i belongs to.

In our framework, the best response strategy of the agent i with respect to strategies St−i of

other agents is calculated by:

arg max
s′ti ⊆Ct

gti(S
t
−i, s

′t
i )− lti(St−i, s′ti ). (4.11)

The strategy profile St forms a pure Nash equilibrium of the community formation game if

no agent can unilaterally improve its own utility by changing its strategy:

∀i, s′ti 6= sti, u
t
i(S

t
−i, s

′t
i ) ≤ uti(S

t
−i, s

t
i). (4.12)

A local equilibrium is reached if all agents play their local optimal strategies:

∀i, s′ti ∈ ls(sti), uti(St−i, s′ti ) ≤ uti(S
t
−i, s

t
i). (4.13)

Here ls(sti) refers to local strategy space of agent i, which is the set of possible label sets it can

obtain by performing the actions defined earlier.

4.2.2 Algorithm

An overview of the D-GT framework is shown in Algorithm 1. For every snapshot of the

network, a set of agents, one representing each node in the graph, is created to play the community

formation game. The community structure is initialized either with a set of singleton communities

or with communities passed from previous snapshots. During game play, an agent is randomly
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selected (without replacement) from the pool; it selects an action (join, leave, switch, or no op)

by calculating the strategy that yields the highest utility. After the agent plays, the community

structure is updated.

The game is played until the number of agents changing their play strategy between per-

mutations falls below the threshold, or the maximum iteration is reached. Empirically, we have

discovered that 8n is a good iteration limit with a threshold of 5%. Thus if there are 1000 nodes

in a network snapshot, the community formation game is played until fewer than 50 nodes change

strategies or to the maximum of 8000 games. Figure 4.1 shows an example of the convergence in

utility vs. iteration.

The outer loop of the algorithm requires iterating over M graph snapshots, and the inner

loop requires performing a maximum of 8n iterations of the community formation game that, in

the worst case, requires considering n community choices. Thus, the overall time complexity of

D-GT is O(Mn2).

Figure 4.1: Change in average utility summed over all nodes vs. iteration for the Travian-Trades
dataset (one snapshot with 964 nodes). The algorithm converges after 6680 iterations which re-
quires 2.8 seconds to complete.

D-GT maintains a candidate set of multiple community assignments per agent until the

last iteration and then selects the assignment with the highest utility function as the final disjoint
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partition. We evaluate several different variants of the procedure:

• D-GTS (D-GT with Separate runs): this version does not employ any information from

previous runs and hence is equivalent to a static community detection procedure.

• D-GTP (D-GT passing one Previous Snapshot): rather than passing strategy profiles from

all previous snapshots, we only initialize the community formation game with the structure

from a single previous time slice. For each snapshot T k, we initialized communities and

agents to the existing information from T k−1.

• D-GTG (D-GT with passing Ground Truth): D-GTG leverages some ground truth infor-

mation. A select seed group of ground truth communities with predefined size is used to

initialize communities for snapshot T k; however we do not pass any discovered community

structure to the following snapshots (similar to D-GTS). This variation cannot be used unless

some of the agents’ community membership is known in advance.

Algorithm 1 D-GT Community Formation Game

1: Input: Snapshots T = {T 1, T 2, . . . , TM}
2: Output: Communities C = {C1, C2, . . . , CM}
3: for all T t ∈ T do
4: Initialize p← 0
5: repeat
6: Initialize q ← 0
7: for all agents in randomized order do
8: Select best action a using Eqn. 4.5
9: if a = “No operation” then

10: q ← q + 1
11: else
12: Update Ct according to a
13: end if
14: end for
15: p← p+ 1
16: until p > 8 or q > threshold θ
17: end for
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Figure 4.2: The structural changes in the AS-Oregon dataset over 9 snapshots including the number
of edges deleted (E−) and added (E+), as well as the number of nodes involved in changes (N+−).
The community detection problem becomes more challenging when there are significant structural
changes between snapshots.

Figure 4.3: The structural changes in the AS-Internet dataset over 733 snapshots.

4.2.3 Experimental Results

Algorithms were evaluated together on a system with 12G of RAM and Intel CPU 2.53

GHz, and all reported results were averaged over ten repetitions.

4.2.3.1 Baseline Methods

We compare D-GT with the following community detection baselines:

• LabelRankT2 [145]. LabelRankT functions according to the generalized LabelRank, in

which each node requires only local information during label propagation processing. Sev-

eral parameters must be set before running the algorithm on the data; we used the best

performing values reported in the original paper.

2https://sites.google.com/site/communitydetectionslpa
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Figure 4.4: The structural changes in the Enron dataset over 12 snapshots.

Figure 4.5: The structural changes in the Travian Trades dataset over 30 snapshots.

Figure 4.6: The structural changes in the Travian Messages dataset over 30 snapshots.

Figure 4.7: The structural changes in hep-ph dataset over 10 snapshots.
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• iLCD3 [30]. iLCD is another well known community detection approach for dynamic social

networks which works by first adding edges and then merging the similar ones. It takes the

dynamics of the network into account.

• OSLOM4 [78]. The Order Statistics Local Optimization Method (OSLOM) is a versatile

community detection algorithm that can handle most types of graph properties including

edge directions and weights, overlapping communities, hierarchies and community dynam-

ics. It is based on the local optimization of a fitness function expressing the statistical sig-

nificance of clusters with respect to random fluctuations.

• InfoMap5 [113]. InfoMap is a static community detection method that calculates the prob-

ability flow of random walks and decomposes the network into modules by compressing a

description of the flows. Since this is a static algorithm, we run it separately on each snap-

shot.

• Louvain6 [23]. The Louvain method is a static community detection approach designed to

optimize modularity using heuristics. Small communities are found by optimizing modular-

ity locally for all nodes. Then each community is grouped into a single node, and the first

step is repeated. We run this algorithm separately on every network snapshot.

4.2.3.2 Datasets

To illustrate the strength and effectiveness of our approach, we selected some communica-

tion networks from the SNAP7 graph library as well as two networks (messages and trades) from

3http://www.cazabetremy.fr/iLCD.html
4http://www.oslom.org/software.htm
5http://www.mapequation.org/code.html
6https://sites.google.com/site/findcommunities
7http://snap.stanford.edu/
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a well-known multiplayer online game. Statistics for the datasets are provided in Table 4.3, and

description of the datasets is as follows:

AS-Oregon Graph [83]. The dataset contains 9 graphs of Autonomous Systems (AS)

peering information inferred from Oregon route-views between March 31, 2001 and May 26, 2001.

These 9 graphs are different snapshots from the data with a minimum of 10,670 and maximum of

11,174 nodes. The number of edges ranges from 21,999 in the snapshot of April 07, 2001 to 23,409

in May 26, 2001. Figure 4.2 shows the number of edges added and deleted, as well as the number

of nodes involved in the changes for the AS-Oregon dataset.

Table 4.3: Dataset Summary

Data Oregon Internet Enron Travian (Messages) Travian (Trades) hep-ph

Min # of nodes 10,670 2,948 101 1,373 964 12,711

Max # of nodes 11,174 6,477 137 2,100 1,336 34,401

Min # of edges 21,999 3,386 1,432 8,511 8,080 39,981

Max # of edges 23,409 13,233 5,015 19,242 10,221 51,485

# of snapshots 9 733 12 30 30 10

AS-Internet Routers Graph [83]. Similar to AS-Oregon, this is a communication network

of who-talks-to-whom from the Border Gateway Protocol logs of routers in the Internet. The

dataset contains 733 daily snapshots for 785 days from November 8, 1997 to January 2, 2000. The

number of nodes in the largest snapshot is 6,477 (with 13,233 edges). Figure 4.3 illustrates that

the structure of the graph can change dramatically at each snapshot.

Enron Email [126]. The Enron email network contains email message data from 150 users,

mostly senior management of Enron Inc., from January 1999 to July 2002. Each email address is

represented by an unique ID in the dataset, and each link corresponds to a message between the
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sender and the receiver. After a data refinement process, we simulate the network evolution via a

series of 12 growing snapshots from January 2000 to December 2000. Enron network changes are

shown in Figure 4.4.

Travian8 [61] Travian is a popular browser-based real-time strategy game with more than

5 million users. Players seek to improve their production capacity and construct military units

in order to expand their territory through a combination of colonization and conquest. Each game

cycle lasts a fixed period (a few months) during which time the players vie to complete construction

on one of the Wonders of the World. To do this, they form alliances of up to 60 members under a

leader or a leadership team; in this article these alliances are used as the ground truth for evaluating

the community detection procedure.

Travian has an in-game messaging system (IGM) for player communication which was

used to create our Messages network. Each player can submit a request to trade a specific resource.

If another player finds this request interesting, he/she can accept it and the trade will occur; this

data was used to build the Trade network. About 70% of messages are exchanged between users in

the same alliance (community) making it more predictive of community structure than the Trades

network since only 30% of edges in this network represent trades occurred between players within

the same alliance. The structural changes in both Travian datasets are shown in Figures 4.5 and 4.6.

HEP-PH Citation Graph [83]. The HEPPH (high energy physics theory) citation graph

from the e-print arXiv covers all the citations within a dataset of n = 29, 555 papers with e =

352, 807 edges. If a paper i cites paper j, the graph contains a directed edge from i to j. If a

paper cites, or is cited by, a paper outside the dataset, the graph does not contain any information

about this. This data covers papers in the period from January 1993 to March 2002. There are ten

snapshots where each snapshot includes data from twelve months except the last snapshot which

only contains edges from the first three months of 2002 (Figure 4.7).

8ial.eecs.ucf.edu/travian.php
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4.2.3.3 Evaluation Metrics

We evaluated the performance of all methods using the following metrics.

4.2.3.3.1 Normalized Mutual Information

One way to measure the performance of a community detection algorithm is to determine

how similar the partition delivered by the algorithm is to the desired partition, assuming ground

truth information about the community membership exists. Out of several existing measures [52],

we selected the standard version of normalized mutual information (NMI) [38], which is computed

as follows:

Inorm(X,Y) =
2I(X, Y )

H(X) +H(Y )
,

(4.14)

where I(X, Y ) is mutual information between two random variablesX and Y (i.e. two community

partitions) [91]:

I(X,Y) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)
,

(4.15)

Here P (x) indicates the probability that X = x and joint probability P (x, y) equals to P (X =

x, Y = y). H(X) and H(Y ) are the entropies of X and Y , respectively. NMI lies in the range

[0,1], equaling one when two partitions X and Y are exactly identical and zero when they are

totally independent. Code to calculate NMI can be downloaded at: https://sites.google.

com/site/andrealancichinetti/software.
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4.2.3.3.2 Modularity

Modularity measures the difference between the number of intra-community edges for a

given community partition vs. a random distribution of edges; it is the most popular qualitative

measure in detecting communities in social networks. However, it has been shown that modularity

has drawbacks and becomes unreliable when networks are too sparse [53]. It is also useful to

examine the number of detected communities in conjunction with modularity to ensure that the

algorithm is not being overly aggressive about combining small communities in order to maximize

overall network modularity.

Standard modularity Q is usually defined as follows:

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δci,cj (4.16)

where Aij is an element of the adjacency matrix, δij is the Kronecker delta symbol, and ci is the

label of the community to which vertex i is assigned. However, modularity can be slightly different

for directed networks [80] and can then be reformulated as:

Q =
1

m

∑
ij

[Aij −
dini d

out
j

m
]δci,cj (4.17)

where Aij is defined in the conventional manner to be 1 if there is an edge from i to j and zero

otherwise. Here, the probability of the existence of an edge from vertex i to vertex j has the

probability dini d
out
j /m, where dini and doutj are the in- and out-degrees of the vertices respectively.

4.2.4 Evaluation

In this chapter, we examine four research questions:
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1. How does the gain function influence community detection performance?

2. Does the initialization procedure affect the performance of dynamic community detection?

3. How does D-GT perform vs. the competitor methods?

4. In cases where the community membership of a small number of the agents is known, can it

be used to improve D-GT’s performance?

Table 4.4: Modularity evaluation metric on the six datasets; results are averaged over all snapshots.

Algorithm/Dataset Oregon Internet Enron
Travian

(Messages)

Travian

(Trades)
hep-ph

D-GT + Similarity 0.61±0.02 0.59±0.02 0.50±0.02 0.45±0.03 0.43±0.02 0.56±0.03

D-GTS + Similarity 0.63±0.02 0.57±0.04 0.48±0.02 0.44±0.02 0.42±0.01 0.55±0.02

D-GTP + Similarity 0.59±0.02 0.58±0.05 0.47±0.03 0.44±0.03 0.41±0.02 0.51±0.04

D-GT + Modularity 0.57±0.03 0.55±0.04 0.47±0.03 0.48±0.04 0.41±0.02 0.55±0.04

D-GTS + Modularity 0.63±0.02 0.51±0.02 0.43±0.02 0.49±0.03 0.40±0.03 0.54±0.02

D-GTP + Modularity 0.59±0.03 0.48±0.03 0.39±0.02 0.47±0.03 0.42±0.02 0.52±0.04

OSLOM 0.49±0.05 0.52±0.04 0.39±0.03 0.44±0.04 0.32±0.01 0.49±0.01

LabelRankT 0.44±0.01 0.41±0.09 0.34±0.05 0.42±0.04 0.36±0.03 0.43±0.06

iLCD 0.15±0.05 0.11±0.01 0.13±0.05 0.19±0.02 0.09±0.01 0.16±0.07

InfoMap 0.63±0.04 0.61±0.01 0.49±0.08 0.51±0.02 0.43±0.04 0.56±0.04

Louvain 0.59±0.02 0.57±0.04 0.46±0.06 0.53±0.02 0.49±0.02 0.54±0.07

We analyze the performance of the D-GT variants vs. LabelRankT, iLCD, OSLOM, In-

foMap, and Louvain on the two metrics, normalized mutual information (NMI) and modularity.

We hypothesize that D-GT with the modularity gain function will perform well on the modular-

ity evaluation metric, since its stochastic search process essentially optimizes local modularity.

Also D-GT’s initialization procedure will not necessarily help the modularity optimization process

since it can be performed effectively without considering community evolution through time. This
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suggests that D-GTS is a good candidate for the modularity evaluation metric.

However, in most real-world communities, prior community membership is a good pre-

dictor of future membership. Thus we believe that D-GT is more effective at discovering the real

community structure as measured by the normalized mutual information (NMI) evaluation metric.

Our previous work [8] has shown that the neighborhood similarity function is a good gain function

for recovering the true community structure so we hypothesize that D-GT (similarity) is the best

choice for NMI.

Figure 4.8 shows the average performance of all the D-GT variants with the similarity gain

function vs. OSLOM, LabelRankT, iLCD, InfoMap and Louvain. Note that it is not possible to

calculate the NMI performance on the AS-Internet, AS-Oregon, Enron, and hep-ph datasets since

we don’t have ground truth community structure; for the Travian datasets, we use the alliance

membership to calculate the NMI. D-GT (similarity) outperforms all other methods (p < 0.01) on

this metric.

In D-GT, each node’s community membership vector is initialized as the superset of all

communities that it has been a member of at any time step. If most of the nodes have remained

within the same communities, the correct structure is quickly discovered. In cases where there are

cyclic temporal patterns, there is clearly some value in considering earlier community assignments.
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Figure 4.8: Normalized mutual information (NMI) evaluation metric on the two Travian datasets
with ground truth community membership information; results are averaged over all snapshots.
The variants of D-GT are colored in purple, LabelRankT (red), OSLOM (indian red), iLCD (yel-
low), InfoMap (gray) and Louvain (blue).

As predicted it outperforms the more myopic D-GTS (that uses no prior information) and

D-GTP (one previous snapshot); paired t-test comparisons on the two Travian datasets are signif-

icant at the p < 0.01 level. Figure 4.9 shows that D-GT (similarity) is more successful than the

other D-GT variants at correctly predicting the number of communities, as measured by summed

absolute difference between predicted and actual community numbers (lower is better). Note that

it is possible to do acceptably well on the NMI metric while still incorrectly estimating the actual

number of communities in the dataset. OSLOM also performs well on both metrics (NMI and

number of communities).

It is also useful to look at how the number of predicted communities varies between consec-

utive snapshots. In most cases, the number of communities should remain relatively stable, since

the structure of real-world communities rarely changes completely in short period of time. This

is definitely true in Travian, where the number of alliances changes relatively slowly. Figure 4.10

shows the number of predicted communities vs. time on the Travian (Trades) dataset; all of the
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methods make more consistent predictions over time than LabelRankT.

Table 4.4 shows the average performance of all the D-GT variants vs. OSLOM, Label-

RankT, iLCD, InfoMap and Louvain at optimizing modularity. Bold font shows the absolute best

performing algorithm, with italics marking the best performing D-GT variant. All D-GT variants

are competitive at optimizing modularity but none are exceptional. They outperform the other

dynamic algorithms (iLCD, LabelRankT) but rarely the static community detection algorithms

(Louvain and InfoMap). This is unsurprising since the modularity metric does not intrinsically

reward preserving continuity between snapshots. D-GT (similarity) continues to perform well, as

does D-GTS (modularity).

Figure 4.9: Absolute difference between the predicted number of communities and the actual
number for the two Travian datasets. D-GT (with the similarity gain function) and OSLOM achieve
the best performance overall at correctly predicting the number of alliances.

(Since this serves a prediction error measurement, lower is better.)

48



Figure 4.10: Number of predicted communities vs. time for the Travian (Trades) dataset. Label-
RankT’s (red) predicted number of communities varies drastically between time steps, whereas all
other algorithms make more consistent predictions.

In some scenarios, it is plausible that the community membership of a small number of

agents is known in advance, and the community detection procedure should leverage this infor-

mation. For instance, MMOG game alliances often have a leadership council that is publicly

known. To handle this problem, we developed a variant (D-GTG: D-GT with passing Ground

Truth). Fig. 4.11 shows the performance improvements from increasing the size of the seed groups

from 0–20% of the total number of agents for the Travian (Messages) dataset, and Fig. 4.12 shows

the performance increase for Travian (Trades). Note that extracting community membership infor-

mation from the network structure of Travian (Trades) is a difficult problem because only 30% of

the edges in Travian (Trades) occur between players within the same alliance (community). Also

the dataset has a high number of isolated nodes; about 50% of the nodes do not belong to any

alliance.

Table 4.5 shows the running time of all algorithms on our largest datasets, the AS-Internet

dataset (with the highest number of snapshots) and hep-ph (with the highest number of nodes).

Overall, the running times provided by all algorithms were quite reasonable, as there are 733 snap-

shots in the Internet dataset and over 10,000 and 30,000 nodes in Oregon and hep-ph respectively.
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Figure 4.11: D-GTG NMI vs. seed group size on Travian (Messages)

Figure 4.12: D-GTG NMI vs. seed group size on Travian (Trades)

InfoMap is the fastest algorithm on two datasets (Internet and hep-ph) and performs almost as

well as OSLOM on third one (Oregon). All of the algorithms are sufficiently fast to run on large

datasets.
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Table 4.5: Running time (sec) of all algorithms on the AS-Internet, AS-Oregon, and hep-ph
datasets

Algorithm Internet Oregon hep-ph

D-GT 610 45 1,140

LabelRankT 840 90 1,250

iLCD 750 80 1,000

OSLOM 590 35 900

InfoMap 240 42 620

Louvain 380 60 730

4.3 Summary

In this dissertation, we analyze the performance of our game theoretic community detec-

tion algorithm, D-GT, on dynamic social networks. These social networks are very common in

massively multiplayer online games, such as Travian, where players self-organize into rapidly

changing guilds and alliances. We show that D-GT’s initialization procedure in combination with

the similarity gain function is very effective at recovering the true community structure of the net-

work, both in terms of predicting the number of communities and the players’ community member-

ship vectors. It outperforms other dynamic community detection methods including LabelRankT,

iLCD, and OSLOM. In cases where the communities of a small number of players (e.g. the guild

leadership) is known D-GT can leverage the information to improve the NMI performance. When

simply optimizing modularity, considering earlier community membership is less important and

static community detection algorithms (InfoMap and Louvain) perform well at this task, but all

variants of D-GT offer competitive performance.
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CHAPTER 5: LEVERAGING NETWORK DYNAMICS FOR IMPROVED

LINK PREDICTION

Many social networks are constantly in flux, with new edges and vertices being added

or deleted daily. Fully modeling the dynamics that drive the evolution of a social network is a

complex problem, due to the large number of individual and dyadic factors associated with link

formation. Here we focus on predicting one crucial variable–the rate of network change. Not only

do different networks change at different rates, but individuals within a network can have disparate

tempos of social interaction. This chapter describes how modeling this aspect of network dynamics

can ameliorate performance on link prediction tasks.

Figure 5.1: Evolution of a network over time. Blue nodes have higher rates of link formation. This
behavior can only be captured by taking temporal information into account; RPM identifies these
nodes through the use of time series.

5.1 Problem Formulation

The problem of link prediction in dynamic networks is defined as: Let graph G be the

social network of interest denoted as (V,E), where V is the set of nodes and E ∈ V × V is the

set of (directed or undirected) interactions. Let Gt be the subgraph of G containing the nodes and

edges recorded at time t. In turn, let Gt+1 be the subgraph of G observed at time t + 1. Using

network structure up to time t, our goal is then to predict future structure of the network at time
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t+ 1.

5.2 Background

Link prediction approaches commonly rely on measuring topological similarity between

unconnected nodes [5,54,138]. It is a task well suited for supervised binary classification since it is

easy to create a labeled dataset of node pairs; however, the datasets tend to be extremely unbalanced

with a preponderance of negative examples where links were not formed. Topological metrics are

used to score node pairs at time t in order to predict whether a link will occur at a later time

t′(t′ > t). However, even though these metrics are good indicators of future network connections,

they are less accurate at predicting when the changes will occur (the exact value of t′). To overcome

this limitation, we explicitly learn link formation rates for all nodes in the network; first, a time

series is constructed for each node pair from historic data and then a forecasting model is applied to

predict future values. The output of the forecasting model is used to augment topological similarity

metrics within a supervised link prediction framework. Prior work has demonstrated the general

utility of modeling time for link prediction (e.g., [21, 67, 108]); our results show that our specific

method of rate modeling outperforms the use of other types of time series.

RPM is implemented using Spark MLlib machine learning library. Using Spark, a gen-

eral purpose cluster computing system, enables us to train our supervised classifiers with the full

data distribution, rather than utilizing a small balanced subset, while still scaling to larger datasets.

Moreover, we evaluate the classifiers with a full test dataset, so the results are representative of

the performance of the method ”in the wild”. Our experiments were conducted with a variety of

datasets, in contrast to prior work on link prediction that has focused on citation or collaboration

networks [84]. In addition to a standard co-authorship network (hep-th arXiv [123]), we analyze

the dynamics of an email network (Enron [35]) and two player networks from a massively multi-

player online game (Travian [61]). Networks formed from different types of social processes may
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vary in their dynamics, but our experiments show that RPM outperforms other standard approaches

on all types of datasets.

5.2.1 Time Series

To construct the time series, the network G observed at time t must be split into several

time-sliced snapshots, that is, states of the network at different times in the past. Afterwards,

a window of prediction is defined, representing how further in the future we want to make the

prediction. Then, consecutive snapshots are grouped in small sets called frames. Frames contain

as many snapshots as the length of the window of prediction. These frames compose what is called

Framed Time-Sliced Network Structure (S) [123]. Let Gt be the graph representation of a network

at time t. Let [G1, G2, ..., GT ] be the frame formed by the union of the graphs from time 1 to T .

Let n be the number of periods (frames) in the series. And let w be the window of prediction.

Formally, S can be defined as:

S = {[G1, ..., Gw], [Gw+1, ..., G2w], ...[G(n−1)w+1, ..., Gnw]}

For instance, suppose that we observed a network from day 1 to day 9, and our aim is to

predict links that will appear at day 10. In this example, the forecast horizon (window of prediction)

is one day. Our aim here is to model how the networks evolve every day in order to predict what

will happen in the forecast horizon. Figure 5.1 shows an example of the evolution of network over

time.

5.2.2 Network Similarity Metrics

Here, we use a standard set of topological metrics to assign scores to potential links:

1. Common Neighbors (CN) [97] is defined as the number of nodes with direct relationships
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with both members of the node pair:

CN(x, y) = |Γ(x) ∩ Γ(y)| (5.1)

where Γ(x) is the set of neighbors of node x.

2. Preferential Attachment (PA) [15, 84] assumes that the probability that a new link is created

is proportional to the node degree |Γ(y)|. Hence, nodes that currently have a high number of

relationships tend to create more links in the future:

PA(x, y) = |Γ(x)| × |Γ(y)| (5.2)

3. Jaccard’s Coefficient (JC) [132] assumes higher values for pairs of nodes that share a higher

proportion of common neighbors relative to total number of neighbors they have:

JC(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(5.3)

4. Adamic-Adar (AA) [2], similar to JC, assigns a higher importance to the common neighbors

that have fewer total neighbors. Hence, it measures exclusivity between a common neighbor

and the evaluated pair of nodes:

AA(x, y) =
∑

z∈|Γ(x)∩Γ(y)|

1

log(|Γ(z)|)
(5.4)

These metrics serve as 1) unsupervised baseline methods for evaluating the performance of RPM

and 2) are also included as features used by the supervised classifiers.
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Table 5.1: Dataset Summary

Data Enron Travian
(Messages)

Travian
(Trades) hep-th

No. of nodes 150 2,809 2,466 17,917
Link (Class 1) 5,015 44,956 87,418 59,013
No Link (Class 0) 17,485 7,845,525 5,993,738 320,959,876
No. of snapshots 24 30 30 20

5.2.3 Datasets

For our analysis, we selected three datasets: player communication and economic networks

from the Travian massively multiplayer online game [61], the popular Enron email dataset [35],

and the co-authorship network from arXiv hep-th [123]. Table 5.1 gives the network statistics for

each of the datasets:

1. Enron email dataset [35]: This email network shows the evolution of the Enron company

organizational structure over 24 months (January 2000 to December 2001).

2. Travian MMOG [61]: We used the communication and trading networks of users playing

the Travian massively multiplayer online game. Travian is a browser-based, real-time strat-

egy game in which the players compete to create the first civilization capable of constructing

a Wonder of the World. The experiments in this dissertation were conducted on a 30 day

period in the middle of the Travian game cycle (a three month period). Figure 5.2 indicates

that Travian is a highly dynamic dataset, with over 90% of the edges changing between

snapshots.

3. co-authorship network hep-th arXiv [123]: This co-authorship network shows the evolu-

tion in co-authorship relationships extracted from the arXiv High Energy Physics (Theory)

publication repository between 1991 and 2010.

56



Days

Trades Network

N
o.

 o
f E

dg
es

Messages Network

Days

N
o.

 o
f E

dg
es

Figure 5.2: Dynamics of the Travian network (trades: left and messages: right). The blue line
shows the new edges added, and the red line shows edges that did not exist in the previous snapshot.

5.3 Proposed Method

RPM treats the link prediction problem as a supervised classification task, where each data

point corresponds to a pair of vertices in the social network graph. This is a typical binary classi-

fication task that could be addressed with a variety of classifiers; we use the Spark support vector

machine (SVM) implementation. All experiments were conducted using the default parameters

of the Spark MLlib package: the SVM is defined with a polynomial kernel and a cost parame-

ter of 1. Algorithms were implemented in Python and executed on a machine with Intel(R) Core

i7 CPU and 24GB of RAM. We have made our code and some example datasets available at:

http://ial.eecs.ucf.edu/travian.php.

In order to produce a labeled dataset for supervised learning, we require timestamps for

each node and edge to track the evolution of the social network over time. We then consider the

state of the network for two different time periods t and t′ (with t < t′). The network information

from time t is used to predict new links which will be formed at time t′. One of the most important

challenges with the supervised link prediction approach is handling extreme class skewness. The

number of possible links is quadratic in the number of vertices in a social network, however the

number of actual edges is only a tiny fraction of this number, resulting in large class skewness.
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The most commonly used technique for coping with this problem is to balance the training

dataset by using a small subset of the negative examples. Rather than sampling the network, we

both train and test with the original data distribution and reweight the misclassification penalties.

Let G(V,A) be the social network of interest. Let Gt be the subgraph of G containing the nodes

and edges recorded at time t. In turn, let Gt′ be the subgraph of G observed at time t′. In order

to generate training examples, we considered all pairs of nodes in Gt. Even though this training

paradigm is more computationally demanding it avoids the concern that the choice of sampling

strategy is distorting the classifier performance [86].

Selecting the best feature set is often the most critical part of any machine learning imple-

mentation. In this dissertation, we supplement the standard set of features extracted from the graph

topology (described in the previous section), with features predicted by a set of time series. Let

Ft(t = 1, ..., T ) be a time series with T observations with At defined as the observation at time t

and Ft+1 the time series forecast at time t+ 1. First, we analyze the performance of the following

time series forecasting models for generating features:

1. Simple Mean: The simple mean is the average of all available data:

Ft+1 =
At + At−1 + ...+ At−T

T

2. Moving Average: This method makes a prediction by taking the mean of the n most recent

observed values. The moving average forecast at time t can be defined as:

Ft+1 =
At + At−1 + ...+ At−n

n

3. Weighted Moving Average: This method is similar to moving average but allows one period
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to be emphasized over others. The sum of weights must add to 100% or 1.00:

Ft+1 =
∑

CtAt

4. Exponential Smoothing: This model is one of the most frequently used time series methods

because of its ease of use and minimal data requirements. It only needs three pieces of data

to start: last period’s forecast (Ft), last period’s actual value (At) and a value of smoothing

coefficient,α, between 0 and 1.0. If no last period forecast is available, we can simply average

the last few periods:

Ft+1 = αAt + (1− α)Ft

We identify which time series prediction model produces the best rate estimate, according

to the AUROC performance of its RPM variant. Parameters of weighted moving average and

exponential smoothing were tuned to maximize performance on the training dataset. Figure 5.3

shows that the best performing model was Weighted Moving Average with n = 3 and parameters

C1, C2 and C3 set to 0.2,0.3, and 0.5 respectively.

(a) (b) (c)

Figure 5.3: Performance of RPM using different forecasting models on (a) Travian Messages (b)
hep-th (c) Enron. Weighted Moving Average is consistently the best performer across all datasets
and is used in RPM.
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Table 5.2: AUROC Performance

Algorithms / Networks Travian(Messages) Travian(Trades) Enron hep-th
RPM 0.8970 0.7859 0.9399 0.7834
Supervised-MA 0.8002 0.6143 0.8920 0.7542
Supervised 0.7568 0.7603 0.8703 0.7051
Common Neighbors 0.4968 0.5002 0.7419 0.5943
Jaccard Coefficient 0.6482 0.4703 0.8369 0.5829
Preferential Attachment 0.5896 0.5441 0.8442 0.5165
Adamic/Adar 0.5233 0.4962 0.7430 0.6696

5.4 Results

Our evaluation measures receiver operating characteristic (ROC) curves for the different

approaches. These curves show achievable true positive rates (TP) with respect to all false positive

rates (FP) by varying the decision threshold on probability estimations or scores. For all of our

experiments, we report area under the ROC curve (AUROC), the scalar measure of the performance

over all thresholds. Since link prediction is highly imbalanced, straightforward accuracy measures

are well known to be misleading; for example, in a sparse network, the trivial classifier that labels

all samples as missing links can have a 99.99% accuracy.

In all experiments, the algorithms were evaluated with stratified 10-fold cross-validation.

For more reliable results, the cross-validation procedure was executed 10 times for each algorithm

and dataset. We benchmark our algorithm against Supervised-MA [123]. Supervised-MA is a

state of the art link prediction method that is similar to our method, in that it is supervised and

uses moving average time series forecasting. In contrast to RPM, Supervised-MA creates time

series for the unsupervised metrics rather than the link formation rate itself. Supervised is a

baseline supervised classifier that uses the same unsupervised metrics as features without the time
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series prediction model. As a point of reference, we also show the unsupervised performance

of the individual topological metrics: 1) Common Neighbors, 2) Preferential Attachment, 3)

Jaccard Coefficient, and 4) Adamic-Adar. Table 5.2 presents results for all methods on Travian

(communication and trade), Enron, and hep-th networks. Results for our proposed method are

shown using bold numbers in the table; in all cases, RPM outperforms the other approaches. Two-

tailed, paired t-tests across multiple network snapshots reveal that the RPM is significantly better

(p < 0.01) on all four datasets when compared to Supervised-MA.

We discover that explicitly including the rate feature (estimated by a time series) is de-

cisively better than the usage of time series to forecast topological metrics. The rate forecast is

useful for predicting the source node of future links, hence RPM can focus its search on a smaller

set of node pairs. We believe a combination of topological metrics is useful for predicting the

destination node, but that relying exclusively on the topological metrics, or their forecasts, is less

discriminative.

5.5 Summary

In this dissertation, we introduce a new supervised link prediction method, RPM (Rate

Prediction Model), that uses time series to predict the rate of link formation. The performance

of RPM relies on three innovations: 1) explicit modeling of link formation rates at a node level,

2) the usage of multiple time series to leverage information from earlier snapshots, 3) training

and testing with the full data distribution courtesy of the Spark fast cluster computing system.

Rate is an important concept in many generative network models, but its usage has been largely

ignored within discriminative classification frameworks. For instance, the stochastic actor-oriented

model of network dynamics contains a network rate component that is governed by both the time

period and the actors [122]. RPM does not attempt to create a general model of how the rate

is affected by the properties of the actor (node), but instead predicts the link formation rate of
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each node with a time series. By accurately identifying the most active individuals in the social

network, RPM achieves statistically significant improvements over related link prediction methods.

Our experiments were performed on networks created by a variety of social processes, such as

communication, collaboration, and trading; they show that the rate of link generation varies with

the type of network.
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CHAPTER 6: A HOLISTIC APPROACH FOR PREDICTING LINKS IN

COEVOLVING MULTIPLEX NETWORKS

As social media platforms offer customers more interaction options, such as friending,

following, and recommending, analyzing the rich tapestry of interdependent user interactions be-

comes increasingly complicated. In this dissertation, we study two types of online societies: 1)

players in a massively multiplayer online game (Travian) [61] 2) dialogs between Twitter users

before, during, and after an exceptional event [102]. Although standard social network analy-

sis techniques [118] offer useful insights about these communities, there is relatively little theory

from the social sciences on how to integrate information from multiple types of online interactions.

Rather than organizing this data into social networks separately chronicling the history of different

forms of user interaction, dynamic multiplex networks [71] offer a richer formalism for modeling

the social fabric of online societies.

6.1 Problem Formulation

A multiplex network is a multilayer network that shares the same set of vertices across all

layers. This network can be modeled as a graph G =< V,E > where V is the set of vertices and

E is the set of edges present in the graph. The dynamic graph G = {G0, G1, ..., Gt} represents the

state of the network at different times. The network is then defined as: Gt =< V,E1
t , ..., E

M
t >

with Eα
t ⊆ V × V , ∀α ∈ {1, ...,M}, where each set Eα

t corresponds to the edge set of a distinct

layer at time t. Thus a dynamic multiplex network is well suited for representing diverse user

activities over a period of time. Here, we address the problem of predicting future user interactions

from the history of past connections. Assuming the data is represented as a graph, our goal is then

to predict the structure of graph Gt with α as the target layer, using information from previous

snapshots as well as other layers of the network.
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6.2 Proposed Method

MLP is a hybrid architecture that utilizes multiple components to address different aspects

of the link prediction task. We seek to extract information from all layers of the network for the

purpose of link prediction within a specific layer known as the target layer. To do so, we create

a weighted version of the original target layer where interactions and connections that exist in

other layers receive higher weights. After reweighting the layer, we employ the collection of node

similarity metrics on the weighted network. To express the temporal dynamics of the network, we

use a decay model on the time series of similarity metrics to predict future values. Finally, the

Borda rank aggregation method is employed to combine the ranked lists of node pairs into a single

list that predicts links for the next snapshot of the target network layer. Each component of the

model is explained in more detail in the following sections.

6.2.1 Multiplex Likelihood Assignment and Edge Weighting

This component leverages information about cross-layer link co-occurrences. During the

coevolution process, links may be engendered due to activity in other network layers. Some layers

may evolve largely independently of the rest of the network, whereas links in other layers may be

highly predictive of links in the target layer. In our proposed method, a weight is assigned to each

layer based on its influence on the target layer. Weights are calculated using a likelihood function:

wi = Likelihood(Link in LTarget|Link in Li) (6.1)

where Li and wi represent the ith layer and the weight calculated for it respectively. LTarget indi-

cates the target layer for which we want to predict future links. The Likelihood function computes

the similarity between the target layer and the ith layer; to do this, we use the current ratio of

overlapping edges. Next, we calculate weights for every node pair by checking the link correspon-

dence between two layers using the likelihood of a link being present in the target layer given the
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existence of the link in the other layer at any other previous snapshot. This orders other layers in

terms of their relative importance for a specific target layer. The process assigns higher weights

to node pairs which occur in more than one layer (multiplex edges). The rate of link formation is

incorporated into the model as the first term of the edge weight. Algorithm 2 shows the process of

assigning likelihoods to layers and reweighting the adjacency matrix.

Algorithm 2 Likelihood Assignment and Edge Weighting

1: Input: Edge sets (E1, ..., EM) for M layers where Eα is the edge set of target layer

2: Output: Eα
w weighted adjacency matrix for layer α (target layer)

//Calculate weights for the layers

3: for i ∈ {1, 2, ...,M} − {α} do
4: wi = Likelihood(Link in Lα|Link in Li)

5: end for
//Weighting target layer

6: for edge e ∈ Eα do
7: we = rate+

∑M
i=1&i 6=αwi × linkExist(e)

8: end for

The term rate is defined as the average value of the source node’s out-degree over previous

timesteps. Function linkExist is used to obtain information about a link’s existence in other layers

during previous snapshots. It checks each layer for the presence of an edge and returns 1 if an edge

is present in that layer.

6.2.2 Node Similarity Metrics

This section provides a brief description of the topological and path-based metrics for en-

coding node similarity that are used within our MLP framework to create ranked score lists for

each node pair. These techniques are often used in isolation as unsupervised methods for link

prediction. Note that Γ(x) stands for the set of neighbors of vertex x while w(x, y) represents the

weight assigned to the interaction between node x and y. More details about these metrics could

65



be found in [142].

• Number of Common Neighbors (CN)

The CN measure is defined as the number of nodes with direct relationships with both eval-

uated nodes x and y [97]. For weighted networks, the CN measure is:

CN(x, y) =
∑

z∈|Γ(x)∩Γ(y)|

w(x, z) + w(y, z) (6.2)

• Jaccard’s Coefficient (JC)

The JC measure assumes higher values for pairs of nodes who share a higher proportion of

common neighbors relative to their total neighbors. The Jaccard’s Coefficient is defines as

following:

JC(x, y) =

∑
z∈Γ(x)∩Γ(y) w(x, z) + w(y, z)∑

a∈Γ(x) w(x, a) +
∑

b∈Γ(y) w(y, b)
(6.3)

• Preferential Attachment (PA)

The PA measure assumes that the probability that a new link originates from node x is

proportional to its node degree. Consequently, nodes that already possess a high number of

relationships tend to create more links [15]:

PA(x, y) =
∑

z1∈Γ(x)

w(x, z1)×
∑

z2∈Γ(y)

w(y, z2) (6.4)

• Adamic-Adar Coefficient (AA)

This metric [2] is closely related to Jaccard’s coefficient in that it assigns a greater importance

to common neighbors who have fewer neighbors. Hence, it measures the exclusivity of the
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relationship between a common neighbor and the evaluated pair of nodes:

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)

log(1 +
∑

c∈Γ(z) w(z, c))
(6.5)

• Resource Allocation (RA)

RA was first proposed in [154] and is based on physical processes of resource allocation:

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)∑
c∈Γ(z) w(z, c)

(6.6)

• Page Rank (PR)

The PageRank algorithm [24] measures the significance of a node based on the significance

of its neighbors. We use the weighted PageRank algorithm proposed in [48]:

PRw(x) = α
∑
k∈Γ(x)

PRw(x)

L(k)
+ (1− α)

w(x)∑N
y=1w(y)

(6.7)

where L(x) is the sum of outgoing link weights from node x, and
∑N

y=1w(y) is the total

weight across the whole network.

• Inverse Path Distance (IPD)

The Path Distance measure for unweighted networks simply counts the number of nodes

along the shortest path between x and y in the graph. Note that PD(x, y) = 1 if two nodes x

and y share at least one common neighbor. In this article, the Inverse Path Distance is used

to measure the proximity between two nodes, where:

IPD(x, y) =
1

PD(x, y)
(6.8)
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IPD is based on the intuition that nearby nodes are likely to be connected. In a weighted

network, IPD is defined by the inverse of the shortest weighted distance between two nodes.

• Product of Clustering Coefficient (PCF)

The clustering coefficient of a vertex v is defined as:

PCF (v) =
3× # of triangles adjacent to v

# of possible triples adjacent to v
(6.9)

To compute a score for link prediction between the vertex x and y, one can multiply the

clustering coefficient score of x and y.

6.2.3 Temporal Link Structure

Given the network history for T time periods, we need to capture the temporal dependencies

of the coevolution process. To do so, our framework uses a weighted exponentially decaying

model [1]. Let {Simt(i, j), t = t0 + 1, ..., t0 + T} be a time series of similarity score matrices

generated by a node similarity metric on a sliding window of T successive temporal slices. An

aggregated weighted similarity matrix is constructed as follows:

Sim(t0+1)∼(t0+T )(i, j) =

t0+T∑
t=t0+1

θt0+T−tSimt(i, j) (6.10)

where the parameter θ ∈ [0, 1] is the smoothing weight for previous time periods. Different values

of θ modify the importance assigned to the most or least recent snapshots before current time

t + 1. This procedure generates a composite temporal score matrix for every node similarity

metric. Sim(t0+1)∼(t0+T ) (shortened to Sim) is used by the algorithm as a summary of network

activity, encapsulating the temporal evolution of the similarity matrix.
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6.2.4 Rank Aggregation

Before describing the final step of our approach, let us briefly discuss existing methods for

ranked list aggregation/rank aggregation. List merging or list aggregation refers to the process of

combining a number of lists with the same or different numbers of elements in order to get one

final list including all the elements. In rank aggregation, the order or rank of elements in input lists

is also taken into consideration. The input lists can be categorized as full, partial, or disjoint lists.

Full lists contain exactly the same elements but with a different ordering, partial lists may have

some of the elements in common but not all, and disjoint lists have completely different elements.

In this case, we are only dealing with full lists since each similarity metric produces a complete

list for the same set of pairs, differing only in ordering.

In rank aggregation, distance metrics are used to find the disagreement between two lists/rankings.

In general, any method of rank aggregation is desired to produce an aggregate ranking with mini-

mal total disagreement among the input lists. Two well-known distance measures are:

• Spearman Footrule Distance: This computes the distance between two ranked lists by

computing the sum of differences in rankings of each element. Formally, it is given by:

F (L1, L2) =
∑
i∈n

|L1(i)− L2(i)| (6.11)

• Kendall Tau Distance: This counts the number of pairs of elements that have opposite

rankings in the two input lists i.e. it calculates the pairwise disagreements.

K(L1, L2) = |(i, j)s.t.L1(i) ≤ L2(j)&L1(i) ≥ L2(j)| (6.12)

where L1 and L2 are the input lists and L1(i) and L2(i) represent the ranks of element i in

the two lists correspondingly.
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(a) (b) (c) (d) (e)

Figure 6.1: Log scale box-whisker plots for user interactions in different layers of the network: (a)
Travian (Trades) (b) Travian (Messages) (c) Cannes2013 (Retweets) (d) Cannes2013 (Mentions)
(e) Cannes2013 (Replies)

Figure 6.2: Heatmap representing the edge overlap between pairs of layers for datasets (a) Travian
(b) Cannes2013

Rank aggregation methods can be categorized into two types: order-based and score-

based. Order-based methods use the rank information [88] while score-based aggregation methods

use score information from individual rankers. Several rank aggregation methods are described

in [119], including Borda’s, Markov chain, and median rank methods. Borda’s method is a rank-

then-combine method originally proposed to obtain a consensus from a voting system. Since it is

based on the absolute positioning of the rank elements and not their relative rankings, it can be

considered a truly positional method. For every element in the lists, a Borda score is calculated
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and elements are ranked according to this score in the aggregated list. For a set of complete ranked

lists L = [L1, L2, L3, ...., Lk], the Borda score for an element i and a list Lk is given by:

BLk(i) = {count(j)|Lk(j) < Lk(i)&j ∈ Lk} (6.13)

The total Borda score for an element is given as:

B(i) =
k∑
t=1

BLt(i) (6.14)

Borda’s method is computationally cheap, which is a highly desirable property for link prediction

in large networks.

Algorithm 3 shows our proposed framework which incorporates edge weighting, the tem-

poral decay model, and rank aggregation to produce an accurate prediction of future links in a

dynamic multiplex network. The Borda function produces the final output of the MLP framework.

Results of the proposed algorithm are compared with other state-of-the-art techniques in the next

section.

Algorithm 3 Multiplex Link Prediction Framework (RPM)
1: Input: Weighted edge sets of the target layer for T previous snapshots

2: Output: Temporal aggregated score matrix S for the target layer

3: for each node similarity metric u do
4: for t ∈ {1, ..., T} do
5: Calculate score matrix Simu

t0+t

6: end for
7: Calculate temporal similarity matrix Simu

8: end for
9: Final score matrix S = Borda(Sim1, ..., Simu)
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6.3 Experimental Study

This paper evaluates the MLP framework on networks extracted from two real-world datasets,

Travian and Cannes2013. To investigate the impact of each component of our proposed method,

not only do we compare our results with two other approaches for fusing cross-layer information,

but we also analyze the performance of ablated versions of our method. The complete method,

MLP (Hybrid), is compared with MLP (Decay Model + Rank Aggregation) and MLP (Weighted

+ Rank Aggregation). All of the algorithms were implemented in Python and executed on a ma-

chine with the Intel(R) Core i7 CPU and 24GB of RAM for the purpose of fair comparison. Our

implementation uses Apache Spark to speed the link prediction process.

6.3.1 Datasets

We use two real-world dynamic multiplex networks to demonstrate the performance of

our proposed algorithm. These networks are considerably disparate in structure and were selected

from different domains (a massively multiplayer online game (MMOG) and an event-based Twitter

dataset). Table 6.1 provides the network statistics for each of the datasets:

• Travian MMOG [61] Travian is a browser-based, real-time strategy game in which the play-

ers compete to create the first civilization capable of constructing a Wonder of the World.

The experiments in this paper were conducted on a 30 day period in the middle of the Travian

game cycle. In Travian, players can execute different game actions including: sending mes-

sages, trading resources, joining alliances, and attacking enemy villages. In this research,

we focus on networks created from trades and messages.

• Twitter Interactions [102] This dataset consists of Twitter activity before, during, and after

an “exceptional” event as characterized by the volume of communications. Unlike most

Twitter datasets which are built from follower-followee relationships, links in this multiplex
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network correspond to retweeting, mentioning, and replying to other users. The Cannes2013

dataset was created from tweets about the Cannes film festival that occurred between May

6,2013 to June 3, 2013. Each day is treated as a separate network snapshot.

Table 6.1: Dataset Summary: Number of edges, nodes, and snapshots for each network layer

Dataset Travian Cannes2013

No. of Nodes 2,809 438,537

No. of Snapshots 30 29

Layers/No. of Edges Trades 87,418 Retweet 496,982

Messages 44,956 Mention 411,338

Reply 83,534

6.3.2 Evaluation Metrics

For the evaluation, we measure receiver operating characteristic (ROC) curves for the dif-

ferent approaches. The ROC curve is a plot of the true positive rate (tpr) against the false positive

rate (fpr). These curves show achievable true positive rates (TP) with respect to all false positive

rates (FP) by varying the decision threshold on probability estimations or scores. For all of our ex-

periments, we report area under the ROC curve (AUROC), the scalar measure of the performance

over all thresholds. Since link prediction is highly imbalanced, straightforward accuracy measures

are well known to be misleading; for example, in a sparse network, the trivial classifier that labels

all samples as missing links can have a 99.99% accuracy.
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6.3.3 Analysis of Cross-layer Interaction

Figure 6.1 shows log scale box-whisker plots that depict the frequency of interactions be-

tween users who are connected across multiple layers. We compare the frequency of interactions

in cases where the node pair is connected on all layers vs. the frequency of being connected in

a single layer (Travian) or less than all layers (for Cannes which has three layers). As expected,

in cases where users are connected on all layers, the number of interactions (trades, messages,

retweets, mentions and replies) is higher. The heatmap of the number of overlapping edges be-

tween different network layers (Figure 6.2) suggests that a noticeable number of edges are shared

between all layers. This clearly indicates the potential value of cross-layer information for the link

prediction task on these datasets. Our proposed likelihood weighting method effectively captures

the information revealed by our analysis.

6.3.4 Performance of Multilayer Link Prediction

For our experiments, we adopted a moving-window approach to evaluate the performance

of our temporal multiplex link prediction algorithm. Given a specified window size T , for each

time period t(t > T ), graphs of T previous periods (GtT , ..., Gt1) (where each graph consists of

M layers) are used to predict links that occur at the target layer α in the current period (Gα
t ). To

assess our proposed framework and study the impact of its components, we compare against the

following baselines:

• RPM (Hybrid): incorporates all elements discussed in the framework section. It utilizes

the likelihood assignment and edge weighting procedure to extract cross-layer information.

Node similarity scores are modified using the temporal decay model and combined with

Borda rank aggregation.

• RPM (Likelihood + Rank Aggregation): This method only uses the aggregated scores

calculated from the graphs weighted with cross-layer information. It does not consider the
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temporal aspects of network coevolution.

• RPM (Decay Model + Rank Aggregation): This method does not use the cross-layer

weighting scheme and relies on temporal information alone to predict future links. The

final aggregated score matrix is calculated based on forecast values at time t for each node

similarity metric using the decay model.

• Likelihood: Weights generated by the cross-layer likelihood assignment procedure are treated

as scores for every node pair. We then sort the pairs based on their score and calculate the

AUROC.

• Rank Aggregation: This method is a simple aggregated version of all unsupervised scoring

methods using the Borda’s rank aggregation method applied to node similarity metrics from

the target layer.

• Unsupervised Methods: The performance of our proposed framework is compared with

eight well-known unsupervised link prediction methods described in proposed method under

node similarity metrics. All unsupervised methods are applied to the binary static graph from

time 0 to t−1 in order to predict links at time t. Only the structure of the target layer is used.

• Average Aggregation: In order to extend the rank aggregation model to include information

from other layers of the network, we use the idea proposed in [110]. Node similarity metrics

are aggregated across all layers. So for attributeX (Common Neighbors, Adamic/Adar, etc.)

over M layers the following is defined:

X(u, v) =

∑M
α=1X(u, v)α

M
(6.15)

where X(u, v) is the average score for nodes u and v across all layers and X(u, v)α is

the score at layer α. Borda’s rank aggregation is then applied to the extended attributes to
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calculate the final scoring matrix.

• Entropy Aggregation: Entropy aggregation is another extended rank aggregation model

proposed in [110] where X(u, v) is defined as follows:

X(u, v) = −
M∑
α=1

X(u, v)α

Xtotal

log(
X(u, v)α

Xtotal

) (6.16)

whereXtotal =
∑M

α=1 X(u, v)α. The entropy based attributes are more suitable for capturing

the distribution of the attribute value over all dimensions. A higher value indicates a uniform

distribution of attribute values across the multiplex layers.

• Multiplex Unsupervised Methods: Finally, using the definition of core neighborhood pro-

posed in [66], we extend four unsupervised methods (Common Neighbors, Preferential At-

tachment, Jaccard Coefficient and Adamic/Adar) to their multiplex versions.

Table 6.2 shows the results of different algorithms on the Travian and Cannes2013 datasets.

With 30 days of data from Travian and 27 days for Cannes2013, we were able to extensively

compare the performance of the proposed methods and the impact of using different elements.

Bold numbers indicate the best results on each target layer considered; MLP (Hybrid) is the best

performing algorithm in all cases.

6.4 Discussion

In this section, we discuss the most interesting findings:

Does rank aggregation improve the performance of the unsupervised metrics? As

shown in Table 6.2, although the aggregated scores matrix produced by Borda’s method achieves

better results than unsupervised methods in some cases (Travian message, Cannes2013 retweet

and mention networks) and comparable results on others (Travian trade and Cannes2013 reply net-

works), it is not able to significantly outperform all unsupervised methods in any of the networks.
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As discussed before, we are using the simple Borda method for the rank aggregation which does

not consider the effect of each ranker on the final performance. While adding weights to the rankers

or using more complex rank aggregation models such as Kemeny might achieve better results, it

has been shown that those approaches have high computational complexity which makes them less

suitable for large real-world networks [109, 129]. Despite the fact that the rank aggregation alone

does not significantly improve the overall performance of the link prediction task, it enables us to

effectively fuse different kinds of information (edge and node features, nodes similarity, etc.).

On the other hand, the Average and Entropy Aggregation methods, which are designed to

consider attribute values from other layers, are able to outperform regular Rank Aggregation and

MLP (Decay Model + Rank Aggregation). However, both methods use the static structure of all

snapshots from time 0 to t− 1, while MLP (Decay Model + Rank Aggregation) only incorporates

the past T snapshots which makes it more suitable for large networks.

Does the likelihood assignment procedure outperform the unsupervised scores? To

study the ability of our likelihood weighting method to model the link formation process, we

generate results for two methods: using likelihood explicitly as a scoring method as well as using

the values to generate a weighted version of the networks. First, the Likelihood method is used in

isolation to demonstrate the prediction power of its weights as a new scoring approach. Table 6.2

shows significant improvements on unsupervised scores as well as the aggregated version of them.

As expected, the more overlap between the target layer and predictor layers, the more performance

improvement Likelihood achieves. As an example, Likelihood achieves ∼ 7% of improvement on

Travian (Trade) compared with ∼ 5% of improvement on Travian (Message). Not only is there

a lower rate of overlapping edges between those layers, but also the number of interactions is

higher than the two other layers. The same holds true for Cannes2013 (Retweet) compared with

the mention and reply layers.
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Table 6.2: AUROC performances for a target layer averaged over all snapshots with a sliding
time window of T = 3 for Travian layers and T = 5 for Cannes2013 layers used in the decay
model. Variants of our proposed framework are shown at the top of the table, followed by standard
unsupervised methods. The algorithms shown in the bottom half of the table are techniques for
multiplex networks proposed by other research groups. The best performer is marked in bold.

Algorithms / Networks Trade Message Retweet Mention Reply

MLP (Hybrid) 0.821±0.001 0.803±0.002 0.812±0.002 0.834±0.003 0.839±0.002
MLP (LH/RA) 0.802±0.001 0.790±0.002 0.809±0.003 0.814±0.004 0.816±0.003
MLP (DM/RA) 0.722±0.002 0.731±0.002 0.727±0.002 0.728±0.003 0.733±0.002
Likelihood 0.770±0.033 0.760±0.041 0.752±0.022 0.781±0.052 0.757±0.042
Rank Aggregation 0.694±0.001 0.712±0.001 0.700±0.002 0.706±0.002 0.700±0.003

Common Neighbors 0.656±0.002 0.667±0.002 0.699±0.002 0.705±0.003 0.699±0.001
Jaccard Coefficient 0.628±0.002 0.680±0.003 0.594±0.002 0.733±0.002 0.711±0.003
Preferential Attachment 0.709±0.002 0.637±0.001 0.584±0.002 0.612±0.002 0.587±0.003
Adamic/Adar 0.635±0.003 0.700±0.003 0.700±0.002 0.642±0.002 0.516±0.003
Resource Allocation 0.625±0.005 0.690±0.003 0.597±0.002 0.622±0.002 0.672±0.003
Page Rank 0.595±0.001 0.687±0.002 0.660±0.002 0.630±0.003 0.613±0.002
Inverse Path Distance 0.572±0.003 0.650±0.003 0.631±0.003 0.641±0.002 0.561±0.004
Clustering Coefficient 0.580±0.002 0.633±0.003 0.570±0.020 0.621±0.011 0.522±0.004

Average Aggregation 0.744±0.030 0.752±0.020 0.740±0.003 0.737±0.011 0.761±0.003
Entropy Aggregation 0.731±0.004 0.763±0.020 0.75±0.0030 0.758±0.031 0.744±0.002
Multiplex CN 0.729±0.004 0.643±0.013 0.672±0.003 0.716±0.003 0.733±0.002
Multiplex JC 0.666±0.031 0.619±0.012 0.580±0.003 0.736±0.002 0.722±0.002
Multiplex PA 0.722±0.010 0.646±0.012 0.580±0.003 0.640±0.003 0.621±0.003
Multiplex AA 0.671±0.010 0.690±0.031 0.671±0.003 0.669±0.003 0.552±0.003

On the other hand, the method introduced in Algorithm 2 generates a weighted version of

input graphs which is used to generate a weighted version of unsupervised methods to produce the

final scoring matrix. This paired with the rank aggregation method generates significantly better

average AUROC performance compared with other proposed methods. Also, when temporal in-

formation from previous snapshots of the network is included, MLP (Hybrid) outperforms other
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variants of MLP as well as well-known unsupervised methods. This indicates the power of over-

lapping links in improving the performance of link prediction in coevolving multiplex networks.

Does including temporal information improve AUROC performance? The importance

of incorporating temporal information into link prediction has been discussed in our previous

work [63]. However, here we are interested in analyzing the impact of this information on im-

proving the performance of MLP. For that purpose, first, the decay model is employed in MLP

(Decay Model + Rank Aggregation) to determine whether it improves the results generated by the

aggregated score matrix. The final aggregated score matrix is calculated based on forecast values

at time t for each unsupervised method using the decay model. As expected, this version of MLP

is able to achieve up to ∼ 3% of AUROC improvement using only information from the last three

and five snapshots of the Travian and Cannes2013 networks respectively. On the other hand, we

observed the same pattern when the decay model was added to MLP (Hybrid) along with likeli-

hood and rank aggregation. Using the scores generated by our hybrid approach outperformed all

other proposed and existing methods. The results presented here have been obtained using T = 3

for the Travian dataset and T = 5 for Cannes2013. These values are based on experiments per-

formed on both datasets. While for Travian layers, increasing the value of T tends to improve the

prediction performance slightly until T = 3; higher values of T may decrease the performance.

The same pattern occurs for Cannes2013 layers when T = 5. Similarly, the value of θ is set to 0.4

for both datasets.

In summary, MLP (Decay Model + Rank Aggregation) is able to achieve results compa-

rable to other baseline methods except Average and Entropy Aggregation since they benefit from

the entire graph structure. Although rank aggregation by itself is not able to significantly improve

the performance of unsupervised methods, paired with decay models and taking temporal aspects

of the network, it can achieve better performance. On the other hand, the multiplex versions of

the neighborhood based unsupervised methods are able to improve average AUROC performance,

however the results are inconsistent and they achieve lower performance in many cases. Finally,
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both MLP (Hybrid) and MLP (Likelihood + Rank Aggregation) achieve higher performance com-

pared with all other methods, illustrating the importance of the cross-layer information created by

the network coevolution process. A paired two-sample t-test is used to indicate the significance of

the results produced by each method where the p-value is smaller than 0.0001. It is worth mention-

ing that, even though MLP (Hybrid) is able to outperform all other methods, its performance is not

significantly better than MLP (Likelihood + Rank Aggregation) in the case of Travian (Message)

and Cannes (Retweet).

6.5 Summary

We introduce a new link prediction framework, MLP (Multiplex Link Prediction), that

employs a holistic approach to accurately predict links in dynamic multiplex networks using a

collection of topological metrics, the temporal patterns of link formation, and overlapping edges

created by network coevolution. Our analysis on real-world networks created by a variety of social

processes suggests that MLP effectively models multiplex network coevolution in many domains.
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CHAPTER 7: EXTRACTING INFORMATION FROM NEGATIVE

INTERACTIONS IN MULTIPLEX NETWORKS USING MUTUAL

INFORMATION

Many interesting real-world systems are represented as complex networks with multiple

types of interactions and complicated dependency structures between layers. These interactions

can be encoded as having a valence with positive links marking interactions such as trust and

friendship and negative links denoting distrust or hostility. Extracting information from these neg-

ative interactions is challenging since standard topological metrics are often poor predictors of

negative link formation, particularly across network layers. In this chapter, we introduce a method

based on mutual information which enables us to predict both negative and positive relationships.

Our experiments show that SMLP (Signed Multiplex Link Prediction) can leverage negative rela-

tionship layers in multiplex networks to improve link prediction performance. The role of mutual

information in determining the sign of the correlation between different layers of a multiplex net-

work is also investigated.

7.1 Proposed Method

In previous chapter, we introduced MLP [62], a hybrid architecture that utilizes multiple

components to address different aspects of the link prediction task. MLP tries to extract informa-

tion from all layers of the network for the purpose of predicting links within a specific layer known

as the target layer. To do so, we create a weighted version of the original target layer where in-

teractions and connections that exist in other layers receive higher weights. After reweighting the

layer, we employ a collection of node similarity metrics on the weighted network. To express the

temporal dynamics of the network, a decay model is used on the time series of similarity metrics

to predict future values. Finally, the Borda rank aggregation method is employed to combine the
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ranked lists of node pairs into a single list that predicts links for the next snapshot of the target

network layer.

While MLP utilizes information from all layers of a network to improve link prediction in

a target layer, it is not able to capture negative correlations among different layers of a network.

For example, let us consider α and β as layers of a network N where α and β represent positive

(trades) and negative (raids) relationships between users in a game respectively. Now, if our goal

is to predict future links of layer α using information from β, MLP fails to capture the negative

effect of a link between two nodes on β. In order to model such relationships, we propose a model

based on mutual information that can capture the correlation sign between different layers in order

to modify the MLP weighting procedure. In this section, we first provide a short description on the

concept of mutual information and describe how it has been previously used for the link prediction

task in single layer networks. Finally, we introduce our signed multiplex link prediction model.

7.1.1 Using Mutual Information for Link Prediction

Considering a random variable X associated with outcome xk with probability p(xk), its

self-information I(xk) can be denoted as I(xk) = log 1
p(xk)

= − log p(xk) [121]. The higher

the self-information is, the less likely the outcome xk occurs. On the other hand, the mutual

information of two random variables can be denoted as:

I(xk; yj) = log
p(x|y)

p(x)
= − log p(xk)− (− log p(xk|yj)) = I(xk)− I(xk|yj) (7.1)

The mutual information is the reduction in uncertainty due to another variable. Thus, it is

a measure of the dependence between two variables. It is equal to zero if and only if two variables

are independent. Tan et al. [131] proposed the following link prediction model based on mutual

information. Let Γ(x) represent node x’s neighbors, then for the node pair (x, y), the set of their
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common neighbors is denoted as Oxy = Γ(x)∩Γ(y). Given a disconnected node pair (x, y), if the

set of their common neighbors Oxy is available, the likelihood score of node pair (x, y) is defined

as:

sMI
xy = −I(L1

xy|Oxy) (7.2)

where I(L1
xy|Oxy) is the conditional self-information of the existence of a link between node pair

(x, y) when their common neighbors are known. According to the property of self-information, the

smaller I(L1
xy|Oxy) is, the higher the likelihood of link existence, I(L1

xy|Oxy) can thus be derived

as:

I(L1
xy|Oxy) = I(L1

xy)− I(L1
xy;Oxy) (7.3)

where I(L1
xy) is the self-information of that node pair (x, y) being connected and can be estimated

as:

p(L1
xy) = 1− p(L0

xy) = 1− Ckx
M − ky
Ckx
M

(7.4)

whereM is the total number of links and kx is the degree of node x (refer to [131] for more details).

Also, I(L1
xy;Oxy) is the mutual information between the event that node pair (x, y) is linked and

the event that the node pair’s common neighbors are known. Note that I(L1
xy) is calculated by

the prior probability of node x and node y being connected. I(L1
xy;Oxy) indicates the reduction

in the uncertainty of nodes x and y linking due to the information provided by their common

neighbors. Node pairs are then sorted based on their score sMI
xy to determine the best candidates

for link formation in future timesteps.
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7.1.2 Signed Multiplex Link Prediction

Various experiments on multilayer link prediction have indicated that using neighborhood

information from different layers of a network in a multiplex environment can improve the perfor-

mance of link prediction. Hristova et al. [66] proposed the concept of a multilayer neighborhood

where a link that exists on more than one layer in a multiplex network is called a multiplex link.

Following the definition of a multilayer network, the ego network of a node can be redefined as the

multilayer neighborhood. While the simple node neighborhood is the collection of nodes one hop

away from it, the multilayer global neighborhood (denoted by GN) of a node i can be derived by

the total number of unique neighbors across layers:

ΓGNi = {j ∈ VM : ei,j ∈ Eα∪β} (7.5)

Similarly, the core neighborhood (denoted by CN) of a node i across layers of the multilayer

network is defined as:

ΓCNi = {j ∈ VM : ei,j ∈ Eα∩β} (7.6)

The goal is to determine the type of correlation (negative or positive) between two layers

of a multiplex network. To this end, we calculate the average mutual information value for a target

layer based on predictor layers. There are two assumptions: 1) Using the core neighborhood, if

there is a negative correlation between two layers, the value of average mutual information would

decrease substantially but would not change significantly if there is a positive correlation between

the two layers. 2) If the global neighborhood is used to calculate the value of mutual information

for a node pair, this would increase the value of average mutual information if there is a positive

correlation between two layers and would not change significantly otherwise. After the sign of the

relationship between the target layer and other predictor layers has been determined, MLP is used
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for predicting future links with the minor addition that layer weights can have both negative and

positive values.

Given a disconnected node pair (x, y), the mutual information of link existence (assuming

that the set of their common neighbors Oxy is available) can be derived as:

I(L1
xy;Oxy) = I(L1

xy)− I(L1
xy|Oxy) (7.7)

where:

I(L1
xy|Oxy) =

∑
z∈Oxy

I(L1
xy|z) (7.8)

For a multiplex network, Oxy can be redefined to use the global and core neighborhood of

the two nodes. As a result, the average mutual information of a target layer would be defined as:

MIα =
∑

x,y∈Eα&x 6=y

I(L1
xy;Oxy) (7.9)

The value ofMIα is calculated using information from a predictor layer β. It can be used to

indicate the sign (negative or positive) of the correlation between the link formation in two layers.

This sign is then used within the second phase of link prediction task (MLP) to assign weights to

all predictor layers and hence improve the performance of link prediction task for the target layer

α. More details on the relationship between the value of MIα and the sign of correlation between

layers are provided in Section 7.2.3.

7.2 Experimental Study

We evaluate the SMLP framework on networks extracted from two real-world datasets,

Travian and Cannes2013. Not only do we compare our results with two other approaches for fusing

cross-layer information, but we also consider scores generated by mutual information paired with
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core and global neighborhood as distinct methods. This enables us to investigate the impact of each

multiplex neighborhood metric on the final results. Hence, SMLP is compared with our previous

model MLP, Mutual Information (N) a single layer link prediction method, Mutual Information

(CN) and (GN) which incorporate core and global neighborhood definitions respectively. All of

the algorithms were implemented in Python and executed on a machine with the Intel(R) Core i7

CPU and 24GB of RAM for the purpose of fair comparison.

7.2.1 Datasets

We use two real-world dynamic multiplex networks to demonstrate the performance of our

proposed algorithm. These networks are considerably disparate in structure and were selected from

different domains. Negative links (raids) exist between users of our MMOG dataset to evaluate

the performance of our method in predicting negative links as well as examining these layers on

positive ones. Table 7.1 provides the network statistics for each of the datasets:

• Travian MMOG [61] Travian is a browser-based, real-time strategy game in which the play-

ers compete to create the first civilization capable of constructing a Wonder of the World.

The experiments in this paper were conducted on a 30 day period in the middle of the Tra-

vian game cycle. In Travian, players can execute different game actions including: sending

messages, trading resources, joining alliances, and raiding enemy villages to loot resources.

In this research, we focus on networks created from trades and messages as well as raids

which represents a negative relationship between players.

• Twitter Interactions [102] This dataset consists of Twitter activity before, during, and after

an “exceptional” event as characterized by the volume of communications. Unlike most

Twitter datasets which are built from follower-followee relationships, links in this multiplex

network correspond to retweeting, mentioning, and replying to other users. The Cannes2013

dataset was created from tweets about the Cannes film festival that occurred between May
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6,2013 to June 3, 2013. Each day is treated as a separate network snapshot.

Table 7.1: Dataset Summary (Network Layers)

Dataset Travian Cannes2013

No. of Nodes 2,809 438,537

No. of Snapshots 30 29

Layers/No. of Edges Trades 87,418 Retweet 496,982

Messages 44,956 Mention 411,338

Raids 56,765 Reply 83,534

7.2.2 Evaluation Metrics

For the evaluation, we measure receiver operating characteristic (ROC) curves for the dif-

ferent approaches. The ROC curve is a plot of the true positive rate (tpr) against the false positive

rate (fpr). These curves show achievable true positive rates (TP) with respect to all false positive

rates (FP) by varying the decision threshold on probability estimations or scores. For all of our ex-

periments, we report area under the ROC curve (AUROC), the scalar measure of the performance

over all thresholds. Since link prediction is highly imbalanced, straightforward accuracy measures

are well known to be misleading; for example, in a sparse network, the trivial classifier that labels

all samples as missing links can have a 99.99% accuracy.

7.2.3 Analysis of Multilayer Neighborhood

As mentioned before, our assumption is that both core and global neighborhood definitions

would enable us to study correlations between different layers of a network. Figure 7.1 shows av-
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erage mutual information values for Travian network for each day of the 30 day period. There are

negative and positive correlations between trades (or messages)-raids and trades-messages respec-

tively. As shown in the figure, at every timestep of the network, the average value decreases when

the core neighborhood is used in the case of negative correlation (Figure 7.1 (a) and (b)) and does

not change significantly when global neighborhood is used to calculate the average value. On the

other hand, as shown in Figure 7.1 (c), when dealing with positive correlations (trades-messages),

the value of average mutual information does not change significantly using the core neighbor-

hood but increases drastically using the global neighborhood definition (the average difference is

less than one). Hence, this justifies our assumption that the average mutual information value of a

certain layer can be used to determine the sign of its role in target layer link prediction.

Figure 7.1: Average mutual information values over time calculated using normal and core neigh-
borhood definitions for (a) Travian trades as the target layer and raids as the predictor, (b) Travian
messages as the target layer and raids as the predictor, and (c) Travian trades as the target layer and
messages as the predictor.

7.2.4 Performance of Signed Multiplex Link Prediction (SMLP)

Table 7.2 shows the results of different algorithms on the Travian and Cannes2013 datasets.

With 30 days of data from Travian and 27 days for Cannes2013, we were able to extensively com-

pare the performance of the proposed methods and the impact of using different elements. AUROC

performances for a target layer averaged over all snapshots are calculated, and our proposed frame-
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work is shown at the top of the table, followed by variants of mutual information based link pre-

diction models using different definitions of neighborhood (N which stands for Normal proposed

by Tan et al. [131], CN stands for Core Neighborhood and GN stands for Global Neighborhood).

The algorithms shown in the bottom half of the table (Average Aggregation and Entropy Aggrega-

tion [110]) are techniques for multiplex networks proposed by other research groups. The settings

given in [62] were used for MLP.

Table 7.2: AUROC performances for a target layer averaged over all snapshots and ten runs. Our
proposed framework is shown at the top of the table, followed by variants of mutual information
based link prediction models. The algorithms shown in the bottom half of the table are techniques
for multiplex networks proposed by other research groups. The best performer is marked in bold.

Algorithms / Networks Trade Message Raids Retweet Mention Reply

SMLP 0.871±0.013 0.843±0.031 0.793±0.007 0.812±0.002 0.834±0.003 0.839±0.002

MLP 0.821±0.001 0.803±0.002 0.758±0.001 0.812±0.002 0.834±0.003 0.839±0.002

Mutual Information (CN) 0.740±0.016 0.753±0.011 0.744±0.013 0.774±0.009 0.759±0.012 0.782±0.005

Mutual Information (GN) 0.737±0.010 0.746±0.011 0.747±0.009 0.771±0.011 0.767±0.012 0.773±0.009

Mutual Information (N) 0.716±0.012 0.727±0.006 0.703±0.012 0.731±0.007 0.725±0.013 0.742±0.014

Average Aggregation 0.744±0.030 0.752±0.020 0.658±0.017 0.740±0.003 0.737±0.011 0.761±0.003

Entropy Aggregation 0.731±0.004 0.763±0.020 0.661±0.009 0.749±0.003 0.758±0.031 0.744±0.002

Bold numbers indicate the best results on each target layer considered. As expected, SMLP

is the best performing algorithm in all cases since not only it utilizes both historical and cross-layer

information, but also mutual information enables SMLP to capture negative correlations between

different layers. As a result, node pairs that are connected by raids in Travian, are penalized for

this connection and eventually receive a lower score compared to node pairs that are only con-

nected on messages and trades. This holds true when raids is the target layer and two nodes are

connected on either messages or trades layers which are negatively correlated with raids. On the

other hand, it is evident that methods specifically designed for multiplex link prediction outper-
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form Mutual Information (N) which is unable to leverage cross-layer information. Also, Average

Aggregation and Entropy Aggregation are able to achieve higher AUROC scores compared with

Mutual Information based methods since they collect more information from the network using

different similarity metrics such as common neighbors, Adamic/Adar, etc. Finally, for Twitter lay-

ers, SMLP and MLP achieve similar results since there are no negative layers to modify the sign

of the weights associated with different layers of the network.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

The overarching aim of my research is to study large-scale human behaviors in coevolving

multiplex networks. Due to the lack of good standardized datasets, there has been relatively little

research on dynamic multiplex networks, as compared to static single layer ones. The main con-

tribution of this dissertation is 1) extensive experiments on the dynamics of networks formed from

diverse social processes and the creation of a dynamic multiplex network dataset from a massively

multiplayer online game, which can be used to study a variety of human behaviors; 2) introducing

a new game theoretic model for community detection in dynamic networks (D-GT); 3) proposing

supervised (RPM) and unsupervised methods (MLP and SMLP) for link prediction in multiplex

coevolving networks for both positive and negative links. We demonstrate that our holistic ap-

proach for modeling network dynamics in coevolving, multiplex networks outperforms state of the

art approaches.

At the beginning of this research, a detailed analysis was done on the Travian MMOG to

gain a better understanding of the nature of such environments as well as to collect data for future

studies. Most online social media platforms are optimized to support a limited range of social inter-

actions while relations in MMOGs are often formed during the course of gameplay and evolve as

the game progresses. These relations are cognitively comparable to real-world relationships which

makes them more interesting for researchers. The domain knowledge extracted from the extensive

analysis of this dataset helped us to introduce various models for predicting group structures as well

as link formation in these networks. The Travian massively multiplayer online game has served as

a valuable testbed, enabling us to evaluate our social modeling algorithms in a complex and rich

environment. Due to the dearth of publicly available data, many of the published prediction models

have only been tested on coauthorship networks, such as DBLP and arXiv. However our results

show that networks formed through different social processes (e.g., aggression vs. communication)

exhibit different characteristics, necessitating experimentation on many types of datasets.
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To solve the problem of community and group detection in social networks, we proposed

D-GT (Dynamic Game Theoretic community detection), a model which uses stochastic optimiza-

tion to find the best community structure, assuming that the nodes are modeled as rational players

who seek to maximize their personal utility while playing a community membership game with

neighboring nodes. We examined the performance of varying the amount of information propa-

gated from prior snapshots. Our results on various datasets from different backgrounds indicate

that D-GT is able to achieve a higher performance compared with other state-of-the-art methods.

After completing the study of the high level player behaviors and their alliance formation

processes, we investigated dyadic interactions between players in order to create predictive models

of link formation. We proposed RPM (Rate Prediction Model), a supervised link prediction method

that learns the rates of player interactions. The aim of link prediction is to forecast connections

that are most likely to occur in the future, based on examples of previously observed links. A key

insight is that it is useful to explicitly model network dynamics, how frequently links are created or

destroyed when doing link prediction. Not only do different networks change at different rates, but

individuals within a network can have disparate tempos of social interaction. Modeling this aspect

of network dynamics can ameliorate performance on link prediction tasks.

Finally, as networks extracted from social media platforms frequently include multiple

types of links that dynamically change over time; we need a more advanced algorithm to model link

formation in such environment. We organize this data into a dynamic multiplex network, where

each layer is composed of a single edge type linking the same underlying vertices. In coevolving

networks, links in one layer result in an increased (or a decreased) probability of other types of links

forming between the same node pair. Hence we believe that a holistic approach in which all the

layers are simultaneously considered can outperform a factored approach in which link prediction

is performed separately in each layer. Our models MLP and SMLP are designed such that they

offer a holistic approach for multiplex networks but with a slight difference. While MLP is only

able to capture cross layer information in a network where all layers are positively correlated,
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SMLP uses the concept of mutual information to extract useful data from negative layers as well.

It would be interesting to extend our results to other multilayer networks that contain negative

interactions, particularly studying datasets that contain multiple negative interaction layers to see

if they result in positive correlations. Another promising line of inquiry is investigating the usage

of multiple features (beyond common neighbors) to calculate mutual information, since different

structural features highlight different aspects of network formation. Also, the rank aggregation

method used in our model assigns the same weight to all rankers. However, for different networks,

each scoring method might add differing value to the final scoring matrix. Hence, we think that

using a weighted Borda rank aggregation to calculate final scores could improve prediction results.

Using a combination of our techniques, D-GT, RPM, and SMLP, we are able to successfully

model the changes in community structure, rate of link formation, and the coevolution of different

network layers. In future work it would be valuable to introduce a single unified model, capable of

exploiting dependencies between the dynamics of different processes.
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APPENDIX A: TRAVIAN DATASET TECHNICAL DESCRIPTION

In this appendix, we briefly describe the Travian MySQL dataset which was provided to us

by Drs. Rolf T. Wigand and Nitin Agarwal at University of Arkansas. This chapter includes details

about the original tables provided to us as well as tables of the final dataset created for this disser-

tation. The Travian dataset consists of two sub datasets called: travian lmu research 1 and

travian lmu research 2 which from now on, will be called Travian1 and Travian2 respec-

tively. We include the list of important tables, along with a short description. Then we conclude

by discussing the networks generated from this dataset. This chapter also provides a list of SQL

queries used for generating networks.

1. Travian1 (travian lmu research 1)

(a) a stats: This table contains the following information for a specific day: date, number

of registered users, activated players, number of active players (in the last seven days,

three days, 24 hours, and six minutes), number of players (all four types), number

of visitors (inactive users) and number of attacks. Maintaining this table helps us to

save time—-instead of running queries on different tables we can get a summary of the

important statistics quickly.

(b) s dorf (s-villages): This table keeps data about villages in the Travian game. Each

village has an owner which is a registered and active user. Users can own multiple

villages since they can attack and conquer other users’ villages. Each village has a

unique ID known as did across the whole dataset. An ID for the village owner is stored

here as uid, based on the data saved in the users’ table. Other important information

which can be extracted from this table include: village tribe, location of the village

on the world map (x,y coordinates), name of the village selected by the owner, type

of village (main, occupied and oasis), production rate per hour (clay, wood, iron and
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wheat), consumption rate by troops and buildings, point in time of the last production,

stock level of the resources and size of hideout, which is important during a war since

the user can only protect that amount of resources from attack. Note: each version of

the dataset only keeps the resource production rate for the specific date that the data

backup occurred. If we want to keep track of changes in the production rates over time,

we need to examine other backups of the dataset from different snapshots (daily or

weekly).

(c) s ereignisse (s event): The table tracks the occurrence of specific events: building

construction, building demolition, attack, raid, support, new village, troop return and

friendly trade. There is a data field called zeid which shows the data of the event.

Unfortunately, this table is missing in the current version of the dataset.

(d) s gebaeude (s buildings): This table contains data about different buildings of a vil-

lage. Each record of this table has a did for the village ID, gid which is the building ID

and stage of the building at this point of time. For example if we have a data backup on

day three of the game, this shows the state of the building at that specific day.

(e) s marktplatz (s marketplace): Information about marketplaces is stored in this table.

In the marketplace players trade resources or buy items they need in exchange for gold.

(f) s spieler (s player): Player information is saved in this table. Right now, the table

contains information about 2,107 users which is a small subset of the users registered

in the a stats table. The primary key of the table is the user ID saved as uid. Each

player selects a name and has a village that they founded designated with a did. If

that village has joined an alliance, its ID is saved as aid. Other important fields of this

table include: number of villages, time stamp of last login (to keep track of the user’s

activities), login status, time zone and time format.

(g) s transporte (s transports): Another valuable table which is also missing from this
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dataset is s transports. This table saves information about the transportation of re-

sources between different users. Each record of this table contains information about

source village, destination village, duration of transport in seconds, number of utilized

traders, quantity of materials (wood, clay, iron, crops and wheat) and number of times

the trader repeated this transport order.

(h) s truppen (s troops): Each user has its own army of troops; information about the

troops is saved in this table.

(i) s ww: This contains the information about wonders of the world.

2. Travian2 (travian lmu research 2)

(a) f forum: The forum table keeps information about the forum each alliance is using

for communications. Each forum has a unique ID and contains posts from alliance

members.

(b) f posts: This table includes all activities of different users posting on different forums

within the game.

(c) f topics: This table includes all topics users posted on different forums within the

game.

(d) s allianz (s alliance): Each alliance has a unique ID. Alliance name, abbreviation, date

of foundation and description are recorded in this table.

(e) s nachrichten1 (s news): This table stores news exchanged between users. This news

can either be a piece of information about the game or something like a message be-

tween users. It uses uid1 to record the sender’s ID and uid2 to save the receiver’s

information. The time and status of the message (read/unread) can also be found in this

table.
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(f) s nachrichten2: Text of the news mentioned in the previous item is included in this

table.

(g) x eroberungen (x conquers/captures): There are some attacks which occur that re-

sult in a village becoming conquered/captured. The list of these attacks is saved in this

table. The following information is recorded for each attack: uid of the conqueror, uid

of the user who lost the village, alliance of the attacker, alliance of the defender, village

ID of the attacker, village ID of the defender, date and time of the conquest.

(h) x handel (x trade): This table tracks trades between users who are not in the same

alliance. It records information about sender, receiver, amount of each resource, total

amount and the date of the trade.

(i) x handel2 (x trade2): x trade2 stores the total number of trades between two users

and also the balance of these trades.

(j) x raid: This is where the data about all attacks is stored. It records the following

information: user ID of the attacker and defender, looted amount of resources, sum of

the looted amounts and the time of the robbery.

A dataset with the same structure as described above is stored for every day of the Travian

game. To have a better understanding of the data, we combined all the data together to create a

unified version of the dataset which includes the following tables: alliances, alliance members,

conquers, messages, raids, reports1, reports2, reports3, stats, trades and villages. Extracting infor-

mation from the table in the final unified database and creating networks requires complex queries.

Here is a sample query specifically designed to generate desired daily networks from our MySQL

database:

SELECT DISTINCT uid1,uid2 FROM table name WHERE uid1 != 0 AND uid2

!= 0 AND uid1 NOT IN (SELECT uid FROM inactive users) AND uid2 NOT
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IN (SELECT uid FROM inactive users) AND from unixtime( zeit, ’%Y-%m-%d’

) >= from date AND from unixtime( zeit, ’%Y-%m-%d’ ) <= to date
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