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ABSTRACT
The past decade has witnessed the emergence of participatory Web and social media, bringing peo-
ple together in many creative ways. Millions of users are playing, tagging, working, and socializing
online, demonstrating new forms of collaboration, communication, and intelligence that were hardly
imaginable just a short time ago. Social media also helps reshape business models, sway opinions and
emotions, and opens up numerous possibilities to study human interaction and collective behavior in
an unparalleled scale.This lecture, from a data mining perspective, introduces characteristics of social
media, reviews representative tasks of computing with social media, and illustrates associated chal-
lenges. It introduces basic concepts, presents state-of-the-art algorithms with easy-to-understand
examples, and recommends effective evaluation methods. In particular, we discuss graph-based com-
munity detection techniques and many important extensions that handle dynamic, heterogeneous
networks in social media. We also demonstrate how discovered patterns of communities can be used
for social media mining. The concepts, algorithms, and methods presented in this lecture can help
harness the power of social media and support building socially-intelligent systems. This book is
an accessible introduction to the study of community detection and mining in social media. It is an
essential reading for students, researchers, and practitioners in disciplines and applications where
social media is a key source of data that piques our curiosity to understand, manage, innovate, and
excel.

This book is supported by additional materials, including lecture slides, the complete set of
figures, key references, some toy data sets used in the book, and the source code of representative
algorithms. The readers are encouraged to visit the book website for the latest information:

http://dmml.asu.edu/cdm/

KEYWORDS
social media, community detection, social media mining, centrality analysis, strength of
ties, influence modeling, information diffusion, influence maximization,correlation,ho-
mophily, influence, community evaluation, heterogeneous networks, multi-dimensional
networks, multi-mode networks, community evolution, collective classification, social
dimension, behavioral study
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C H A P T E R 1

Social Media and Social
Computing

1.1 SOCIAL MEDIA
The past decade has witnessed a rapid development and change of the Web and the Internet.
Numerous participatory web applications and social networking sites have been cropping up, draw-
ing people together and empowering them with new forms of collaboration and communication.
Prodigious numbers of online volunteers collaboratively write encyclopedia articles of previously un-
thinkable scopes and scales; online marketplaces recommend products by tapping on crowd wisdom
via user shopping and reviewing interactions; and political movements benefit from new forms of
engagement and collective actions.

Table 1.1 lists various social media, including blogs, forums, media sharing platforms, mi-
croblogging, social networking, social news, social bookmarking, and wikis. Underneath their seem-
ingly different facade lies a common feature that distinguishes them from the classical web and
traditional media: consumers of content, information and knowledge are also producers.

Table 1.1: Various Forms of Social Media
Blog Wordpress, Blogspot, LiveJournal, BlogCatalog

Forum Yahoo! answers, Epinions
Media Sharing Flickr, YouTube, Justin.tv, Ustream, Scribd
Microblogging Twitter, foursquare, Google buzz

Social Networking Facebook, MySpace, LinkedIn, Orkut, PatientsLikeMe
Social News Digg, Reddit

Social Bookmarking Del.icio.us, StumbleUpon, Diigo
Wikis Wikipedia, Scholarpedia, ganfyd, AskDrWiki

In traditional media such as TV, radio, movies, and newspapers, it is only a small number
of “authorities” or “experts” who decide which information should be produced and how it is dis-
tributed. The majority of users are consumers who are separated from the production process. The
communication pattern in the traditional media is one-way traffic, from a centralized producer to
widespread consumers.

A user of social media, however, can be both a consumer and a producer. With hundreds
of millions of users active on various social media sites, everybody can be a media outlet (Shirky,
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Table 1.2: Top 20 Websites in the US
Rank Site Rank Site

1 google.com 11 blogger.com
2 facebook.com 12 msn.com
3 yahoo.com 13 myspace.com
4 youtube.com 14 go.com
5 amazon.com 15 bing.com
6 wikipedia.org 16 aol.com
7 craigslist.org 17 linkedin.com
8 twitter.com 18 cnn.com
9 ebay.com 19 espn.go.com
10 live.com 20 wordpress.com

2008). This new type of mass publication enables the production of timely news and grassroots
information and leads to mountains of user-generated contents, forming the wisdom of crowds. One
example is the London terrorist attack in 2005 (Thelwall, 2006) in which some witnesses blogged
their experience to provide first-hand reports of the event. Another example is the bloody clash
ensuing the Iranian presidential election in 2009 where many provided live updates on Twitter,
a microblogging platform. Social media also allows collaborative writing to produce high-quality
bodies of work otherwise impossible. For example, “since its creation in 2001, Wikipedia has grown
rapidly into one of the largest reference web sites, attracting around 65 million visitors monthly as
of 2009. There are more than 85,000 active contributors working on more than 14,000,000 articles
in more than 260 languages1.”

Another distinctive characteristic of social media is its rich user interaction. The success
of social media relies on the participation of users. More user interaction encourages more user
participation, and vice versa. For example, Facebook claims to have more than 500 million active
users2 as of August, 2010. The user participation is a key element to the success of social media, and
it has helped push eight social media sites to be among the top 20 websites as shown in Table 1.2
(Internet traffic by Alexa on August 3, 2010). Users are connected though their interactions from
which networks of users emerge. Novel opportunities arise for us to study human interaction and
collective behavior on an unprecedented scale and many computational challenges ensue, urging the
development of advanced computational techniques and algorithms.

This lecture presents basic concepts of social network analysis related to community detection
and uses simple examples to illustrate state-of-the-art algorithms for using and analyzing social
media data. It is a self-contained book and covers important topics regarding community detection
in social media. We start with concepts and definitions used throughout this book.

1http://en.wikipedia.org/wiki/Wikipedia:About
2http://www.facebook.com/press/info.php?statistics

http://en.wikipedia.org/wiki/Wikipedia:About
http://en.wikipedia.org/wiki/Wikipedia:About
http://www.facebook.com/press/info.php?statistics
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Figure 1.1: A social network of 9 actors and 14 connections. The diameter of the network is 5. The
clustering coefficients of nodes 1-9 are: C1 = 2/3, C2 = 1, C3 = 2/3, C4 = 1/3, C5 = 2/3, C6 = 2/3,
C7 = 1/2, C8 = 1, C9 = 0. The average clustering coefficient is 0.61 while the expected clustering
coefficient of a random graph with 9 nodes and 14 edges is 14/(9 × 8/2) = 0.19.

Table 1.3: Adjacency Matrix
Node 1 2 3 4 5 6 7 8 9

1 - 1 1 1 0 0 0 0 0
2 1 - 1 0 0 0 0 0 0
3 1 1 - 1 0 0 0 0 0
4 1 0 1 - 1 1 0 0 0
5 0 0 0 1 - 1 1 1 0
6 0 0 0 1 1 - 1 1 0
7 0 0 0 0 1 1 - 1 1
8 0 0 0 0 1 1 1 - 0
9 0 0 0 0 0 0 1 0 -

1.2 CONCEPTS AND DEFINITIONS
Network data are different from attribute-value data and have their unique properties.

1.2.1 NETWORKS AND REPRESENTATIONS
A social network is a social structure made of nodes (individuals or organizations) and edges that
connect nodes in various relationships like friendship, kinship, etc. There are two common ways to
represent a network. One is the graphical representation that is very convenient for visualization.
Figure 1.1 shows one toy example of a social network of 9 actors. A social network can also be
represented as a matrix (called the sociomatrix (Wasserman and Faust, 1994), or adjacency matrix) as
shown in Table 1.3. Note that a social network is often very sparse, as indicated by many zeros in the
table. This sparsity can be leveraged for performing efficient analysis of networks. In the adjacency
matrix, we do not specify the diagonal entries. By definition, diagonal entries represent self-links,
i.e., a connection from one node to itself. Typically, diagonal entries are set to zero for network
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Table 1.4: Nomenclature
Symbol Meaning

A the adjacency matrix of a network
V the set of nodes in the network
E the set of edges in the network
n the number of nodes (n = |V |)
m the number of edges (n = |E|)
vi a node vi

e(vi, vj ) an edge between nodes vi and vj

Aij 1 if an edge exists between nodes vi and vj ; 0 otherwise
Ni the neighborhood (i.e., neighboring nodes) of node vi

di the degree of node vi (di = |Ni |)
geodesic a shortest path between two nodes

geodesic distance the length of the shortest path
g(vi, vj ) the geodesic distance between nodes vi and vj

analysis. However, in certain cases, diagonal entries should be fixed to one. Thereafter, unless we
specify explicitly, the diagonal entries are zero by default.

A network can be weighted, signed and directed. In a weighted network, edges are associated
with numerical values. In a signed network, some edges are associated with positive relationships,
some others might be negative. Directed networks have directions associated with edges. In our
example in Figure 1.1, the network is undirected.Correspondingly, the adjacency matrix is symmetric.
However, in some social media sites, interactions are directional. In Twitter, for example, one user
x follows another user y, but user y does not necessarily follow user x. In this case, the follower-
followee network is directed and asymmetrical.This lecture will focus on, unless specified explicitly, a
simplest form of network, i.e., undirected networks with boolean edge weights, just like the example
in Table 1.3. Many of the techniques discussed in this lecture can be extended to handle weighted,
signed and directed networks as well.

Notations We use V and E to denote the sets of nodes and edges in a network, respectively.
The number of nodes in the network is n, and the number of edges is m. Matrix A ∈ {0, 1}n×n

represents the adjacency matrix of a network. An entry Aij ∈ {0, 1} denotes whether there is a link
between nodes vi and vj . The edge between two nodes vi and vj is denoted as e(vi, vj ). Two nodes
vi and vj are adjacent if Aij = 1. Ni represents all the nodes that are adjacent to node vi , i.e., the
neighborhood of node vi . The number of nodes adjacent to a node vi is called its degree (denoted as
di). E.g., in the network in Figure 1.1, d1 = 3, d4 = 4. One edge is adjacent to a node if the node is
a terminal node of the edge. E.g., edge e(1, 4) is adjacent to both nodes 1 and 4.

A shortest path between two nodes (say, vi and vj ) is called a geodesic. The number of hops in
the geodesic is the geodesic distance between the two nodes (denoted as g(vi, vj )). In the example,
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g(2, 8) = 4 as there is a geodesic (2-3-4-6-8).The notations that will be used frequently throughout
this lecture are summarized in Table 1.4.

1.2.2 PROPERTIES OF LARGE-SCALE NETWORKS
Networks in social media are often very huge, with millions of actors and connections. These large-
scale networks share some common patterns that are seldom noticeable in small networks. Among
them, the most well-known are: scale-free distributions, the small-world effect, and strong community
structure. Networks with non-trivial topological features are called complex networks to differentiate
them from simple networks such as a lattice graph or random graphs.

Node degrees in a large-scale network often follow a power law distribution. Let’s look at
Figure 1.2 about how many nodes having a particular node degree for two networks of YouTube3

and Flickr4. As seen in the figure, the majority of nodes have a low degree, while few have an
extremely high degree (say, degree > 104). In a log-log scale, both networks demonstrate a similar
pattern (approximately linear, or a straight line) in node degree distributions (node degree vs. number
of nodes). Such a pattern is called a power law distribution, or a scale-free distribution because the
shape of the distribution does not change with scale. What is interesting is that if we zoom into the
tail (say, examine those nodes with degree > 100), we will still see a power law distribution. This
self-similarity is independent of scales. Networks with a power law distribution for node degrees are
called scale-free networks.

Another prominent characteristic of social networks is the so-called small-world effect.
Travers and Milgram (1969) conducted an experiment to examine the average path length for social
networks of people in the United States. In the experiment, the subjects chosen were asked to send a
chain letter to his acquaintances starting from an individual in Omaha, Nebraska or Wichita, Kansas
(then remote places) to the target individual in Boston, Massachusetts. At the end, 64 letters arrived
and the average path length fell around 5.5, or roughly 6, hence, the famous “six degrees of separation”.
This result is also confirmed recently in a planetary-scale instant messaging network of more than
180 million people, in which the average path length of any two people is 6.6 (Leskovec and Horvitz,
2008). In order to calibrate this small world effect, some additional measures are defined.The length
of the longest geodesic in the network is its diameter (Wasserman and Faust, 1994). The diameter
of the network in Figure 1.1 is 5 (corresponding to the geodesic distance between nodes 2 and 9).
Most real-world large-scale networks observe a small diameter.

Social networks also exhibit a strong community structure. That is, people in a group tend to
interact with each other more than with those outside the group. Since friends of a friend are likely to
be friends as well, this transitivity can be measured by clustering coefficient, the number of connections
between one’s friends over the total number of possible connections among them. Suppose a node

3http://www.youtube.com/
4http://www.flickr.com/

http://www.youtube.com/
http://www.flickr.com/
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Figure 1.2: Node distributions of a YouTube network with 1, 138, 499 nodes and a Flickr network with
1, 715, 255 edges (based on data from (Mislove et al., 2007)). Both X-axis and Y-axis are on a log scale.
For power law distributions, the scatter plot of node degrees is approximately a straight line. The average
clustering coefficients are 0.08 and 0.18, whereas if the connections are uniformly random, the expected
coefficient in a random graph is 4.6 × 10−6 and 1.0 × 10−5.

vi has di neighbors, and there are ki edges among these neighbors, then the clustering coefficient is

Ci =
{

ki

di×(di−1)/2 di > 1

0 di = 0 or 1
(1.1)

Clustering coefficient measures the density of connections among one’s friends. A network with
communities tends to have a much higher average clustering coefficient than a random network. For
instance, in Figure 1.1,node 6 has four neighbors 4,5,7 and 8.Among them,we have four connections
e(4, 5), e(5, 7), e(5, 8), e(7, 8). Hence, the clustering coefficient of node 6 is 4/(4 × 3/2) = 2/3.
The average clustering coefficient of the network is 0.61. However, for a random graph with the
same numbers of nodes and connections, the expected clustering coefficient is 14/(9 × 8/2) = 0.19.

1.3 CHALLENGES
Millions of users are playing, working, and socializing online. This flood of data allows for an
unprecedented large-scale social network analysis – millions of actors or even more in one net-
work. Examples include email communication networks (Diesner et al., 2005), instant messaging
networks (Leskovec and Horvitz, 2008), mobile call networks (Nanavati et al., 2006), friendship
networks (Mislove et al., 2007). Other forms of complex networks, like coauthorship or citation
networks, biological networks, metabolic pathways, genetic regulatory networks and food web, are
also examined and demonstrate similar patterns (Newman et al., 2006). Social media enables a new
laboratory to study human relations.

These large-scale networks combined with unique characteristics of social media present novel
challenges for mining social media. Some examples are given below:
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• Scalability. The network presented in social media can be huge, often in a scale of millions
of actors and hundreds of millions of connections, while traditional social network analysis
normally deals with hundreds of subjects or fewer. Existing network analysis techniques might
fail when applied directly to networks of this astronomical size.

• Heterogeneity. In reality, multiple relationships can exist between individuals. Two persons
can be friends and colleagues at the same time. Thus, a variety of interactions exist between
the same set of actors in a network. Multiple types of entities can also be involved in one
network. For many social bookmarking and media sharing sites, users, tags and content are
intertwined with each other, leading to heterogeneous entities in one network. Analysis of
these heterogeneous networks involving heterogeneous entities or interactions requires new
theories and tools.

• Evolution. Social media emphasizes timeliness. For example, in content sharing sites and
blogosphere, people quickly lose their interest in most shared contents and blog posts. This
differs from classical web mining.New users join in,new connections establish between existing
members, and senior users become dormant or simply leave. How can we capture the dynamics
of individuals in networks? Can we find the die-hard members that are the backbone of
communities? Can they determine the rise and fall of their communities?

• Collective Intelligence. In social media, people tend to share their connections. The wisdom
of crowds, in forms of tags, comments, reviews, and ratings, is often accessible. The meta
information, in conjunction with user interactions, might be useful for many applications.
It remains a challenge to effectively employ social connectivity information and collective
intelligence to build social computing applications.

• Evaluation. A research barrier concerning mining social media is evaluation. In traditional
data mining, we are so used to the training-testing model of evaluation. It differs in social
media. Since many social media sites are required to protect user privacy information, limited
benchmark data is available. Another frequently encountered problem is the lack of ground
truth for many social computing tasks, which further hinders some comparative study of
different works. Without ground truth, how can we conduct fair comparison and evaluation?

1.4 SOCIAL COMPUTING TASKS
Associated with the challenges are some pertinent research tasks. We illustrate them with examples.

1.4.1 NETWORK MODELING
Since the seminal work by Watts and Strogatz (1998), and Barabási and Albert (1999), network
modeling has gained some significant momentum (Chakrabarti and Faloutsos, 2006). Researchers
have observed that large-scale networks across different domains follow similar patterns, such as
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scale-free distributions, the small-world effect and strong community structures as we discussed in
Section 1.2.2. Given these patterns, it is intriguing to model network dynamics of repeated patterns
with some simple mechanics. Examples include the Watts-and-Strogatz model (Watts and Strogatz,
1998) to explain the small-world effect and the preferential attachment process (Barabási and Albert,
1999) that explains power-law distributions. Network modeling (Chakrabarti and Faloutsos, 2006)
offers an in-depth understanding of network dynamics that is independent of network domains. A
network model can be used for simulation study of various network properties, e.g., robustness of a
network under attacks, information diffusion within a given network structure, etc.

When networks scale to over millions and more nodes, it becomes a challenge to compute
some network statistics such as the diameter and average clustering coefficient. One way to approach
the problem is sampling (Leskovec and Faloutsos, 2006). It provides an approximate estimate of
different statistics by investigating a small portion of the original huge network. Others explore I/O
efficient computation (Becchetti et al., 2008; Desikan and Srivastava, 2008). Recently, techniques of
harnessing the power of distributed computing (e.g., MapReduce mechanism in Hadoop platform)
are attracting increasing attention.

1.4.2 CENTRALITY ANALYSIS AND INFLUENCE MODELING
Centrality analysis is about identifying the most “important” nodes in a net-
work (Wasserman and Faust, 1994). Traditional social network analysis hinges upon link
structures to identify nodes with high centrality. Commonly used criteria include degree centrality,
betweenness centrality, closeness centrality, and eigenvector centrality (equivalent to Pagerank
scores (Page et al., 1999)). In social media, additional information is available, such as comments
and tags. This change opens up opportunities to fuse various sources of information to study
centrality (Agarwal et al., 2008).

A related task is influence modeling that aims to understand the process of influence or informa-
tion diffusion.Researchers study how information is propagated (Kempe et al., 2003) and how to find
a subset of nodes that maximize influence in a population. Its sibling tasks include blocking rumor dif-
fusion or detecting cascading behavior by placing a limited number of sensors online (Leskovec et al.,
2007b). In the marketing domain, it is also known as viral marketing (Richardson and Domingos,
2002) or word-of-mouth marketing. It aims to identify influential customers for marketing such that
they can effectively influence their friends to achieve the maximum return.

1.4.3 COMMUNITY DETECTION
Communities are also called groups, clusters, cohesive subgroups, or modules in different contexts. It is
one of the fundamental tasks in social network analysis. Actually, “the founders of sociology claimed
that the causes of social phenomena were to be found by studying groups rather than individuals”
(Hechter (1988), Chapter 2, Page 15). Finding a community in a social network is to identify a set
of nodes such that they interact with each other more frequently than with those nodes outside the
group. For instance, Figure 1.3 shows the effect after the nodes are grouped into two different sets
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Figure 1.3: Grouping Effect. Two communities are identified via modularity optimiza-
tion (Newman and Girvan, 2004): {1, 2, 3, 4}, and {5, 6, 7, 8, 9}.

based on modularity optimization (discussed later in Section 3.3.5), with each group in a different
color.

Community detection can facilitate other social computing tasks and is applied in many real-
world applications. For instance, the grouping of customers with similar interests in social media
renders efficient recommendations that expose customers to a wide range of relevant items to enhance
transaction success rates. Communities can also be used to compress a huge network, resulting in
a smaller network. In other words, problem solving is accomplished at group level, instead of node
level. In the same spirit, a huge network can be visualized at different resolutions, offering an intuitive
solution for network analysis and navigation.

The fast growing social media has spawn novel lines of research on community detection.
The first line focuses on scaling up community detection methods to handle networks of colossal
sizes (Flake et al., 2000; Gibson et al., 2005; Dourisboure et al., 2007; Andersen and Lang, 2006).
This is because many well-studied approaches in social sciences were not designed to handle sizes
of social media network data.

The second line of research deals with networks of heterogeneous entities and interac-
tions (Zeng et al., 2002; Java et al., 2008; Tang et al., 2008, 2009). Take YouTube as an example.
A network in YouTube can encompass entities like users, videos, and tags; entities of different types
can interact with each other. In addition, users can communicate with each other in distinctive ways,
e.g., connecting to a friend, leaving a comment, sending a message, etc. These distinctive types of
entities or interactions form heterogeneous networks in social media. With a heterogeneous net-
work, we can investigate how communities in one type of entities correlate with those in another
type and how to figure out the hidden communities among heterogeneous interactions.

The third line of research considers the temporal development of social media net-
works. In essence, these networks are dynamic and evolve with changing community member-
ships (Backstrom et al., 2006; Palla et al., 2007; Asur et al., 2007; Tang et al., forthcoming). For in-
stance, the number of active users in Facebook has grown from 14 million in 20055 to 500 million
as in 20106. As a network evolves, we can study how discovered communities are kept abreast with
its growth and evolution, what temporal interaction patterns are there, and how these patterns can
help identify communities.

5http://www.nytimes.com/2005/05/26/business/26sbiz.html
6http://www.facebook.com/press/info.php?statistics

http://www.nytimes.com/2005/05/26/business/26sbiz.html
http://www.nytimes.com/2005/05/26/business/26sbiz.html
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
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Figure 1.4: Link Prediction. Edges e(2, 4) and e(8, 9) are likely links.

1.4.4 CLASSIFICATION AND RECOMMENDATION
Classification and recommendation tasks are common in social media applications. A successful
social media site often requires a sufficiently large population. As personalized recommendations
can help enhance user experience, it is critical for the site to provide customized recommenda-
tions (e.g., friends, communities, tags) to encourage more user interactions with better experience.
Classification can help recommendation. For example, one common feature on many social net-
working sites is friend recommendation that suggests a list of friends that a user might know. Since
it is hard for a user to figure out who is available on a site, an effective way of expanding one’s
friendship network is to automatically recommend connections. This problem is known as link pre-
diction (Liben-Nowell and Kleinberg, 2007). Essentially, it predicts which nodes are likely to get
connected given a social network. The output can be a (ranked) list of links.

Figure 1.4 is an example of link prediction. The given network is on the left side. Based on
the network structure, link prediction generates a list of connections that are most likely. In our
example, two connections are suggested: e(2, 4) and e(8, 9), resulting in a network on the right
in which dashed lines are the predicted links. If a network involves more than one type of entity
(say, user-group subscription network, user-item shopping relationship, user-movie ratings, etc.), the
recommendation becomes a collaborative filtering problem (Breese et al., 1998).

There are other tasks that also involve the utilization of social networks. For instance, given
a social network and some user information (interests, preferences, or behaviors), we can infer the
information of other users within the same network. Figure 1.5 presents an example of network-based
classification. The classification task here is to know whether an actor is a smoker or a non-smoker
(indicated by + and −, respectively). Users with unknown smoking behavior are colored in yellow
with question marks. By studying connections between users, it is possible to infer the behavior of
those unknown users as shown on the right. In general, social media offers rich user information in
terms of interactions. Consequently, solutions that allow to leverage this kind of network information
are desirable in our effort to harness the predictive power of social media.

1.4.5 PRIVACY, SPAM AND SECURITY
Social media entails the socialization between humans.Naturally,privacy is an inevitable and sensitive
topic. Many social media sites (e.g., Facebook, Google Buzz) often find themselves as the subjects
in heated debates about user privacy. It is also not a task that can be dealt with lightly. For example,
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Figure 1.5: Network-based Classification

as shown in (Backstrom et al., 2007), in some cases, social network data, without user identity but
simply describing their interactions, can allow an adversary to learn whether there exist connections
between specific targeted pairs of users.More often than not, simple anonymization of network nodes
cannot protect privacy as one might hope for. For example, this privacy concern was attributed to
the cancellation of Nexflix Prize Sequel7 in 2010.

Spam is another issue that causes grave concerns in social media. In blogosphere, spam blogs
(a.k.a., splogs) (Kolari et al., 2006a,b) and spam comments have cropped up. These spams typically
contain links to other sites that are often disputable or otherwise irrelevant to the indicated content
or context. Identifying these spam blogs becomes increasingly important in building a blog search
engine. Attacks are also calling for attentions in social tagging systems (Ramezani et al., 2008). Social
media often involves a large volume of private information. Some spammers use fake identifiers to
obtain user private information on social networking sites. Intensified research is in demand on
building a secure social computing platform as it is critical in turning social media sites into a
successful marketplace8.

1.5 SUMMARY
Social media mining is a young and vibrant field with many promises. Opportunities abound. For
example, the link prediction technique in (Liben-Nowell and Kleinberg, 2007) achieves significantly
better performance than random prediction,but its absolute accuracy is far from satisfactory.For some
other tasks, we still need to relax and remove unrealistic assumptions in state-of-the-art algorithms.

Social media has kept surprising us with its novel forms and variety. Examples include the
popular microblogging service Twitter that restricts each tweet to be of at most 140 characters,
and the location-based updating service Foursquare. An interesting trend is that social media is
increasingly blended into the physical world with recent mobile technologies and smart phones. In
other words, as social media is more and more weaved into human beings’ daily lives, the divide
between the virtual and physical worlds blurs, a harbinger of the convergence of mining social media
and mining the reality (Mitchell, 2009).

The remainder of this lecture consists of four chapters. Chapter 2 is a foundation of many
social computing tasks, introducing nodes, ties, centrality analysis, and influence modeling.Chapter 3
7http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html
8On August 13, 2010, Delta Airlines launched their flight booking service on Facebook.

http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html
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illustrates representative approaches to community detection and discusses issues of evaluation.
Chapter 4 expands further on community detection in social media networks in presence of many
types of heterogeneity. And Chapter 5 contains two social media mining tasks (community evolution
and behavior classification) that demonstrate how community detection can help accomplish other
social computing tasks. We hope that this lecture can help readers to appreciate a good body of
existing techniques and gain better insights in their efforts to build socially-intelligent systems and
harness the power of social media.
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C H A P T E R 2

Nodes, Ties, and Influence
In a social network, nodes are usually not independent of each other; they are connected by ties (or
edges, links).When nodes are connected, they could influence each other. In a broader sense, influence
is a form of contagion that moves in a network of connected nodes. It can be amplified or attenuated.
In this chapter, we discuss importance of nodes, strengths of ties, and influence modeling.

2.1 IMPORTANCE OF NODES
It is natural to question which nodes are important among a large number of connected nodes.
Centrality analysis provides answers with measures that define the importance of nodes.We introduce
classical and commonly used ones (Wasserman and Faust, 1994): degree centrality, closeness centrality,
betweenness centrality, and eigenvector centrality. These centrality measures capture the importance of
nodes in different perspectives.

Degree Centrality The importance of a node is determined by the number of nodes adjacent to it.
The larger the degree of one node, the more important the node is. Node degrees in most social
media networks follow a power law distribution, i.e., a very small number of nodes have an
extremely large number of connections. Those high-degree nodes naturally have more impact
to reach a larger population than the remaining nodes within the same network. Thus, they
are considered to be more important.

The degree centrality is defined1 as

CD(vi) = di =
∑
j

Aij . (2.1)

When one needs to compare two nodes in different networks, a normalized degree centrality
should be used,

C′
D(vi) = di/(n − 1). (2.2)

Here, n is the number of nodes in a network. It is the proportion of nodes that are adjacent to
node vi . Take node 1 in the toy network in Figure 1.1 as an example. Its degree centrality is
3, and its normalized degree centrality is 3/(9 − 1) = 3/8.

Closeness Centrality A central node should reach the remaining nodes more quickly than a non-
central node. Closeness centrality measures how close a node is to all the other nodes. The

1Refer to Table 1.4 for symbol definitions.
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measure involves the computation of the average distance of one node to all the other nodes:

Davg(vi) = 1

n − 1

n∑
j �=i

g(vi, vj ), (2.3)

where n is the number of nodes, and g(vi, vj ) denotes the geodesic distance between nodes
vi and vj . The average distance can be regarded as a measure of how long it will take for
information starting from node vi to reach the whole network. Conventionally, a node with
higher centrality is more important.Thus, the closeness centrality is defined as a node’s inverse
average distance,

CC(vi) =
⎡⎣ 1

n − 1

n∑
j �=i

g(vi, vj )

⎤⎦−1

= n − 1∑n
j �=i g(vi, vj )

(2.4)

The pairwise distance between nodes in Figure 1.1 is exemplified in Table 2.1.

Table 2.1: Pairwise geodesic distance
Node 1 2 3 4 5 6 7 8 9

1 0 1 1 1 2 2 3 3 4
2 1 0 1 2 3 3 4 4 5
3 1 1 0 1 2 2 3 3 4
4 1 2 1 0 1 1 2 2 3
5 2 3 2 1 0 1 1 1 2
6 2 3 2 1 1 0 1 1 2
7 3 4 3 2 1 1 0 1 1
8 3 4 3 2 1 1 1 0 2
9 4 5 4 3 2 2 1 2 0

The closeness centrality of nodes 3 and 4 are

CC(3) = 9 − 1

1 + 1 + 1 + 2 + 2 + 3 + 3 + 4
= 8/17 = 0.47,

CC(4) = 9 − 1

1 + 2 + 1 + 1 + 1 + 2 + 2 + 3
= 8/13 = 0.62.

As CC(4) > CC(3), we conclude that node 4 is more central than node 3. This is consistent
with what happens in Figure 1.1.

Betweenness Centrality Node betweenness counts the number of shortest paths in a network that
will pass a node. Those nodes with high betweenness play a key role in the communication
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Table 2.2: σst (4)/σst

s = 1 s = 2 s = 3
t = 5 1/1 2/2 1/1
t = 6 1/1 2/2 1/1
t = 7 2/2 4/4 2/2
t = 8 2/2 4/4 2/2
t = 9 2/2 4/4 2/2

Table 2.3: σst (5)/σst

s = 1 s = 2 s = 3 s = 4
t = 7 1/2 2/4 1/2 1/2
t = 8 1/2 2/4 1/2 1/2
t = 9 1/2 2/4 1/2 1/2

within the network. The betweenness centrality of a node is defined as

CB(vi) =
∑

vs �=vi �=vt∈V,s<t

σst (vi)

σst

, (2.5)

where σst is the total number of shortest paths between nodes vs and vt , and σst (vi) is the
number of shortest paths between nodes vs and vt that pass along node vi .

For instance, σ19 = 2 in the network in Figure 1.1, as there are two shortest paths between
nodes 1 and 9: 1-4-5-7-9 and 1-4-6-7-9. Consequently, σ19(4) = 2, and σ19(5) = 1. It can
be shown that CB(4) = 15. As all shortest paths from {1, 2, 3} to {5, 6, 7, 8, 9} have to pass
node 4.The number of shortest paths and those passing node 4 are listed in Table 2.2, where s

and t are the source node and the target node respectively. Hence, we have CB(4) = 15. As for
node 5, CB(5) = 6. The related statistics to calculate the betweenness are given in Table 2.3.
All the shortest paths from node {1, 2, 3, 4} to nodes {7, 8, 9} have to pass either node 5 and 6.
As there are in total 3 × 4 = 12 pairs, and each pair has a 50% chance to pass node 5. Hence,
CB(5) = 12 × 0.5 = 6. The betweenness of other nodes are shown in Table 2.4.

Table 2.4: Betweenness Centrality
Node 1 2 3 4 5 6 7 8 9

Betweenness 3 0 3 15 6 6 7 0 0

Basically, for each pair of nodes vs and vt , we compute the probability that their shortest paths
will pass node vi . Since the maximum value of CB(i) in an undirected network can be(

n − 1
2

)
= (n − 1)(n − 2)/2,
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we can normalize the betweenness centrality as

C′
B(i) = CB(i)

(n − 1)(n − 2)/2
. (2.6)

However, the computation of shortest paths between all pairs is computationally prohibitive
for large-scale networks. It takes at least O(nm) time to compute (Brandes, 2001), where n

is the number of nodes, and m the number of edges. An algorithm to compute betweenness
centrality is included in appendix B.

Eigenvector Centrality The underlying idea beneath eigenvector centrality is that one’s importance
is defined by his friends’ importance. In other words, if one has many important friends, he
should also be important. In particular,

CE(vi) ∝
∑

vj ∈Ni

AijCE(vj ).

Let x denote the eigenvector centrality of node from v1 to vn. The above equation can be
written as in a matrix form:

x ∝ Ax.

Equivalently, we can write x = 1
λ
Ax, where λ is a constant. It follows that

Ax = λx.

Thus x is an eigenvector of the adjacency matrix A. Eigenvector centrality is defined as the
principal eigenvector of the adjacency matrix defining the network.

Indeed, Google’s Pagerank (Page et al., 1999) is a variant of the eigenvector centrality. In
Pagerank, a transition matrix is constructed based on the adjacency matrix by normalizing
each column to a sum of 1:

Ãij = Aij /
∑

i

Aij .

In the transition matrix Ã, an entry Ãij denotes the probability of transition from node vj to
node vi . In the context of web surfing, it denotes the probability of one user clicking on a web
page (node vi) after browsing current web page (node vj ) by following the link e(vj , vi)

2.
For example, given the adjacency matrix in Table 1.3, we have a transition matrix as shown in
Table 2.5.

Pagerank scores correspond to the top eigenvector of the transition matrix Ã. It can be com-
puted by the power method, i.e., repeatedly left-multiplying a non-negative vector x with Ã.

2A damping factor might be added to the transition matrix to account for the probability that a user jumps from one page to
another web page rather than following links.
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Table 2.5: Column-Normalized Adjacency Matrix
Node 1 2 3 4 5 6 7 8 9

1 0 1/2 1/3 1/4 0 0 0 0 0
2 1/3 0 1/3 0 0 0 0 0 0
3 1/3 1/2 0 1/4 0 0 0 0 0
4 1/3 0 1/3 0 1/4 1/4 0 0 0
5 0 0 0 1/4 0 1/4 1/4 1/3 0
6 0 0 0 1/4 1/4 0 1/4 1/3 0
7 0 0 0 0 1/4 1/4 0 1/3 1
8 0 0 0 0 1/4 1/4 1/4 0 0
9 0 0 0 0 0 0 1/4 0 0

Suppose we start from x(0) = 1,then x(1) ∝ Ãx(0), x(2) ∝ Ãx(1), etc. Typically, the vector x is
normalized to the unit length. Below, we show the values of x in the first seven iterations.

x(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33
0.21
0.33
0.36
0.33
0.33
0.57
0.23
0.08

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.32
0.23
0.32
0.41
0.41
0.41
0.34
0.32
0.15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.32
0.21
0.32
0.41
0.39
0.39
0.45
0.28
0.08

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

x(4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.32
0.21
0.32
0.41
0.41
0.41
0.37
0.31
0.11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31
0.21
0.31
0.41
0.40
0.40
0.42
0.30
0.10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(6) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31
0.21
0.31
0.41
0.41
0.41
0.39
0.31
0.11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(7) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31
0.21
0.31
0.41
0.40
0.40
0.41
0.30
0.10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

After convergence, we have the Pagerank scores for each node listed in Table 2.6. Based on
eigenvector centrality, nodes {4, 5, 6, 7} share similar importance.

With large-scale networks, the computation of centrality measures can be expensive except
for degree centrality and eigenvector centrality. Closeness centrality, for instance, involves the com-
putation of all the pairwise shortest paths, with time complexity of O(n2) and space complexity of



18 2. NODES, TIES, AND INFLUENCE

Table 2.6: Eigenvector Centrality
1 2 3 4 5 6 7 8 9

0.31 0.20 0.31 0.41 0.41 0.41 0.41 0.31 0.10

O(n3) with the Floyd-Warshall algorithm (Floyd, 1962) or O(n2 log n + nm) time complexity with
Johnson’s algorithm (Johnson, 1977). The betweenness centrality requires O(nm) computational
time following (Brandes, 2001). The eigenvector centrality can be computed with less time and
space. Using a simple power method (Golub and Van Loan, 1996) as we did above, the eigenvector
centrality can be computed in O(m�) where � is the number of iterations. For large-scale networks,
efficient computation of centrality measures is critical and requires further research.

2.2 STRENGTHS OF TIES
Many studies treat a network as an unweighted graph or a boolean matrix as we introduced in Chap-
ter 1.However, in practice, those ties are typically not of the same strength.As defined by Granovetter
(1973), “the strength of a tie is a (probably linear) combination of the amount of time, the emotional
intensity, the intimacy (mutual confiding), and the reciprocal services which characterize the tie.”
Interpersonal social networks are composed of strong ties (close friends) and weak ties (acquain-
tances). Strong ties and weak ties play different roles for community formation and information
diffusion. It is observed by Granvoetter that occasional encounters with distant acquaintances can
provide important information about new opportunities for job search.

Owing to the lowering of communication barrier in social media, it is much easier for people
to connect online and interact. Consequently, some users might have thousands of connections,
which is rarely true in the physical world. Among one’s many online friends, only some are “close
friends,” while others are kept just as contacts in an address book. Thus, it is imperative to estimate
tie strengths (Gilbert and Karahalios, 2009), given a social media network. There exist three chief
approaches to this task: 1) analyzing network topology, 2) learning from user attributes, and 3)
learning from user activities.

2.2.1 LEARNING FROM NETWORK TOPOLOGY
Intuitively, the edges connecting two different communities are called “bridges". An edge is a bridge if
its removal results in the disconnection of the two terminal nodes. Bridges in a network are weak ties.
For instance, in the network in Figure 2.1, edge e(2, 5) is a weak tie. If the edge is removed, nodes 2
and 5 are not connected anymore. However, in real-world networks, such bridges are not common.
It is more likely that after the removal of one edge, the terminal nodes are still connected through
alternative paths as shown in Figure 2.2. If we remove edge e(2, 5) from the network, nodes 2 and 5
are still connected through nodes 8, 9, and 10. The strength of a tie can be calibrated by the length
of an alternative shortest path between the end points of the edge. If there is no path between the
two terminal nodes, the geodesic distance is +∞.The larger the geodesic distance between terminal
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Figure 2.1: A network with e(2, 5) being a bridge. After its removal, nodes 2 and 5 become disconnected.

Figure 2.2: A network in which the removal of e(2, 5) increases the geodesic distance between nodes 2
and 5 to 4.

nodes after the edge removal, the weaker the tie is. For instance, in the network in Figure 2.2, after
removal of edge e(2, 5), the geodesic distance d(2, 5) = 4. Comparatively, d(5, 6) = 2 if the edge
e(5, 6) is removed. Consequently, edge e(5, 6) is a stronger tie than e(2, 5).

Another way to measure tie strengths is based on the neighborhood overlap of terminal
nodes (Onnela et al., 2007; Easley and Kleinberg, 2010). Let Ni denote the friends of node vi .
Given a link e(vi, vj ), the neighborhood overlap is defined as

overlap(vi, vj ) = number of shared friends of both vi and vj

number of friends who are adjacent to at least vi or vj

= |Ni ∩ Nj |
|Ni ∪ Nj | − 2

.

We have −2 in the denominator just to exclude vi and vj from the set Ni ∪ Nj . Typically, the
larger the overlap, the stronger the connection. For example, it was reported in (Onnela et al., 2007)
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that the neighborhood overlap is positively correlated with the total number of minutes spent by
two persons in a telecommunication network. As for the example in Figure 2.2, N2 = {1, 3, 5, 8},
N5 = {2, 4, 6, 10}. Since N2 ∩ N5 = φ, we have overlap(2, 5) = 0, indicating a weak tie between
them. On the contrary, the neighborhood overlap between nodes 5 and 6 is

overlap(5, 6) = |{4}|
|{2, 4, 5, 6, 7, 10}| − 2

= 1/4.

Thus, edge e(5, 6) is a stronger tie than e(2, 5).

2.2.2 LEARNING FROM USER ATTRIBUTES AND INTERACTIONS
In reality, people interact frequently with very few of those “listed” online friends, empirically verified
by several studies. One case study was conducted by Huberman et al. (2009) on the Twitter site.
Twitter is a microblogging platform that users can tweet, i.e., post a short message to update their
status or share some links. They can also post directly to another user. One user in Twitter can
become a follower of another user without the followee’s confirmation. Consequently, the follower
network in Twitter is directional. Huberman et al. define a Twitter user’s friend as a person whom
the user has directed at least two posts to. It is observed that Twitter users have a very small number
of friends compared to the number of followers and followees they declare. The friendship network
is more influential in driving Twitter usage rather than the denser follower-followee network. People
with many followers or followees do not necessarily post more than those with fewer followers or
followees.

Gilbert and Karahalios (2009) predict the strength of ties based on social media data. In
particular, they use Facebook as a testbed and collect various attribute information of user interactions.
Seven types of information are collected: predictive intensity variables (say, friend-initiated posts,
friends’ photo comments), intimacy variables (say, participants’ number of friends, friends’ number
of friends), duration variable (days since first communication), reciprocal service variables (links
exchanged by wall post, applications in common), structural variables (number of mutual friends),
emotional support variables (positive/negative emotion words in one user’s wall or inbox), and social
distance variables (age difference, education difference). The authors build a linear predictive model
from these variables for classifying the tie strengths based on the data collected from the user survey
response, and they show that the model can distinguish between strong and weak ties with over 85%
accuracy.

Xiang et al. (2010) propose to represent the strengths of ties using numerical weights instead
of just “strong” and “weak” ties. They treat the tie strengths as latent variables. It is assumed that the
similarity in user profiles determines the strength of their relationship, which in turn determines user
interaction. The user profile features include whether two users attend the same school, work at the
same company, live in the same location, etc. User interactions, depending on the social media site
and available information, can include features such as whether two have established a connection,
whether one writes a recommendation for the other, and so on. The authors show that the strengths



2.3. INFLUENCE MODELING 21

can be learned by optimizing the joint probability given user profiles and interaction information. It
is demonstrated that the learned strengths can help improve classification and recommendation.

2.2.3 LEARNING FROM SEQUENCE OF USER ACTIVITIES
The previous two approaches mainly focus on static networks or network snapshots. Given a stream
of user activities, it is possible to learn the strengths of ties based on the influence probability. As
this involves a sequence of user activities, the temporal information has to be considered.

Kossinets et al. (2008) study how information is diffused in communication networks. They
mark the latest information available to each actor at each timestamp. It is observed that a lot of
information diffusion violates the “triangle inequality”.There is one shortest path between two nodes
based on network topology, but information does not necessarily propagate following the shortest
path. Alternatively, the information diffuses following certain paths that reflect the roles of actors
and the true communication pattern. Network backbones are defined to be those ties that are likely
to bear the task of propagating the timely information.

At the same time, one can learn the strengths of ties by studying how users influence
each other. Logs of user activities (e.g., subscribing to different interest groups, commenting on
a photo) (Goyal et al., 2010; Saito et al., 2010) may be available. By learning the probabilities that
one user influences his friends over time, we can have a clear picture of which ties are more important.
This kind of approach hinges on the adopted influence model, which will be introduced in the next
section.

2.3 INFLUENCE MODELING

Influence modeling is one of the fundamental questions in order to understand the information dif-
fusion, spread of new ideas, and word-of-mouth (viral) marketing. Among various kinds of influence
models, two basic ones that garner much attention are the linear threshold model and the independent
cascade model (Kempe et al., 2003). For simplicity, we assume that one actor is active if he adopts a
targeted action or chooses his preference. The two models share some properties in the diffusion
process:

• A social network is represented a directed graph, with each actor being one node;

• Each node is started as active or inactive;

• A node, once activated, will activate his neighboring nodes;

• Once a node is activated, this node cannot be deactivated3.

3This assumption may be unrealistic in some diffusion process. But both models discussed next can be generalized to handle more
realistic cases (Kempe et al., 2003).
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2.3.1 LINEAR THRESHOLD MODEL (LTM)
The threshold model dates back to 1970s (Granovetter, 1978). It states that an actor would take an
action if the number of his friends who have taken the action exceeds a certain threshold. In his
seminal work, Thomas C. Schelling essentially used a variant of the threshold model to show that a
small preference for one’s neighbors to be of the same color could lead to racial segregation (Schelling,
1971). Many variants of the threshold model have been studied. Here, we introduce one linear
threshold model.

In a linear threshold model, each node v chooses a threshold θv randomly from a uniform
distribution in an interval between 0 and 1. The threshold θv represents the fraction of friends of v

to be active in order to activate v. Suppose that a neighbor w can influence node v with strength
bw,v . Without loss of generality, we assume that∑

w∈Nv

bw,v ≤ 1.

Given randomly assigned thresholds to all nodes, and an initial active set A0, the diffusion process
unfolds deterministically. In each discrete step, all nodes that were active in the previous step remain
active. The nodes satisfying the following condition will be activated as∑

w∈Nv,w is active

bw,v ≥ θv. (2.7)

The process continues until no further activation is possible.
Take the network in Figure 1.1 as an example. We assume the network is directed. If a network

is directed, the weights bw,v and bv,w between nodes v and w are typically different in an influence

Step 0 Step 1 Step 2

Step 3 Final Stage

Figure 2.3: A diffusion process following the linear threshold model. Green nodes are the active ones, and
yellow nodes the newly activated ones.
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model. For simplicity, we assume bw,v = 1/kv and bv,w = 1/kw, and the threshold for each node is
0.5. Suppose we start from two activated nodes 8 and 9. Figure 2.3 shows the diffusion process for
the linear threshold model. In the first step, actor 5, with two of its neighbors being active, receives
weights b8,5 + b9,5 = 1/3 + 1/3 = 2/3 from activated nodes, larger than its threshold 0.5. Thus,
actor 5 is activated. In the second step, node 6, with two of its friends being active, will be active.
In a similar vein, nodes 7 and 1 will be active in the third step. After that, no more nodes can be
activated. Hence, the diffusion process terminates after nodes 1, 5, 6, 7, 8, 9 become active.

Note that the linear threshold model presented in (Kempe et al., 2003) assumes the node
thresholds are randomly sampled from a uniform distribution of an interval [0, 1] before the diffusion
process starts. Once the thresholds are fixed, the diffusion process is determined. Many studies also
hard-wire all thresholds at a fixed value like 0.5, but this kind of threshold model does not satisfy
submodularity that is discussed in Section 2.3.3.

2.3.2 INDEPENDENT CASCADE MODEL (ICM)
The independent cascade model borrows the idea from interacting particle systems and probability
theory. Different from the linear threshold model, the independent cascade model focuses on the
sender’s rather than the receiver’s view. In the independent cascade model, a node w, once activated
at step t , has one chance to activate each of its neighbors. For a neighboring node (say, v), the activation
succeeds with probability pw,v . If the activation succeeds, then v will become active at step t + 1. In
the subsequent rounds, w will not attempt to activate v anymore. The diffusion process, the same as
that of the linear threshold model, starts with an initial activated set of nodes, then continues until
no further activation is possible.

Let us now apply ICM to the network in Figure 2.3. We assume pw,v = 0.5 for all edges in
the network, i.e., a node, once activated, will activate his inactive neighbors with a 50% chance. If
nodes 8 and 9 are activated, Figure 2.4 shows the diffusion process following ICM. Starting from
the initial stage with nodes 8 and 9 being active, ICM choose their neighbors and activate them with
success rate equaling to pv,w. At Step 1, nodes 8 and 9 will try to activate nodes 5, 6, and 7. Suppose
the activation succeeds for nodes 5 and 7, but fails for node 6. Now, given two newly activated nodes
5 and 7, we activate their neighbors by flipping a coin. Say, both nodes 1 and 6 become active in
Step 2. Because all the neighboring nodes of actor 6 is already active, we only consider those inactive
friends of node 1 in Step 3. That is, following ICM, we will flip a coin to activate nodes 3 and 4
respectively. Assuming only actor 4 becomes active successfully, then in the next step, we consider
the neighboring nodes of the newly activated node 4. Unfortunately, neither of them succeeds.Thus,
the diffusion process stops with nodes 1, 4, 5, 6, 7, 8, 9 being active. Note that ICM activates one
node with certain success rate. Thus, we might get a different result for another run.

Clearly, both the linear threshold model and the independent cascade model capture the
information diffusion in a certain aspect (Gruhl et al., 2004),but demonstrate a significant difference.
LTM is receiver-centered.By looking at all the neighboring nodes of one node, it determines whether
to activate the node based on its threshold. ICM, on the contrary, is sender-centered. Once a node
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Step 0 Step 1 Step 2

Step 3 Step 4 Final Stage

Figure 2.4: A diffusion process following the independent cascade model. Green nodes are the active ones,
yellow nodes the newly activated ones, and red nodes those ones that do not succeed in activation.

is activated, it tries to activate all its neighboring nodes. LTM’s activation depends on the whole
neighborhood of one node, where ICM, as indicated by its name, activates each of its neighbors
independently. Another difference is that LTM, once the thresholds are sampled, the diffusion
process is determined. ICM, however, varies depending on the cascading process. Both models
involve randomization: LTM randomly selects a threshold for each node at the outset, whereas
ICM succeeds activates a neighboring node with probability pw,v .

Of course, there are other general influence models. LTM and ICM are two basic models that
are used to study influence and information diffusion. Because both are submodular, it warrants a
fast approximation of the influence maximization with a theoretical guarantee (Kempe et al., 2003).

2.3.3 INFLUENCE MAXIMIZATION
The influence maximization problem can be formulated as follows:

Given a network and a parameter k, which k nodes should be selected to be in the
activation set B in order to maximize the influence in terms of active nodes at the
end? Let σ(B) denote the expected number of nodes that can be influenced by B, the
optimization problem can be formulated as

max
B⊆V

σ(B) s.t. |B| ≤ k. (2.8)

This problem is closely related to the viral marketing problem (Domingos and Richardson, 2001;
Richardson and Domingos, 2002). Other variants include cost-effective blocking in problems such
as water contamination and blog cascade detection (Leskovec et al., 2007b), and personalized blog
selection and monitoring (El-Arini et al., 2009). Here, we consider the simplest form of the viral
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marketing problem, i.e., excluding varying cost or types of strategies for marketing different nodes.
Maximizing the influence, however, is a NP-hard problem under either type of the diffusion model
(LTM or ICM).

One natural approach is greedy selection. It works as follows. Starting with B = φ, we evaluate
σ(v) for each node, and pick the node with maximum σ as the first node v1 to form B = {v1}.Then,
we select a node which will increase σ(B) most if the node is included in B. Essentially, we greedily
find a node v ∈ V \B such that

v = arg max
v∈V \B σ(B ∪ {v}), (2.9)

or equivalently,
v = arg max

v∈V \B σ (B ∪ {v}) − σ(B). (2.10)

Suppose our budget allows to convert at most two nodes in the network in Figure 2.3. A
greedy approach will first pick the node with the maximum expected influence population (i.e., node
1), and then pick the second node that will increase the expected influence population maximally
given node 1 is active. Such a greedy approach has been observed to yield better performance than
selecting the top k nodes with the maximum node centrality (Kempe et al., 2003). Moreover, it is
proved that the greedy approach gives a solution that is at least 63% of the optimal. That is because
the influence function σ(·) is monotone and submodular under both the linear threshold model and
the independent cascade model.

• A set function σ(·) mapping from a set to a real value is monotone if

σ (S ∪ {v}) ≥ σ(S).

• A set function σ(·) is submodular if it satisfying the diminishing returns property: the marginal
gain from adding an element to a set S is no less than the marginal gain from adding the
same element to a superset of S. Formally, given two sets S and T such that S ⊆ T , σ(·) is
submodular if it satisfies the property below:

σ (S ∪ {v}) − σ(S) ≥ σ (T ∪ {v}) − σ(T ). (2.11)

Suppose we have a set function as follows:

σ̃ (B) = 1 + 1

2
+ 1

3
+ · · · + 1

|B| .

σ̃ (·) is monotone because

σ̃ (B ∪ {v}) =
{

1 + 1
2 + 1

3 + · · · + 1
|B| + 1

|B|+1 = σ̃ (B) + 1
|B|+1 if v /∈ B

σ̃ (B) if v ∈ B

≥ σ̃ (B)
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σ̃ is also submodular. Given S ⊆ T , it follows that |S| ≤ |T |. Thus, σ(S ∪ {v}) − σ(S) = 1
|S|+1 ≥

1
|T |+1 = σ(T ∪ {v}) − σ(T ) if v /∈ S, v /∈ T . Other cases can also be verified.

Theorem 2.1 (Nemhauser et al., 1978) If σ(·) is a monotone, submodular set function and σ(φ) = 0,
then the greedy algorithm finds a set BG, such that

σ(BG) ≥ (1 − 1/e) · max|B|=kσ (B).

Here 1 − 1/e ≈ 63%. As the expected number of influenced nodes under LTM or ICM is a
submodular function of nodes, the greedy algorithm can output a reasonable (at least 63% optimal)
solution to the NP-hard influence maximization problem. Given selected nodes B, we need to find
a new node that maximally increases σ . It can still be time-consuming to evaluate σ(B ∪ v) for all
possible choices of v. Kempe et al. (2003), for instance, simulates the diffusion process many times in
order to estimate σ(B ∪ v), as we did in Figures 2.3 and 2.4. When a network has millions of nodes,
the evaluation of all possible choices of σ(B ∪ v) becomes a challenge for efficient computation.

Leskovec et al. (2007b) suggest that the number of evaluations can be reduced dramatically by
exploiting the submodularity. Following the greedy approach, in each iteration, we aim to find a node
with the maximal marginal gain (i.e., σ(B ∪ {v}) − σ(B)) and add it to B. Following Eq. (2.11), the
marginal gain of adding a node v to a selected set B can only decrease after we expand B. Suppose
we evaluate the marginal gain of a node v in one iteration and find out the gain is �. Then, those
nodes whose marginal gain is less than � in the previous iteration should not be considered for
evaluation because their marginal gains can only decrease. We will not add them to B since v is at
least a better choice. Thus, many unnecessary evaluations of σ(·) can be avoided. In practice, we
can simply maintain a priority queue to first evaluate those nodes whose marginal gains are larger
in previous iterations. This has been reported to improve a straightforward implementation of the
greedy approach by up to 700 times. More efficient heuristics are explored in (Chen et al., 2009,
2010).

In the meantime, some researchers question about the importance of influential users.
Watts and Dodds (2007) reported in their study that “large-scale changes in public opinion are
not driven by highly influential people who influence everyone else but rather by easily influenced
people influencing other easily influenced people”. According to them, when a population is ready
to embrace a trend change, anyone can start the cascade. The so-called influentials may be just
“accidental influential” because they are the early adopters. It remains an open question to model
the formation of public opinions and trend change.

2.3.4 DISTINGUISHING INFLUENCE AND CORRELATION
It has been widely observed that user attributes and behaviors tend to correlate with their social
networks (Singla and Richardson, 2008). We can perform a simple test to check whether there is
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any correlation associated with a social network (Easley and Kleinberg, 2010). Suppose we have a
binary attribute with each node (say, whether or not a smoker). If the attribute is correlated with
a social network, we expect actors sharing the same attribute value to be positively correlated with
social connections.That is, smokers are more likely to interact with other smokers, and non-smokers
with non-smokers. Thus, the probability of connections between nodes bearing different attribute
values (i.e., a smoker with a non-smoker) should be relatively low. Given a network, we can count
the fraction of edges connecting nodes with distinctive attribute values. Then, we compare it to the
expected probability of such connections if the attribute and the social connections are independent.
If the two quantities are significantly different, we conclude the attribute is correlated with the
network.

The expected probability of connections between nodes bearing different attribute values can
be computed as follows. In a given network, say we observe a p fraction of actors are smokers,
and a (1 − p) fraction are non-smokers. If connections are independent of the smoking behavior,
one edge is expected to connect two smokers with probability p × p, and two non-smokers with
probability (1 − p) × (1 − p). And the probability of one edge linking a smoker with a non-smoker
is 1 − p2 − (1 − p)2 = 2p(1 − p). Thus, we can perform the following test for correlation4.

Test for Correlation: If the fraction of edges linking nodes with different attribute values
are significantly less than the expected probability, then there is evidence of correlation.

For the network in Figure 2.5, a 4/9 fraction of nodes are smokers and 5/9 are non-smokers. Thus,
the expected probability of an edge connecting a smoker and non-smoker is 2 × 4/9 × 5/9 = 49%.
In other words, if the connections are independent of the individual behavior,we would expect almost
half of the connections to reside between a smoker and a non-smoker. As seen in the network, the
fraction of such connections is only 2/14 = 14% < 49%. Consequently, we conclude this network
demonstrates some degree of correlation with respect to the smoking behavior. A more formal way
is to conduct a χ2 test for independence of social connections and attributes (La Fond and Neville,
2010).

It is well known that there exist correlations between behaviors or attributes of adjacent actors
in a social network. Three major social processes to explain correlation (Figure 2.6) are: homophily,
confounding, and influence (Anagnostopoulos et al., 2008):

• Homophily (McPherson et al., 2001) is a term coined by sociologist in 1950s to explain our
tendency to link to others that share certain similarity with us, e.g., age, education level, ethics,
interests, etc. In short, “birds of a feather flock together”. Homophily assumes the similarity
between users breeds connections.This social process is also known as selection (Crandall et al.,
2008), i.e., people select others who resemble themselves in certain aspects to be friends.

4Some people also use homophily to denote this correlation such as in (Easley and Kleinberg, 2010). Homophily was coined as one
of the fundamental social processes to explain correlation observed in a network. In this lecture, we stick to the original meaning
of homophily as a social process.
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Figure 2.5: A Network Demonstrating Correlations. Red nodes denote non-smokers, and green ones are
smokers. If there is no correlation, then the probability of one edge connecting a smoker and a non-smoker
is 2 × 4/9 × 5/9 = 49%.

(a) Homophily (b) Confounding (c) Influence

Figure 2.6: Different Social Processes to Explain Correlations observed in Social Networks.

• Correlation between actors can also be forged due to external influences from environment.
The environment is referred to as a confounding factor in statistics (Pearl, 2000). In essence,
some latent variables might lead to social connections as well as similar individual behaviors.
For example, “two individuals living in the same city are more likely to become friends than
two random individuals and are also more likely to take pictures of similar scenery and post
them on Flickr with the same tag”(Anagnostopoulos et al., 2008).

• A well-known process that causes behavioral correlations between adjacent actors is influence,
For example, if most of one’s friends switch to a mobile company, he might be influenced by
his friends and switch to the company as well. In this process, one’s social connections and the
behavior of his friends affect his decision.

In many studies about influence modeling, influence is determined by timestamps: actor a

influences actor b as long as a becomes active at an earlier time than b. But based on a temporal
order of user activities, it is hard to conclude whether there is really any influence. The correlation in
terms of user behaviors might simply due to the homophily or confounding effect. How can we be
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sure whether there is any influence in a social network with respect to a behavior? How to distinguish
influence from homophily or confounding?

Now with the observation of social networks and historical records of user behavior, we might
be able to answer. In order to identify whether influence is a factor associated with a social system, one
proposed approach is the shuffle test (Anagnostopoulos et al., 2008).This test assumes we have access
to a social network among users, logs of user behaviors with timestamps. Following the convention
in influence modeling (Section 2.3), we say one actor is active if he performs a target action. Based
on the user activity log, we can compute a social correlation coefficient. A simple probabilistic model
is adopted to measure the social correlation. The probability of one node being active is a logistic
function of the number of his active friends as follows:

p(a) = eα ln(a+1)+β

1 + eα ln(a+1)+β

where a is the number of active friends, α the social correlation coefficient and β a constant to
explain the innate bias for activation. Suppose at one time point t , Ya,t users with a active friends
become active, and Na,t users who also have a active friends yet stay inactive at time t . Thus, the
likelihood at time t can be expressed as follows:

�t�ap(a)Ya,t (1 − p(a))Na,t

Given the user activity log, we can compute a correlation coefficient α to maximize the above
likelihood.

The key idea of the shuffle test is that if influence does not play a role, the timing of activation
should be independent of the timing of other actors.Thus,even if we randomly shuffle the timestamps
of user activities, we should obtain a similar α value. It is shown that when influence is not a factor,
the new estimate of α will be close to its expectation even if the timestamps are randomly shuffled.
Hence, we have the following shuffle test for influence:

Test for Influence: After we shuffle the timestamps of user activities, if the new estimate
of social correlation is significantly different from the estimate based on the user activity
log, then there is evidence of influence.

Beside the shuffle test, many different tests for influence are also proposed for different
contexts, including the edge-reversal test (Christakis and Fowler, 2007; Anagnostopoulos et al.,
2008), matched sample estimation (Aral et al., 2009) and randomization test (La Fond and Neville,
2010). Employing influence tests, some observe influence effect in obesity (Christakis and Fowler,
2007), service adopters in a telecommunication firm (Hill et al., 2006), and article edits in
Wikipedia (Crandall et al., 2008), while some argue that there is no strong influence effect for
the tagging behavior in Flickr (Anagnostopoulos et al., 2008). La Fond and Neville (2010) observe
that online interest groups on Facebook are formed due to various factors. Those groups with sig-
nificant homophily effect seem to include opportunities for members to meet in person, while those
groups with strong political views seem to be more likely the outcome of influence.





31

C H A P T E R 3

Community Detection and
Evaluation

Social networks of various kinds demonstrate a strong community effect. Actors in a network tend to
form closely-knit groups.The groups are also called communities, clusters, cohesive subgroups or modules
in different contexts. Generally speaking, individuals interact more frequently with members within
group than those outside the group. Detecting cohesive groups in a social network (i.e., community
detection) remains a core problem in social network analysis. Finding out these groups also helps
for other related social computing tasks. Many approaches have been proposed in the past. These
approaches can be separated into four categories: node-centric, group-centric, network-centric, and
hierarchy-centric (Tang and Liu, 2010b). We introduce definitions and present representative com-
munity detection approaches in each category.

3.1 NODE-CENTRIC COMMUNITY DETECTION

The community detection methods based on node-centric criteria require each node in a group to
satisfy certain properties. We discuss these methods according to these criteria.

3.1.1 COMPLETE MUTUALITY
An ideal cohesive subgroup is a clique. It is a maximum complete subgraph in which all nodes are
adjacent to each other. For example, in the network in Figure 1.1, there is a clique of 4 nodes,
{5, 6, 7, 8}. Typically, cliques of larger sizes are of much more interest. However, the search for the
maximum cliques in a graph is an NP-hard problem.

One brute-force approach is to traverse all nodes in a network. For each node, check whether
there is any clique of a specified size that contains the node. Suppose we now look at node v�. We can
maintain a queue of cliques. It is initialized with a clique of one single node {v�}. Then we perform
the following:

• Pop a clique from the queue, say, a clique Bk of size k. Let vi denote the last added node into
Bk .

• For each of vi ’s neighbor vj (to remove duplicates, we may look at only those nodes whose
index is larger than vi), form a new candidate set Bk+1 = Bk ∪ {vj }.
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• Validate whether Bk+1 is a clique by checking whether vj is adjacent to all nodes in Bk . Add
to the queue if Bk+1 is a clique.

Take the network in Figure 1.1 as an example. Suppose we start from node B1 = {4}. For each
of its friends with a larger index, we obtain a clique of size 2. Thus, we have {4, 5} and {4, 6} added
into the queue. Now suppose we pop B2 = {4, 5} from the queue. Its last added element is node 5.
We can expand the set following node 5’s connections and generate three candidate sets: {4, 5, 6},
{4, 5, 7} and {4, 5, 8}. Among them, only {4, 5, 6} is a clique as node 6 is connected both nodes 4
and 5. Thus, {4, 5, 6} is appended to the queue for further expansion for larger cliques.

The exhaustive search above works for small-scale networks, but it becomes impractical for
large-scale networks. If the goal is to find out a maximum clique, then a strategy is to effectively
prune those nodes and edges that are unlikely to be contained in the maximum clique. For a clique
of size k, each node in the clique should maintain at least degree k − 1. Hence, those nodes with degree
less than k − 1 cannot be included in the maximum clique, thus can be pruned. We can recursively
apply the pruning procedure below to a given network:

• A sub-network is sampled from the given network. A clique in the sub-network can be found
in a greedy manner, e.g., expanding a clique by adding an adjacent node with the highest
degree.

• The maximum clique found on the sub-network (say, it contains k nodes) serves as the lower
bound for pruning. That is, the maximum clique in the original network should contain at
least k members. Hence, in order to find a clique of size larger than k, the nodes with degree
less than or equal to k − 1, in conjunction with their connections can be removed from future
consideration. As social media networks follow a power law distribution for node degrees, i.e.,
the majority of nodes have a low degree, this pruning strategy can reduce the network size
significantly.

This process is repeated until the original network is shrunk into a reasonable size and the maximum
clique can either be identified directly, or have already been identified in one of the sub-networks.
A similar pruning strategy is discussed for directed networks as well (Kumar et al., 1999).

Suppose we randomly sample a sub-network from the network in Figure 1.1. It consists of
nodes 1 to 6. A maximal clique in the sub-network is of size 3 ({1, 2, 3} or {1, 3, 4}). If there exists
a larger clique (i.e., size > 3) in the original network, all the nodes of degree less than or equal to
2 can be removed from consideration. Hence, nodes 9 and 2 can be pruned. Then, the degree of
nodes 1 and 3 is reduced to 2, thus they can also be removed. This further leaves node 4 with only 2
connections, which can be removed as well. After this pruning, we obtain a much smaller network
of nodes {5, 6, 7, 8}. And in this pruned network, a clique of size 4 can be identified. It is exactly
the maximum clique.

A clique is a very strict definition, and it can rarely be observed in a huge size in real-world
social networks.This structure is very unstable as the removal of any edge in it will render it an invalid
clique. Practitioners typically use identified cliques as cores or seeds for subsequent expansion for a



3.1. NODE-CENTRIC COMMUNITY DETECTION 33

Figure 3.1: A Clique Graph

community. The clique percolation method (CPM) is such a scheme to find overlapping communities
in networks (Palla et al., 2005). Given a user specified parameter k, it works as follows:

• Find out all cliques of size k in the given network;

• Construct a clique graph. Two cliques are adjacent if they share k − 1 nodes;

• Each connected component in the clique graph is a community.

Take the network in Figure 1.1 as an example. For k = 3, we can identify all the cliques of
size 3 as follows:

{1, 2, 3} {1, 3, 4} {4, 5, 6} {5, 6, 7} {5, 6, 8} {5, 7, 8} {6, 7, 8}
Then we have the clique graph as in Figure 3.1. Two cliques are connected as long as they share
k − 1 (2 in our case) nodes. In the clique graph, there are two connected components. The nodes
in each component fall into one community. Consequently, we obtain two communities: {1, 2, 3, 4}
and {4, 5, 6, 7, 8}. Note that node 4 belongs to both communities. In other words, we obtain two
overlapping communities.

The clique percolation method requires the enumeration of all the possible cliques of a fixed
size k. This can be computational prohibitive for large-scale social media networks. Other forms
of subgraph close to a clique thus are proposed to capture the community structure, which will be
discussed next.

3.1.2 REACHABILITY
This type of community considers the reachability among actors. In the extreme case, two nodes
can be considered as belonging to one community if there exists a path between the two nodes.
Thus each connected component is a community. The components can be efficiently identified in
O(n + m) time (Hopcroft and Tarjan, 1973), linear with respect to number of nodes and edges in a
network. However, in real-world networks, a giant component tends to form while many others are
singletons and minor communities (Kumar et al., 2006).Those minor communities can be identified
as connected components. Yet more efforts are required to find communities in the giant component.
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cliques: {1, 2, 3}
2-cliques: {1, 2, 3, 4, 5, }, {2, 3, 4, 5, 6}

2-clubs: {1, 2, 3, 4, }, {1, 2, 3, 5}, {2, 3, 4, 5, 6}
Figure 3.2: An example to show the difference of k-clique and k-club (based on (Wasserman and Faust,
1994))

Conceptually, there should be a short path between any two nodes in a group. Some well-
studied structures in social sciences are the following:

• k-clique is a maximal subgraph in which the largest geodesic distance between any two nodes
is no greater than k. That is,

d(vi, vj ) ≤ k ∀vi, vj ∈ Vs

where Vs is the set of nodes in the subgraph. Note that the geodesic distance is defined on the
original network. Thus, the geodesic is not necessarily included in the group structure. So a
k-clique may have a diameter greater than k. For instance, in Figure 3.2, {1, 2, 3, 4, 5} form a
2-clique. But the geodesic distance between nodes 4 and 5 within the group is 3.

• k-club restricts the geodesic distance within the group to be no greater than k. It is a maximal
substructure of diameter k. The definition of k-club is more strict than that of k-clique. A
k-club is often a subset of a k-clique. In the example in Figure 3.2, The 2-clique structure
{1, 2, 3, 4, 5} contains two 2-clubs, {1, 2, 3, 4} and {1, 2, 3, 5}.
There are other definitions of communities such as k-plex, k-core, LS sets, and Lambda

sets (Wasserman and Faust, 1994). They are typically studied in traditional social sciences. Solv-
ing the k-club problem often requires involved combinatorial optimization (McClosky and Hicks,
2009). It remains a challenge to generalize them to large-scale networks.

3.2 GROUP-CENTRIC COMMUNITY DETECTION
A group-centric criterion considers connections inside a group as whole. It is acceptable to have
some nodes in the group to have low connectivity as long as the group overall satisfies certain
requirements. One such example is density-based groups. A subgraph Gs(Vs, Es) is γ -dense (also
called a quasi-clique (Abello et al., 2002)) if

Es

Vs(Vs − 1)/2
≥ γ. (3.1)
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Clearly, the quasi-clique becomes a clique when γ = 1. Note that this density-based group-centric
criterion does not guarantee reachability for each node in the group. It allows the degree of a node
to vary1, thus is more suitable for large-scale networks.

However, it is not a trivial task to search for quasi-cliques. Strategies similar to those of finding
cliques can be exploited. In Abello et al. (2002), a greedy search followed by pruning is employed to
find the maximal γ -dense quasi-clique in a network. The iterative procedure consists of two steps -
local search and heuristic pruning.

• Local search: Sample a sub-network from the given network and search for a maximal quasi-
clique in the sub-network. A greedy approach is to aggressively expand a quasi-clique by
encompassing those high-degree neighboring nodes until the density drops below γ . In prac-
tice, a randomized search strategy can also be exploited.

• Heuristic pruning: If we know a γ -dense quasi-clique of size k, then a heuristic is to prune
those “peelable” nodes and their incident edges. A node v is peelable if v and its neighbors
all have degree less than kγ because it is less likely to contribute to a larger quasi-clique by
including such a node. We can start from low-degree nodes and recursively remove peelable
nodes in the original network.

This process is repeated until the network is reduced to a reasonable size so that a maximal quasi-
clique can be found directly. Though the solution returned by the algorithm does not guarantee to
be optimal, it works reasonably well in most cases (Abello et al., 2002).

3.3 NETWORK-CENTRIC COMMUNITY DETECTION

Network-centric community detection has to consider the global topology of a network. It aims to
partition nodes of a network into a number of disjoint sets. Typically, network-centric community
detection aims to optimize a criterion defined over a network partition rather than over one group.
A group in this case is not defined independently.

3.3.1 VERTEX SIMILARITY
Vertex similarity is defined in terms of the similarity of their social circles, e.g., the number of friends
two share in common. A key related concept is structural equivalence. Actors vi and vj are structurally
equivalent, if for any actor vk that vk �= vi and vk �= vj , e(vi, vk) ∈ E iff e(vj , vk) ∈ E. In other
words, actors vi and vj are connecting to exactly the same set of actors in a network. If the interaction
is represented as a matrix, then rows (columns) of vi and vj are the same except for the diagonal
entries. Nodes 1 and 3 in Figure 1.1 are structurally equivalent. So are nodes 5 and 6. A closer
examination at its adjacency matrix (Table 1.3) reveals that those structurally equivalent nodes share
the same rows (columns). Nodes of the same equivalence class form a community.

1 It removes the need of being connected to at least k other nodes in the same group.
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Since structural equivalence is too restrictive for practical use, other relaxed def-
initions of equivalence such as automorphic equivalence and regular equivalence are pro-
posed (Hanneman and Riddle, 2005), but no scalable approach exists to find automorphic equiva-
lence or regular equivalence. Alternatively, some simplified similarity measures can be used. They
consider one’s connections as features for actors, and they assume actors sharing similar connec-
tions tend to reside within the same community. Once a similarity measure is determined, classical
k-means clustering or hierarchical clustering algorithm (Tan et al., 2005) can be applied to find
communities in a network.

Commonly used similarity measures include Jaccard similarity (Gibson et al.,2005) and cosine
similarity (Hopcroft et al., 2003). For two nodes vi and vj in a network, the similarity between the
two are defined as

Jaccard(vi, vj ) = |Ni ∩ Nj |
|Ni ∪ Nj | =

∑
k AikAjk

|Ni | + |Nj | − ∑
k AikAjk

, (3.2)

Cosine(vi, vj ) =
∑

k AikAjk√∑
s A2

is · ∑t A2
j t

= |Ni ∩ Nj |√|Ni | · |Nj |
. (3.3)

In the equations, Ni denotes the neighbors of node vi and | ∗ | the cardinality. Both similarity
measures are within the range between 0 and 1.

For example, in the network in Figure 1.1, N4 = {1, 3, 5, 6}, and N6 = {4, 5, 7, 8}. Thus, the
similarity between the two nodes are:

Jaccard(4, 6) = |{5}|
|{1, 3, 4, 5, 6, 7, 8}| = 1

7
, (3.4)

Cosine(4, 6) = |{5}|√
4 · 4

= 1

4
. (3.5)

However, based on this definition, the similarity of two adjacent nodes could be 0. For ex-
ample, the similarity of nodes 7 and 9 is 0 because N7 = {5, 6, 8, 9}, N9 = {7}, and N7 ∩ N9 = φ,
even though they are connected. This is reasonable from the perspective of structural equivalence.
However, from the correlation aspect, statistically, two nodes are likely to share some similarity if
they are connected. A modification is to include node v when we compute Nv . In equivalence, the
diagonal entries of the adjacency matrix of a network is set to 1 rather than default 0. In this case,
N7 = {5, 6, 7, 8, 9}, N9 = {7, 9}. It follows that N7 ∩ N9 = {7, 9}:

Jaccard(7, 9) = |{7, 9}|
|{5, 6, 7, 8, 9}| = 2

5
,

Cosine(7, 9) = |{7, 9}|√
2 · 5

= 2√
10

.

Normal similarity-based methods have to compute the similarity for each pair of nodes,
totaling O(n2). It is time-consuming when n is very large. Thus, Gibson et al. (2005) present an
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efficient two-level shingling algorithm for fast computation of web communities.Generally speaking,
the shingling algorithm maps each vector (the connection of actors) into a constant number of
“shingles”. If two actors are similar, they share many shingles; otherwise, they share few. After
initial shingling, each shingle is associated with a group of actors. In a similar vein, the shingling
algorithm can be applied to the first-level shingles as well. So similar shingles end up sharing the
same meta-shingles. Then all the actors relating to one meta-shingle form one community. This
two-level shingling can be efficiently computed even for large-scale networks. Its time complexity
is approximately linear to the number of edges.

3.3.2 LATENT SPACE MODELS
A latent space model maps nodes in a network into a low-dimensional Euclidean space such that
the proximity between nodes based on network connectivity are kept in the new space (Hoff et al.,
2002; Handcock et al., 2007), then the nodes are clustered in the low-dimensional space using
methods like k-means (Tan et al., 2005). One representative approach is multi-dimensional scaling
(MDS) (Borg and Groenen, 2005). Typically, MDS requires the input of a proximity matrix P ∈
R

n×n, with each entry Pij denoting the distance between a pair of nodes i and j in the network.
Let S ∈ R

n×� denote the coordinates of nodes in the �-dimensional space such that S is column
orthogonal. It can be shown (Borg and Groenen, 2005; Sarkar and Moore, 2005) that

SST ≈ −1

2
(I − 1

n
11T )(P ◦ P)(I − 1

n
11T ) = P̃ , (3.6)

where I is the identity matrix, 1 an n-dimensional column vector with each entry being 1, and ◦ the
element-wise matrix multiplication. It follows that S can be obtained via minimizing the discrepancy
between P̃ and SST as follows:

min ‖SST − P̃ ‖2
F . (3.7)

Suppose V contains the top � eigenvectors of P̃ with largest eigenvalues,  is a diagonal matrix
of top � eigenvalues  = diag(λ1, λ2, · · · , λ�). The optimal S is S = V 

1
2 . Note that this multi-

dimensional scaling corresponds to an eigenvector problem of matrix P̃ .Thus, the classical k-means
algorithm can be applied to S to find community partitions.

Take the network in Figure 1.1 as an example. Given the network, the geodesic distance
between each pair of nodes is given in the proximity matrix P as in Eq. (3.8). Hence, we can
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compute the corresponding matrix P̃ following Eq. (3.6).

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 2 2 3 3 4
1 0 1 2 3 3 4 4 5
1 1 0 1 2 2 3 3 4
1 2 1 0 1 1 2 2 3
2 3 2 1 0 1 1 1 2
2 3 2 1 1 0 1 1 2
3 4 3 2 1 1 0 1 1
3 4 3 2 1 1 1 0 2
4 5 4 3 2 2 1 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

P̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.46 3.96 1.96 0.85 −0.65 −0.65 −2.21 −2.04 −3.65
3.96 6.46 3.96 1.35 −1.15 −1.15 −3.71 −3.54 −6.15
1.96 3.96 2.46 0.85 −0.65 −0.65 −2.21 −2.04 −3.65
0.85 1.35 0.85 0.23 −0.27 −0.27 −0.82 −0.65 −1.27

−0.65 −1.15 −0.65 −0.27 0.23 −0.27 0.68 0.85 1.23
−0.65 −1.15 −0.65 −0.27 −0.27 0.23 0.68 0.85 1.23
−2.21 −3.71 −2.21 −0.82 0.68 0.68 2.12 1.79 3.68
−2.04 −3.54 −2.04 −0.65 0.85 0.85 1.79 2.46 2.35
−3.65 −6.15 −3.65 −1.27 1.23 1.23 3.68 2.35 6.23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Suppose we want to map the original network into a 2-dimensional space; we obtain V , , and S

as follows:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.33 0.05
−0.55 0.14
−0.33 0.05
−0.11 −0.01

0.10 −0.06
0.10 −0.06
0.32 0.11
0.28 −0.79
0.52 0.58

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,  =

[
21.56 0

0 1.46

]
, S = V 1/2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.51 0.06
−2.56 0.17
−1.51 0.06
−0.53 −0.01

0.47 −0.08
0.47 −0.08
1.47 0.14
1.29 −0.95
2.42 0.70

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The network can be visualized in the 2-dimensional space in Figure 3.3. Because nodes 1
and 3 are structurally equivalent, they are mapped into the same position in the latent space. So are
nodes 5 and 6. k-means can be applied to S in order to obtain disjoint partitions of the network. At
the end, we obtain two clusters {1, 2, 3, 4}, {5, 6, 7, 8, 9}, which can be represented as a partition
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Figure 3.3: Network in the Latent Space

matrix below:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.3.3 BLOCK MODEL APPROXIMATION
Block models approximate a given network by a block structure. The basic idea can be visualized
in Tables 3.1 and 3.2. The adjacency matrix of the network in Figure 1.1 is shown in Table 3.1.
We highlight those entries that indicate an edge between two nodes. The adjacency matrix can be
approximated by a block structure as shown in Table 3.2. Each block represents one community.
Therefore, we approximate a given adjacency matrix A as follows:

A ≈ S�ST , (3.9)

where S ∈ {0, 1}n×k is the block indicator matrix with Sij = 1 if node i belongs to the j-th block,
� a k × k matrix indicating the block (group) interaction density, and k the number of blocks. A
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Table 3.1: Adjacency Matrix
- 1 1 1 0 0 0 0 0
1 - 1 0 0 0 0 0 0
1 1 - 1 0 0 0 0 0
1 0 1 - 1 1 0 0 0
0 0 0 1 - 1 1 1 0
0 0 0 1 1 - 1 1 0
0 0 0 0 1 1 - 1 1
0 0 0 0 1 1 1 - 0
0 0 0 0 0 0 1 0 -

Table 3.2: Ideal Block Structure
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1

natural objective is to minimize the following:

min ‖A − S�ST ‖2
F . (3.10)

The discreteness of S makes the problem NP-hard.We can relax S to be continuous but satisfy certain
orthogonal constraints, i.e., ST S = Ik , then the optimal S corresponds to the top k eigenvectors of
A with maximum eigenvalues. Similar to the latent space model, k-means clustering can be applied
to S to recover the community partition H .
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Figure 3.4: Two Different Cuts of the Toy Network in Figure 1.1

For the network in Figure 1.1, the top two eigenvectors of the adjacency matrix are

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.20 −0.52
0.11 −0.43
0.20 −0.52
0.38 −0.30
0.47 0.15
0.47 0.15
0.41 0.28
0.38 0.24
0.12 0.11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, � =

[
3.5 0
0 2.4

]
.

As indicated by the sign of the second column of S, nodes {1, 2, 3, 4} form a community, and
{5, 6, 7, 8, 9} is another community, which can be obtained by a k-means clustering applied to S.

3.3.4 SPECTRAL CLUSTERING
Spectral clustering (Luxburg, 2007) is derived from the problem of graph partition. Graph partition
aims to find out a partition such that the cut (the total number of edges between two disjoint
sets of nodes) is minimized. For instance, the green cut (thick dashed line) between two sets of
nodes {1, 2, 3, 4} and {5, 6, 7, 8, 9} in Figure 3.4 is 2 as there are two edges e(4, 5) and e(4, 6).
Intuitively, if two communities are well separated, the cut between them should be small. Hence,
a community detection problem can be reduced to finding the minimum cut in a network. This
minimum cut problem can be solved efficiently. It, however, often returns imbalanced communities,
with one being trivial or a singleton, i.e., a community consisting of only one node. In the network
in Figure 3.4, for example, the minimum cut is 1, between {9} and {1, 2, 3, 4, 5, 6, 7, 8}.

Therefore, the objective function is modified so that the group sizes of communities are
considered.Two commonly used variants are ratio cut and normalized cut. Let π = (C1, C2, · · · , Ck)

be a graph partition such that Ci ∩ Cj = φ and ∪k
i=1Ci = V . The ratio cut and the normalized cut
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are defined as:

Ratio Cut(π) = 1

k

k∑
i=1

cut (Ci, C̄i)

|Ci | , (3.11)

Normalized Cut(π) = 1

k

k∑
i=1

cut (Ci, C̄i)

vol(Ci)
. (3.12)

where C̄i is the complement of Ci , and vol(Ci) = ∑
v∈Ci

dv . Both objectives attempt to
minimize the number of edges between communities, yet avoid the bias of trivial-size communities
like singletons.

Suppose we partition the network in Figure 1.1 into two communities, with C1 = {9} and
C2 = {1, 2, 3, 4, 5, 6, 7, 8}. Let this partition be denoted as π1. It follows that cut (C1, C̄1) = 1,
|C1| = 1, |C2| = 8, vol(C1) = 1, and vol(C2) = 27. Consequently,

Ratio Cut(π1) = 1

2

(
1

1
+ 1

8

)
= 9/16 = 0.56,

Normalized Cut(π1) = 1

2

(
1

1
+ 1

27

)
= 14/27 = 0.52.

Now for another more balanced partition π2 with C1 = {1, 2, 3, 4}, and C2 = {5, 6, 7, 8, 9},
we have

Ratio Cut(π2) = 1

2

(
2

4
+ 2

5

)
= 9/20 = 0.45 < Ratio Cut(π1),

Normalized Cut(π2) = 1

2

(
2

12
+ 2

16

)
= 7/48 = 0.15 < Normalized Cut(π1).

Though the cut of partition π1 is smaller, partition π2 is preferable based on the ratio cut or the
normalized cut.

Nevertheless, finding the minimum ratio cut or normalized cut is NP-hard. An approximation
is to use spectral clustering. Both ratio cut and normalized cut can be formulated as a min-trace
problem like below

min
S∈{0,1}n×k

T r(ST L̃S), (3.13)

with the (normalized) graph Laplacian L̃ defined as follows:

L̃ =
{

D − A (Graph Laplacian for Ratio Cut)
I − D−1/2AD−1/2 (Normalized Graph Laplacian for Normalized Cut)

(3.14)

with D = diag(d1, d2, · · · , dn). Akin to block model approximation, we solve the following spectral
clustering problem based on a relaxation to S (Luxburg, 2007).

min
S

T r(ST L̃S) s.t. ST S = Ik (3.15)
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Then, S corresponds to the top eigenvectors of L̃ with the smallest eigenvalues. For the network in
Figure 1.1,

D = diag(3, 2, 3, 4, 4, 4, 4, 3, 1);
and the graph Laplacian is

L̃ = D − A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
−1 −1 3 −1 0 0 0 0 0
−1 0 −1 4 −1 −1 0 0 0

0 0 0 −1 4 −1 −1 −1 0
0 0 0 −1 −1 4 −1 −1 0
0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 −1 −1 −1 3 0
0 0 0 0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with its two smallest eigenvectors being

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 −0.38
0.33 −0.48
0.33 −0.38
0.33 −0.12
0.33 0.16
0.33 0.16
0.33 0.30
0.33 0.24
0.33 0.51

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Typically, the first eigenvector does not contain any community information. For the example above,
all the nodes are assigned with the same value, meaning that all reside in the same community.
Thus, the first eigenvector is often discarded. In order to find out k communities, k − 1 smallest
eigenvectors (except the first one) are used to feed into k-means for clustering. In our example, the
second column of S, as indicated by the sign, tells us that the network can be divided into two groups
{1, 2, 3, 4} and {5, 6, 7, 8, 9}.

3.3.5 MODULARITY MAXIMIZATION
Modularity (Newman, 2006a) is proposed specifically to measure the strength of a community
partition for real-world networks by taking into account the degree distribution of nodes. Given a
network of n nodes and m edges, the expected number of edges between nodes vi and vj is didj /2m,
where di and dj are the degrees of node vi and vj , respectively. Considering one edge from node vi

connecting to all nodes in the network randomly, it lands at node vj with probability dj/2m. As there
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are di such edges, the expected number of connections between the two are didj /2m. For example,
the network in Figure 1.1 has 9 nodes and 14 edges. The expected number of edges between nodes
1 and 2 is 3 × 2/(2 × 14) = 3/14.

So Aij − didj /2m measures how far the true network interaction between nodes i and j

(Aij ) deviates from the expected random connections. Given a group of nodes C, the strength of
community effect is defined as ∑

i∈C,j∈C

Aij − didj /2m.

If a network is partitioned into k groups, the overall community effect can be summed up as follows:

k∑
�=1

∑
i∈C�,j∈C�

(
Aij − didj /2m

)
.

Modularity is defined as

Q = 1

2m

k∑
�=1

∑
i∈C�,j∈C�

(
Aij − didj /2m

)
. (3.16)

where the coefficient 1/2m is introduced to normalize the value between -1 and 1. Modularity
calibrates the quality of community partitions thus can be used as an objective measure to maximize.

We can define a modularity matrix B as Bij = Aij − didj /2m. Equivalently,

B = A − ddT /2m. (3.17)

where d ∈ Rn×1 is a vector of each node’s degree. Let S ∈ {0, 1}n×k be a community indicator matrix
with Si� = 1 if node i belongs to community C�, and s� the �-th column of S. Modularity can be
reformulated as

Q = 1

2m

k∑
�=1

s�Bs� = 1

2m
T r(ST BS). (3.18)

With a spectral relaxation to allow S to be continuous, the optimal S can be computed as the
top k eigenvectors of the modularity matrix B (Newman, 2006b) with the maximum eigenvalues.

For example, the modularity matrix of the toy network is

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.32 0.79 0.68 0.57 −0.43 −0.43 −0.43 −0.32 −0.11
0.79 −0.14 0.79 −0.29 −0.29 −0.29 −0.29 −0.21 −0.07
0.68 0.79 −0.32 0.57 −0.43 −0.43 −0.43 −0.32 −0.11
0.57 −0.29 0.57 −0.57 0.43 0.43 −0.57 −0.43 −0.14

−0.43 −0.29 −0.43 0.43 −0.57 0.43 0.43 0.57 −0.14
−0.43 −0.29 −0.43 0.43 0.43 −0.57 0.43 0.57 −0.14
−0.43 −0.29 −0.43 −0.57 0.43 0.43 −0.57 0.57 0.86
−0.32 −0.21 −0.32 −0.43 0.57 0.57 0.57 −0.32 −0.11
−0.11 −0.07 −0.11 −0.14 −0.14 −0.14 0.86 −0.11 −0.04

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Network A Utility Matrix M Soft Community
Indicator S

Community
Partition H

Compute Top
Eigenvectors

Apply K-Means
Clustering

Construct M depending
on the Objective

Function

Figure 3.5: A Unified Process for Some Representative Community Detection Methods

Its top two maximum eigenvectors are

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.44 −0.00
0.38 0.23
0.44 −0.00
0.17 −0.48

−0.29 −0.32
−0.29 −0.32
−0.38 0.34
−0.34 −0.08
−0.14 0.63

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note how the partition information is expressed by the first column of S.

3.3.6 A UNIFIED PROCESS
The above four representative community detection methods - latent space models, block model
approximation, spectral clustering, and modularity maximization - can be unified in a process as
in Figure 3.5. The process is composed of four components with three intermediate steps. Given
a network, a utility matrix is constructed. Depending on the objective function, we can construct
different utility matrices:

Utility Matrix M =

⎧⎪⎪⎨⎪⎪⎩
P̃ in Eq. (3.6) (latent space models)
A in Eq. (3.9) (block model approximation)
L̃ in Eq. (3.14) (spectral clustering)
B in Eq. (3.17) (modularity maximization)

(3.19)

After obtaining the utility matrix, we obtain the soft community indicator S that consists of the
top eigenvectors with the largest (or smallest subject to formulation) eigenvalues.The selected eigen-
vectors capture the prominent interaction patterns, representing approximate community partitions.
This step can also be considered as a de-noising process since we only keep those top eigenvectors
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that are indicative of community structures.To recover the discrete partition H , a k-means clustering
algorithm is applied. Note that all the aforementioned community detection methods differ subtly
by constructing different utility matrices.

The community detection methods presented above, except the latent space model, are nor-
mally applicable to medium-size networks (say, 100, 000 nodes). The latent space model requires
an input of a proximity matrix of the geodesic distance of any pair of nodes, which costs O(n3) to
compute the pairwise geodesic distances. Moreover, the utility matrix of the latent space model is
neither sparse nor structured, incurring O(n3) time to compute its eigenvectors. This high compu-
tational cost hinders its application to real-world large-scale networks. By contrast, block models,
spectral clustering and modularity maximization are typically much faster2.

3.4 HIERARCHY-CENTRIC COMMUNITY DETECTION
Another line of community detection research is to build a hierarchical structure of communities
based on network topology. This facilitates the examination of communities at different granularity.
There are mainly two types of hierarchical clustering: divisive, and agglomerative.

3.4.1 DIVISIVE HIERARCHICAL CLUSTERING
Divisive clustering first partitions the nodes into several disjoint sets.Then each set is further divided
into smaller ones until each set contains only a small number of (say, only one) actors. The key here
is how to split a network into several parts. Some partition methods such as block models, spectral
clustering, and latent space models can be applied recursively to divide a community into smaller
sets.

One particular divisive clustering algorithm receiving much attention is to recursively remove
the “weakest” tie in a network until the network is separated into two or more components. The
general principle is as follows:

• At each iteration, find out the edge with least strength. This kind of edge is most likely to be
a tie connecting two communities.

• Remove the edge and then update the strength of links.

• Once a network is decomposed into two connected components, each component is considered
a community. The iterative process above can be applied to each community to find sub-
communities.

Newman and Girvan (2004) proposes to find the weak ties based on edge betweenness. Edge
betweenness is highly related to the betweenness centrality discussed in Section 2.1. Edge between-
ness is defined to be the number of shortest paths that pass along one edge (Brandes, 2001). If

2The utility matrix of modularity maximization is dense, but it is a sparse matrix plus a low rank update as in Eq. (3.17). This
structure can be exploited for fast eigenvector computation (Newman, 2006b; Tang et al., 2009).
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Table 3.3: Edge Betweenness
1 2 3 4 5 6 7 8 9

1 0 4 1 9 0 0 0 0 0
2 4 0 4 0 0 0 0 0 0
3 1 4 0 9 0 0 0 0 0
4 9 0 9 0 10 10 0 0 0
5 0 0 0 10 0 1 6 3 0
6 0 0 0 10 1 0 6 3 0
7 0 0 0 0 6 6 0 2 8
8 0 0 0 0 3 3 2 0 0
9 0 0 0 0 0 0 8 0 0

Figure 3.6: The Process of the Newman-Girvan Algorithm Applied to the Toy Network

two communities are joined by only a few cross-group edges, then all paths through the network
from nodes in one community to the other community have to pass along one of these edges. Edge
betweenness is a measure to count how many shortest paths between pair of nodes pass along the
edge, and this number is expected to be large for those between-group edges. The Newman-Girvan
algorithm suggests progressively removing edges with the highest betweenness. It will gradually
disconnect the network, naturally leading to a hierarchical structure.

The edge betweenness of the network in Figure 1.1 is given in Table 3.3. For instance, the
betweenness of e(1, 2) is 4. Since all shortest paths from node 2 to any node in {4, 5, 6, 7, 8, 9} has
either to pass e(1, 2) or e(1, 3), leading to a weight of 6 × 1/2 = 3 for e(1, 2). Meanwhile, e(1, 2)

is the shortest path between nodes 1 and 2. Hence, the betweenness of e(1, 2) is 3 + 1 = 4. An
algorithm to compute the edge betweenness is included in Appendix B.
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As seen in the table, both edges e(4, 5) and e(4, 6) have highest edge betweenness. Suppose
we randomly remove one (say e(4, 5)). Then in the resultant network, the edge with the highest
betweenness is e(4, 6) (with betweenness being 20). After removing the edge e(4, 6), the network
is decomposed into two communities. At this point, e(7, 9) becomes the edge with the highest be-
tweenness. Its removal results in two new communities {5, 6, 7, 8} and {9}.Then a similar procedure
can be applied to each community to further divide them into smaller ones. The overall process of
the first few steps is shown in Figure 3.6.

However, this divisive hierarchical clustering based on edge betweenness presses hard for
computation. As we have discussed in Section 2.1, betweenness for nodes or edges takes O(nm)

time (Brandes, 2001). Moreover, each removal of an edge will lead to the recomputation of between-
ness for all edges within the same connected component. Its high computational cost hinders its
application to large-scale networks.

3.4.2 AGGLOMERATIVE HIERARCHICAL CLUSTERING
Agglomerative clustering begins with base communities and merges them successively into larger
communities following certain criterion. One such criterion is modularity (Clauset et al., 2004).
Two communities are merged if doing so results in the largest increase of overall modularity. We
can start from treating each node as a separate base community and merge communities. The merge
continues until no merge can be found to improve the modularity. Figure 3.7 shows the resultant
dendrogram based on agglomerative hierarchical clustering applied to the network in Figure 1.1.
Nodes 7 and 9 are merged first, and then 1 and 2, and so on. Finally, we obtain two communities at
the top {1, 2, 3, 4} and {5, 6, 7, 8, 9}.

Figure 3.7: Dendrogram according to Agglomerative Clustering based on Modularity

It is noticed that this algorithm incurs many imbalanced merges (i.e., a large community
merges with a tiny community, such as the merge of node 4 with {1, 2, 3}), resulting in a high
computational cost (Wakita and Tsurumi, 2007). Hence, the merge criterion is modified accordingly
by considering the size of communities. In the new scheme, communities of comparable sizes are
joined first, leading to a more balanced hierarchical structure of communities and to improved
efficiency. A state-of-the-art for such hierarchical clustering is the Louvain method (Blondel et al.,
2008). It starts from each node as a base community and determines which of its neighbor should be
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merged to based on the modularity criterion. After the first scan, some base communities are merged
into one. Then, each community’s degree and connection information is aggregated and treated as a
single node for further merge. This multi-level approach is extremely efficient to handle large-scale
networks.

So far, we have discussed some general ideas and different community detection approaches.
We can hardly conclude which one is the best. It highly depends on the task at hand and available
network data. Other things being equal, we need to resort to evaluation for comparing different
community detection methods.

3.5 COMMUNITY EVALUATION
Part of the reason that there are so many assorted definitions and methods, is that there is no clear
ground truth information about a community structure in a real world network. Therefore, different
community detection methods are developed from various applications of specific needs. We now
depict strategies commonly adopted to evaluate identified communities in order to facilitate the com-
parison of different community detection methods. Depending on available network information,
one can take different strategies for comparison:

• Groups with self-consistent definitions. Some groups like cliques, k-cliques, k-clubs, k-plexes
and k-cores can be examined immediately once a community is identified. We can simply
check whether the extracted communities satisfy the definition.

• Networks with ground truth. That is, the community membership for each actor is known.
This is an ideal case. This scenario hardly presents itself in real-world large-scale networks. It
usually occurs for evaluation on synthetic networks generated based on predefined commu-
nity structures (e.g., (Tang et al., 2008)), or some well-studied tiny networks like Zachary’s
karate club with 34 members (Newman, 2006b). To compare the ground truth with identified
community structures, visualization can be intuitive and straightforward (Newman, 2006b).
If the number of communities is small (say 2 or 3 communities), it is easy to determine a one-
to-one mapping between the identified communities and the ground truth. So conventional
classification measures (Tan et al., 2005) such as accuracy, F1-measure can be also used. In
Figure 3.8, e.g., one can say one node 2 is wrongly assigned.

However, when there are many communities, it may not be clear what a correct mapping of
communities from the ground truth to a clustering result. In Figure 3.8, the ground truth has
two communities whereas the clustering result consists of three. Both communities {1, 3} and
{2} map to the community {1, 2, 3} in the ground truth. Hence, some measure that can average
all the possible mappings should be considered. Normalized mutual information (NMI) is a
commonly used one (Strehl and Ghosh, 2003).

Before we introduce NMI, we briefly review some information-theoretic concepts. In infor-
mation theory, the information contained in a distribution is called entropy, which is defined
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Figure 3.8: Comparing Ground Truth with Clustering Result. Each number denotes a node, and each
circle or block denotes a community.

below:

H(X) = −
∑
x∈X

p(x) log p(x). (3.20)

Mutual information calibrates the shared information between two distributions:

I (X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p1(x)p2(y)

)
. (3.21)

Since I (X; Y ) ≤ H(X) and I (X; Y ) ≤ H(Y), a normalized mutual information (NMI) be-
tween two variables X and Y is

NMI(X; Y ) = I (X; Y )√
H(X)H(Y )

. (3.22)

We can consider a partition as a probability distribution of one node falling into one community.
Let πa, πb denote two different partitions of communities. nh,�, na

h, nb
� are, respectively, the

number of actors simultaneously belonging to the h-th community of πa and �-th community
of πb, the number of actors in the h-th community of partition πa , and the number of actors
in the �-th community of partition πb. Thus,

H(πa) =
k(a)∑
h

na
h

n
log

na
h

n
,

H(πb) =
k(b)∑
�

nb
�

n
log

nb
�

n
,

I (πa; πb) =
∑
h

∑
�

nh,�

n
log

⎛⎝ nh,�

n

na
h

n

nb
�

n

⎞⎠ .
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n = 6
k(a) = 2
k(b) = 3

na  
h nb  nh,ll

Figure 3.9: Computation of NMI to compare two clusterings in Figure 3.8.

In the formula, nh,�

n
, in essence, estimates the probability of the mapping from community h

in π(a) to community � in π(b). Consequently,

NMI(πa; πb) =
∑k(a)

h=1
∑k(b)

�=1 nh,� log

(
n·nh,l

n
(a)
h ·n(b)

�

)
√(∑k(a)

h=1 n
(a)
h log

na
h

n

)(∑k(b)

�=1 n
(b)
� log

nb
�

n

) . (3.23)

NMI is a measure between 0 and 1. It equals 1 when πa and πb are the same.

As for the example in Figure 3.8, the partitions can be rewritten in another form as follows:

πa = [1, 1, 1, 2, 2, 2] (ground truth)

πb = [1, 2, 1, 3, 3, 3] (clustering result)

The network has 6 nodes, with each assigned to one community. Here, the numbers are the
community ids of each clustering. The corresponding quantity of each term in Eq. (3.23) is
listed in Figure 3.9. The resultant NMI following Eq. (3.23) is 0.83.

Another way is to consider all the possible pairs of nodes and check whether they reside in the
same community. It is considered an error if two nodes of the same community are assigned
to different communities, or two nodes of different communities are assigned to the same
community. Let C(vi) denote the community of node vi . We can construct a contingency
table below: a, b, c and d are frequencies of each case. For instance, a is the frequency that

Ground Truth
C(vi) = C(vj ) C(vi) �= C(vj )

Clustering C(vi) = C(vj ) a b
Result C(vi) �= C(vj ) c d

two nodes are assigned into the same community in the ground truth as well in the clustering
result. It is noticed that the total sum of frequencies is the number of all possible pairs of
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nodes in a network, i.e., a + b + c + d = n(n − 1)/2. Based on the frequencies, the accuracy
of clustering can be computed as

accuracy = a + d

a + b + c + d
= a + d

n(n − 1)/2
.

Take Figure 3.8 as an example. We have a = 4. Specifically, {1, 3},{4, 5}, {4, 6}, {5, 6} are
assigned into the same community in the ground truth and clustering result. Any pair between
{1, 2, 3} and {4, 5, 6} are being assigned to different communities, thus d = 9. Consequently,
the accuracy of the clustering result is (4 + 9)/(6 × 5/2) = 13/15.

• Networks with semantics. Some networks come with semantic or attribute information of
nodes and connections. In this case, the identified communities can be verified by human
subjects to check whether it is consistent with the semantics, for instance, whether the com-
munity identified in the Web is coherent to a shared topic (Flake et al., 2000; Clauset et al.,
2004), and whether the clustering of coauthorship network captures the research interests of
individuals. This evaluation approach is applicable when the community is reasonably small.
Otherwise, selecting the top-ranking actors as representatives of a community is a commonly
used approach. Since this approach is qualitative, it can hardly be applied to all communities
in a large network, but it is quite helpful for understanding and interpretation of community
patterns. For example, tag clouds of representative nodes in two communities in blogosphere
are shown in Figure 3.10 (Tang, 2010). Though these two communities are extracted based
on network topology, they both capture certain semantic meanings. The first community is
about animals, and the other one is about health.

Figure 3.10: Tag Clouds of Extracted Communities based on (Tang, 2010)
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• Networks without ground truth or semantic information. This is the most common situation,
yet it requires objective evaluation most. Normally, one resorts to some quantitative measure
for network validation. That is, the quality measure Q is a function of a partition π and a
network A. We can use a similar procedure as cross validation in classification for validation.
It extracts communities from a (training) network and then compares them with those of the
same network (e.g., constructed from a different date) or another related network based on a
different type of interaction.

In order to quantify the quality of extracted community structure, a common measure being
used is modularity (Newman, 2006a). Once we have a network partition, we can compute its
modularity with respect to one network. The method with higher modularity wins. Another
comparable approach is to use the identified community as a base for link prediction, i.e., two
actors are connected if they belong to the same community. Then, the predicted network is
compared with the true network,and the deviation is used to calibrate the community structure.
Since social media networks demonstrate strong community effect, a better community struc-
ture should predict the connections between actors more accurately. This is basically checking
how far the true network deviates from a block model based on the identified communities.

Community detection is still an active and evolving field. We present some widely used
community detection and evaluation strategies. In (Fortunato, 2010), one can find a comprehensive
survey. Social media, however, often presents more than just a single friendship network. It might
involve heterogeneous types of entities and interactions. In the next chapter, we will discuss further
how to integrate different kinds of interaction information together to find robust communities in
social media.
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C H A P T E R 4

Communities in Heterogeneous
Networks

With social media, people can interact with each other more conveniently than ever. Examining
activities of users, we can observe different interaction networks between the same set of actors.
Take YouTube as an example. A user may become a friend of another user’s; he can also “subscribe”
to another user. The existence of different types of interactions suggests heterogeneous interactions
in one social network. Meanwhile, in some social networking sites, entities other than human beings
can also be involved. For instance, in YouTube, a user can upload a video and another user can tag it.
In other words, users, videos, and tags are weaved into the same network.The “actors” in the network
are not at all homogeneous. Networks involving heterogeneous types of interactions or actors are
referred as heterogeneous networks. This chapter discusses how we might extend methods presented
in the previous chapter to handle this heterogeneity.

4.1 HETEROGENEOUS NETWORKS
Social media networks are often heterogeneous, having heterogeneous interactions or heterogeneous
nodes.Heterogeneous networks are thus categorized into multi-dimensional networks and multi-mode
networks as defined below:

• Multi-Dimensional Networks. A multi-dimensional network has multiple types of interactions
between the same set of users. Each dimension of the network represents one type of activity
between users. For instance, at popular content sharing sites like Flickr and YouTube, as in
Figure 4.1, a user can connect to his friends through email invitation or the provided “add as
contacts” function; users can also tag/comment on the social contents like photos and videos; a
user at YouTube can respond to another user by uploading a video; and a user can also become
a fan of another user by subscription to the user’s contributions of social contents. A multi-
dimensional network among these users can be constructed based on all forms of activities, in
which each dimension represents one facet of diverse interaction (Tang et al., 2009). A multi-
dimensional network is also called a multiplex network, multi-relational network, or labeled graph
in various domains.

• Multi-Mode Networks. A multi-mode network involves heterogeneous actors. Each mode
represents one type of entity. A 3-mode network can be constructed for the aforementioned
YouTube example, as seen in Figure 4.2. In the network, videos, tags and users each represent a
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Contacts/friends
Tagging on Social Content

Fans/Subscriptions
Response to Social Content

Figure 4.1: Various Types of Interactions at Content Sharing Sites

Figure 4.2: An Example of a Multi-Mode Network (based on (Tang et al., forthcoming))

mode. Note that both videos and tags are considered “actors” of the network as well, although
users might be the major mode under consideration. Different interactions exist between the
three types of entities: users can upload videos; users can add tags to a video. Videos and tags are
naturally correlated to each other. Meanwhile, a friendship network exists among users, and a
video clip can be uploaded to respond to another video. Tags can also connect to each other
based on their semantic meanings. In other words, multiple types of entities exist in the same
network, and entities relate to others (either the same type or different types) through different
links. Besides social media, multi-mode networks are also observed in other domains such as
information networks (Sun et al., 2009) from DBLP Bibliography1 involving authors, papers
and publication venues, or the Internet Movie Database2 involving movies, actors, producers
and directors.

Social media offers an easily-accessible platform for diverse online social activities, but it
also introduces heterogeneity in networks. Thus, it calls for solutions to extract communities in

1http://www.informatik.uni-trier.de/˜ley/db/
2http://www.imdb.com/

http://www.informatik.uni-trier.de/~ley/db/
http://www.imdb.com/
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heterogeneous networks. However, it remains unanswered why one cannot reduce a heterogeneous
network to several homogeneous ones (i.e., one mode or one dimension). The reason is that the
interaction information in one mode or one dimension might be too noisy to detect meaningful
communities. For instance, in the YouTube example in Figure 4.2, it seems acceptable if we only
consider the user mode. In other words, just study the friendship network. On the one hand, some
users might not have any online friends because they are too introvert to talk to other online users,
or because they just join the network and are not ready for or not interested in connections. On the
other hand, some users might abuse connections, since it is relatively easy to make connections in
social media compared with in the physical world. For example, a user in Flickr can have thousands
of friends (Tang and Liu, 2009b). This can hardly be true in the real world. It might be the case that
two online users get connected but they never talk to each other. Thus, these online connections of
one mode or one dimension alone can hardly paint a true picture of what is happening.

A single type of interaction provides limited information about the community membership
of online users. Fortunately, social media provides more than just a single friendship network. A
user might engage in other forms of activities besides connecting to friends. It is generally helpful to
utilize information from other modes or dimensions for more effective community detection. Next,
we will discuss how we may extend a community detection method to take into account interaction
information at multiple dimensions or among multiple modes. For all the methods we discussed in
this chapter, we assume the number of communities is given. The number of communities may be
obtained via prior knowledge or by some exploratory study.

4.2 MULTI-DIMENSIONAL NETWORKS
Communications in social media are often multi-dimensional, leading to a multi-dimensional net-
work. A p-dimensional network is represented as

A = {A(1), A(2), · · · , A(p)},
with A(i) ∈ {0, 1}n×n represents the interaction among actors in the i-th dimension Through these
interactions, a latent community structure emerges among actors. With multiple types of inter-
actions, the shared latent community structure can be complicated. It is necessary to integrate
information from multiple dimensions to find out the shared community structure across multiple
network dimensions. In Figure 3.5, we show a unified process that summarizes existing community
detection methods, involving four components: network, utility matrix, soft community indicator, and
partition. Corresponding to each component, we can develop an integration strategy because soft3

community indicators can be considered as structural features extracted from a network. Therefore,
we have network integration, utility integration, feature integration, and partition integration as shown
in Figure 4.3. We now delineate each integration strategy in detail. We use spectral clustering with
normalized graph Laplacian (defined in Eq. (3.14)) as an example to go through the four strategies.

3Soft means we may have real values rather than boolean values to represent the degree of membership.
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Figure 4.3: Multi-Dimensional Integration Strategies

Other variants of community detection methods (such as block models, latent space approach, and
modularity maximization) in multi-dimensional networks (as suggested by the unified view) are also
applicable (Tang, 2010).

4.2.1 NETWORK INTEGRATION
A simple strategy to handle a multi-dimensional network is to treat it as a single-dimensional
network. The intuition here is that one’s different interactions strengthen her connections in a
mathematical sense of union. The average interaction among actors is:

Ā = 1

p

p∑
i=1

A(i). (4.1)

With Ā, this boils down to classical community detection in a single-dimensional network.
Based on the average network, we can follow the community detection process as stated in the
unified view. The objective function of spectral clustering with multi-dimensional networks should
be changed accordingly:

min
S

T r(ST L̄S) s.t. ST S = I where L̄ = D̄−1/2ĀD̄−1/2.



4.2. MULTI-DIMENSIONAL NETWORKS 59

A(1) A(2)

7

9
8

5
4

3

6 2

1

A(3)

Figure 4.4: A 3-Dimensional Network

For the 3-dimensional network in Figure 4.4, we can compute the corresponding averaged
adjacency matrix as follows:

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2/3 0 0 0 0 0
1 0 2/3 1/3 0 0 0 0 0
1 2/3 0 1 1/3 0 0 0 0

2/3 1/3 1 0 1 1 0 0 0
0 0 1/3 1 0 2/3 1 1/3 0
0 0 0 1 2/3 0 1/3 1 0
0 0 0 0 1 1/3 0 1 2/3
0 0 0 0 1/3 1 1 0 1/3
0 0 0 0 0 0 2/3 1/3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For example, between nodes 1 and 4, the total sum of interaction is 2. Hence, the average interaction
should be 2/3. Based on the average similarity Ā, we can compute the corresponding normalized
graph Laplacian L̄ and its top eigenvectors as follows:

L̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.43 −0.35 −0.20 0 0 0 0 0
−0.43 1.00 −0.27 −0.12 0 0 0 0 0
−0.35 −0.27 1.00 −0.29 −0.11 0 0 0 0
−0.20 −0.12 −0.29 1.00 −0.27 −0.29 0 0 0

0 0 −0.11 −0.27 1.00 −0.21 −0.32 −0.11 0
0 0 0 −0.29 −0.21 1.00 −0.11 −0.35 0
0 0 0 0 −0.32 −0.11 1.00 −0.35 −0.38
0 0 0 0 −0.11 −0.35 −0.35 1.00 −0.20
0 0 0 0 0 0 −0.38 −0.20 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2)
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S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.33 −0.44
−0.28 −0.40
−0.35 −0.38
−0.40 −0.18
−0.37 0.16
−0.35 0.21
−0.35 0.41
−0.33 0.38
−0.20 0.30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3)

If k-means is applied to the structure feature S, we can partition the nodes into two groups {1, 2, 3, 4}
and {5, 6, 7, 8, 9}.

4.2.2 UTILITY INTEGRATION
Another variant for integration is to combine utility matrices instead of networks. We can obtain an
average utility matrix as follows:

M̄ = 1

p

p∑
i=1

M(i),

where M(i) denotes the utility matrix constructed in the i-th dimension. The soft community
indicators can be computed via the top eigenvectors of the utility matrix. This is equivalent to
optimizing the objective function over all types of interactions simultaneously. As for spectral clustering,
the average utility matrix in this case would be

M̄ = 1

p

p∑
i=1

L̃(i), (4.4)

where L̃(i) denote the normalized graph Laplacian of interaction at dimension i. Finding out the
top eigenvectors of the average utility matrix is equivalent to minimizing the average normalized
cut as follows:

min
S

1

p

p∑
i=1

T r(ST L̃(i)S) = min
S

T r(ST M̄S). (4.5)
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Take the 3-dimensional network in Figure 4.4 as an example. The graph Laplacian for each type of
interaction is listed below:

L̃(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.41 −0.33 −0.29 0 0 0 0 0
−0.41 1.00 −0.41 0 0 0 0 0 0
−0.33 −0.41 1.00 −0.29 0 0 0 0 0
−0.29 0 −0.29 1.00 −0.25 −0.25 0 0 0

0 0 0 −0.25 1.00 −0.25 −0.25 −0.29 0
0 0 0 −0.25 −0.25 1.00 −0.25 −0.29 0
0 0 0 0 −0.25 −0.25 1.00 −0.29 −0.50
0 0 0 0 −0.29 −0.29 −0.29 1.00 0
0 0 0 0 0 0 −0.50 0 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L̃(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.41 −0.33 −0.26 0 0 0 0 0
−0.41 1.00 0 −0.32 0 0 0 0 0
−0.33 0 1.00 −0.26 −0.33 0 0 0 0
−0.26 −0.32 −0.26 1.00 −0.26 −0.32 0 0 0

0 0 −0.33 −0.26 1.00 0 −0.41 0 0
0 0 0 −0.32 0 1.00 0 −0.50 0
0 0 0 0 −0.41 0 1.00 −0.50 0
0 0 0 0 0 −0.50 −0.50 1.00 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

L̃(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.50 −0.41 0 0 0 0 0 0
−0.50 1.00 −0.41 0 0 0 0 0 0
−0.41 −0.41 1.00 −0.33 0 0 0 0 0

0 0 −0.33 1.00 −0.33 −0.33 0 0 0
0 0 0 −0.33 1.00 −0.33 −0.33 0 0
0 0 0 −0.33 −0.33 1.00 0 −0.33 0
0 0 0 0 −0.33 0 1.00 −0.33 −0.41
0 0 0 0 0 −0.33 −0.33 1.00 −0.41
0 0 0 0 0 0 −0.41 −0.41 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It follows that M̄ = (
L̃(1) + L̃(2) + L̃(3)

)
/3. Thus,

M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.44 −0.36 −0.18 0 0 0 0 0
−0.44 1.00 −0.27 −0.11 0 0 0 0 0
−0.36 −0.27 1.00 −0.29 −0.11 0 0 0 0
−0.18 −0.11 −0.29 1.00 −0.28 −0.30 0 0 0

0 0 −0.11 −0.28 1.00 −0.19 −0.33 −0.10 0
0 0 0 −0.30 −0.19 1.00 −0.08 −0.37 0
0 0 0 0 −0.33 −0.08 1.00 −0.37 −0.30
0 0 0 0 −0.10 −0.37 −0.37 1.00 −0.14
0 0 0 0 0 0 −0.30 −0.14 0.67

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.6)

Clearly, this average Laplacian is different from the Laplacian constructed on average network
interactions (Eq. (4.2)). The smallest two eigenvectors with respect to M̄ are

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 0.43
0.29 0.39
0.36 0.37
0.41 0.17
0.37 −0.15
0.34 −0.19
0.34 −0.40
0.32 −0.37
0.22 −0.38

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this example, the soft community indicator of the utility interaction is similar to that based
on network utility (Eq. (4.3)), except for signs. A partition of two communities ({1, 2, 3, 4} and
{5, 6, 7, 8, 9}) is already encoded in the second column of S by the sign.

4.2.3 FEATURE INTEGRATION
Soft community indicators extracted from each dimension of the network are structural features
associated with nodes. When we try to integrate them, the integration is performed at the feature
level, thus feature integration. One might conjecture that we can perform similar operations as we did
for network interactions and utility matrices, i.e., taking the average of structural features as follows:

S̄ = 1

p

p∑
i=1

S(i). (4.7)

Unfortunately, this straightforward average does not apply to structural features. The solution S

that optimizes the utility function is not unique. Dissimilar structural features may not necessarily
suggest differences of the corresponding latent community structures. In the simplest case, S′ = −S

is also a valid solution. Averaging these structural features does not result in sensible features.
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To give a palpable understanding, we can take a look at the 3-dimensional network in Fig-
ure 4.4. For presentation convenience, we extract 3 soft community indicators for each type of
interaction. The corresponding structural features are list below:

S(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 −0.44 0.09
0.27 −0.43 0.22
0.33 −0.44 0.09
0.38 −0.16 −0.32
0.38 0.24 −0.30
0.38 0.24 −0.30
0.38 0.38 0.42
0.33 0.30 −0.16
0.19 0.23 0.67

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.37 0 0.39
−0.30 0 0.33
−0.37 0 0.23
−0.48 0 0.21
−0.37 0 −0.08
−0.30 0 −0.31
−0.30 0 −0.46
−0.30 0 −0.56

0 1.00 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

S(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.29 0.47 0.21
0.29 0.47 0.21
0.35 0.44 0.01
0.35 0.04 −0.50
0.35 −0.17 −0.39
0.35 −0.17 −0.39
0.35 −0.33 0.28
0.35 −0.33 0.28
0.29 −0.30 0.45

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we simply take the average as in Eq. (4.7), we obtain S̄ as follows:

S̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.08 0.01 0.23
0.08 0.01 0.26
0.10 0.00 0.11
0.08 −0.04 −0.20
0.12 0.02 −0.26
0.14 0.02 −0.34
0.14 0.02 0.08
0.13 −0.01 −0.15
0.16 0.31 0.37

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that none of the three columns contains strong community information. If we apply k-means
to S̄ directly, we obtain the following partition of nodes: {1, 2, 3, 7, 9} and {4, 5, 6, 8}, which does
not make much sense.

Let S
(i)
� denote the �-th column of S(i). We can pay special attention of the case when

� = 2 for all S(i). Though both S
(1)
2 and S

(3)
2 imply a partition of separating nodes {1, 2, 3, 4} and
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Algorithm: Structural Feature Integration
Input: Net = {A(1), A(2), · · · , A(p)},

number of communities k,
number of structural features to extract �;

Output: community partition H .
1. Compute top � eigenvectors of the utility matrix
2. Compute slim SVD of X = [S(1), S(2), · · · S(p)] = UDV T ;
3. Obtain averaged structural features S̄ as the first k columns of U ;
4. Calculate the community partition with k-means on S̄.

Figure 4.5: Structural Feature Integration Algorithm for Multi-Dimensional Networks

{5, 6, 7, 8, 9} (as indicated by the sign in one column), their summation cancels each other, leading
to a sum close to 0. On the other hand, only node 9 is assigned with a non-zero value in S

(2)
2 ,

indicating the community as a singleton: node 9 is isolated in A(2). When taking the average, the
second column of S̄ does not contain much meaningful information.

Alternatively, we expect structural features of different dimensions to be highly correlated
after a certain transformation (Long et al., 2008). For instance, S

(1)
2 and S

(3)
2 are highly correlated;

S
(1)
2 is also correlated with S

(2)
3 . The multi-dimensional integration can be conducted after we apply

a transformation to structural features to map them into the same coordinates (Tang et al., 2009).
In order to find out the transformation associated with each type of interaction (say, w(i)), one
can maximize the pairwise correlations between structural features extracted from different types
of interactions. Once such a transformation is found, it can be shown that the averaged structural
features after transformation S̄, i.e., 1

p

∑p

i=1 S(i)w(i), is proportional to the left singular vectors of
the following data:

X =
[
S(1), S(2), · · · , S(p)

]
.

Hence,we have a structural feature integration algorithm as in Figure 4.5. In summary,we first extract
structural features from each dimension of the network via a community detection method; then
SVD is applied to the concatenated data X = [S(1), S(2), · · · S(p)]. The average feature S̄ across all
dimensions of a network is captured by the left singular vectors of X.Then we can perform k-means
on this averaged structural feature S̄ to find a discrete community partition.
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Let us re-examine the 3-dimensional network example. We can concatenate all structural
features to form X.

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 −0.44 0.09 −0.37 0 0.39 0.29 0.47 0.21
0.27 −0.43 0.22 −0.30 0 0.33 0.29 0.47 0.21
0.33 −0.44 0.09 −0.37 0 0.23 0.35 0.44 0.01
0.38 −0.16 −0.32 −0.48 0 0.21 0.35 0.04 −0.50
0.38 0.24 −0.30 −0.37 0 −0.08 0.35 −0.17 −0.39
0.38 0.24 −0.30 −0.30 0 −0.31 0.35 −0.17 −0.39
0.38 0.38 0.42 −0.30 0 −0.46 0.35 −0.33 0.28
0.33 0.30 −0.16 −0.30 0 −0.56 0.35 −0.33 0.28
0.19 0.23 0.67 0 1.00 0 0.29 −0.30 0.45

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The top 2 left singular vectors of X are listed below:

S̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.30 0.42
−0.26 0.38
−0.33 0.38
−0.39 0.24
−0.37 −0.07
−0.36 −0.14
−0.36 −0.40
−0.35 −0.36
−0.23 −0.40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that this averaged partition information contains the partition information in the second
column. A partition of {1, 2, 3, 4} and {5, 6, 7, 8, 9} can be obtained after k-means clustering on S̄.

4.2.4 PARTITION INTEGRATION
Partition integration takes effect after the community partition of each network dimension is ready.
This problem has been studied as the cluster ensemble problem (Strehl and Ghosh, 2003), which com-
bines multiple clustering results of the same data from a variety of sources into a single consensus clus-
tering. Strehl and Ghosh (2003) propose three effective and comparable approaches: cluster-based
similarity partitioning algorithm (CPSA), HyperGraph Partition Algorithm and Meta-Clustering
Algorithm. For brevity, we only present the basic idea of CPSA here. CPSA constructs a similarity
matrix from each clustering.Two objects’ similarity is 1 if they belong to the same group, 0 if they be-
long to different groups. Let H(i) ∈ {0, 1}n×k denote the community indicator matrix of clustering
based on interactions at dimension i. The similarity between nodes can be computed as

1

p

p∑
i=1

H(i)(H (i))T = 1

p

p∑
i=1

YYT where Y =
[
H(1), H (2), · · · , H (p)

]
.
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This basically amounts to the probability that two nodes are assigned into the same community.
Based on this similarity matrix between nodes, we can apply similarity-based community detection
methods we introduced before to find out clusters.

Let us look at the 3-dimensional example again.Suppose we partition each network dimension
into two communities, we obtain the following partition:

H(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H (3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows that

1

p

p∑
i=1

H(i)(H (i))T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 1.00 1.00 0.67 0.33 0.33 0.33 0.33 0
1.00 1.00 1.00 0.67 0.33 0.33 0.33 0.33 0
1.00 1.00 1.00 0.67 0.33 0.33 0.33 0.33 0
0.67 0.67 0.67 1.00 0.67 0.67 0.67 0.67 0.33
0.33 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.67
0.33 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.67
0.33 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.67
0.33 0.33 0.33 0.67 1.00 1.00 1.00 1.00 0.67

0 0 0 0.33 0.6667 0.67 0.67 0.67 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.8)

This new adjacency matrix can be considered as a network with each entry being the weight of
connectivity. The community detection methods discussed in the previous chapter can be applied to
this weighted network to find out partitions. For example, we can apply spectral clustering to this
new network and then obtain a partition of two communities {1, 2, 3, 4} and {5, 6, 7, 8, 9}.

A disadvantage of this CPSA is that the computed similarity matrix can be dense, which
might not be applicable to large networks. Instead, we can treat Y as the feature representation
of actors and apply a similar procedure as in feature integration. That is, we compute the top left
singular vectors of Y and cluster nodes via k-means on the extracted singular vectors. As for the
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Table 4.1: Comparing Different Multi-Dimensional Integration Strategies
Network Utility Feature Partition

Integration Integration Integration Integration
Tuning weights for

different interactions � � � �
Sensitivity to noise yes ok robust yes
Clustering quality bad good good ok

Computational cost low low high expensive

3-dimensional network, we have Y as follows:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 0 1
0 1 1 0 0 1
0 1 1 0 0 1
0 1 1 0 0 1
0 1 1 0 0 1
0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Its top 2 left singular vectors are

H̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.27 −0.47
−0.27 −0.47
−0.27 −0.47
−0.35 −0.14
−0.39 0.22
−0.39 0.22
−0.39 0.22
−0.39 0.22
−0.24 0.35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, the second column of H2 encodes the partition information, which can be easily identified
by k-means. In this way, we avoid the construction of a huge dense matrix as in Eq. (4.8).

All the four integration strategies can be extended by adding regularization or assigning
varying weights to different types of interactions. It has been shown that utility integration and feature
integration tend to outperform simple network integration or partition integration (Tang et al.,
2009). Among the four strategies, utility integration typically outputs reasonably good performance.
Structural feature integration involves computing soft community indicators from each type of
interaction. This step can be considered as a denoise process, thus the subsequent integration is
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Figure 4.6: A two-mode network represented as a bipartite graph. The dashed line represents one
normalized cut found by co-clustering.

able to extract a more accurate community structure. In terms of computational cost, they can be
sorted from low to high as follows: network integration, utility integration, feature integration, and
partition integration. The pros and cons of different multi-dimensional integration strategies are
summarized in Table 4.1. Given their advantage in clustering performance, utility integration or
feature integration should be preferred.

4.3 MULTI-MODE NETWORKS

So far, we mainly focused on networks with only one type of entity. In reality, entities of distinctive
types can interact also with each other. For instance, for a bibliography network, we have authors,
publication venues, papers, terms in titles fabricated into one network. In social media, a network can
be composed of multiple types of entities.The network is called a multi-mode network.We start with
a two-mode network - the simplest form of multi-mode networks, and discuss how co-clustering
works. Then, we generalize the algorithm to multi-mode networks.

4.3.1 CO-CLUSTERING ON TWO-MODE NETWORKS
In some content-sharing sites, users upload tags to shared content such as videos, photos and book-
marks, which naturally forms a user-tag network. In this network, we have two types of entities:
users and tags, and the connection is often between a user and a tag. Users are indirectly connected
via tags. It is a two-mode network, with one mode representing one type of entity. In traditional social
science, a two-mode network is also named as an affiliation network (Wasserman and Faust, 1994).

Akin to typical one-mode networks, there are also two ways to represent a two-mode network:
a graph or an adjacency matrix. Figure 4.6 shows an example of a two-mode network between 9
users and 7 tags. Clearly, the graph is bipartite because all the edges are between users and tags and
none between users or between tags. The corresponding adjacency matrix of the network is shown
in Table 4.2. Since each mode might contain a different number of entities (9 for the user mode,
and 7 for the tag mode), the corresponding adjacency matrix is not a square matrix.

In a two-mode network, communities in one mode become correlated with communities in
the other mode. Communities in one mode are formed due to their members’ shared connections
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Table 4.2: Adjacency Matrix
t1 t2 t3 t4 t5 t6 t7

u1 1 1 0 1 0 0 0
u2 0 1 0 0 0 0 0
u3 0 1 1 0 0 0 0
u4 1 0 1 0 0 0 0
u5 0 0 0 1 0 1 1
u6 0 0 1 1 1 0 1
u7 0 0 0 0 0 1 0
u8 0 0 0 0 0 1 1
u9 0 0 0 1 0 0 1

to those in the other mode. For example, in a user-tag network, users sharing similar interests are
likely to use similar tags, and semantically similar tags tend to be used by users of similar interests.
Thus, co-clustering (Dhillon, 2001) is proposed to find communities in two modes simultaneously.
Co-clustering is also known as biclustering (Madeira and Oliveira, 2004). For a user-tag network,
co-clustering not only outputs communities about users, but also communities about tags.

There are many approaches to perform co-clustering (Madeira and Oliveira, 2004). Here, we
illustrate a spectral clustering approach extended to two-mode networks. We can again minimize
the cut in the graph of a two-mode network, which might lead to a highly imbalanced cut. For
instance, in the network in Figure 4.6, ignoring the entity type of modes, the minimum cut is 1,
between {u2} and the remaining network, or t5 and the rest, or u7 and the rest. In all the cases, we
obtain a community composed of only one node (u2, t5, u7, respectively for each case). Alternatively,
the dashed line in Figure 4.6 seems a more reasonable cut. We can optimize the ratio cut or the
normalized cut to take into account the size of a community as we discussed in Section 3.3.4.

The spectral co-clustering algorithm aims to minimize the normalized cut in a bipartite graph.
It proceeds as follows:

• Given a two-mode network A, normalize the adjacency matrix as

Ã = D
−1/2
u AD

−1/2
t , (4.9)

where

Du = diag(du1, du2, · · · , dum), Dt = diag(dt1, dt2, · · · , dtn)

with dui
and dtj representing the degree of ui and tj , respectively.
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• Compute the SVD of Ã, say Ã = U�V T . Let S(u) = U1:�, S(t) = V1:�, where � is typically
set to k if we aim to find k communities. Then, S(u) is the soft community indicator of the
user mode, and S(t) the soft community indicator of the tag mode.

• After we obtain S(u) and S(t), k-means is run to obtain communities. We obtain a joint soft
community indicator of both the user mode and the tag mode as Z:

Z =
[

D
−1/2
u S(u)

D
−1/2
t S(t)

]
.

Communities can be obtained by applying k-means to this joint soft community indicator Z.

The final algorithm of co-clustering is similar to spectral clustering. Rather than computing the
smallest of eigenvectors of a graph Lapacian, we compute the singular value decomposition (SVD)
of the normalized adjacency matrix of a given two-mode network.

In this co-clustering algorithm, we run k-means algorithm on the reduced representation Z

of users and tags simultaneously. For example, for the network in Figure 4.6,

Du = diag(3, 1, 2, 2, 3, 4, 1, 2, 2),

Dt = diag(2, 3, 3, 4, 1, 3, 4).

Thus, we obtained a normalized adjacency matrix as follows:

Ã = D
−1/2
u AD

−1/2
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.41 0.33 0 0.29 0 0 0
0 0.58 0 0 0 0 0
0 0.41 0.41 0 0 0 0

0.50 0 0.41 0 0 0 0
0 0 0 0.29 0 0.33 0.29
0 0 0.29 0.25 0.50 0 0.25
0 0 0 0 0 0.58 0
0 0 0 0 0 0.41 0.36
0 0 0 0.36 0 0 0.36

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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If we partition users and tags in the network into two communities, the top two left and right
singular vectors and the corresponding Z are:

S(u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.39 0.33
−0.22 0.35
−0.32 0.40
−0.32 0.35
−0.39 −0.37
−0.45 −0.04
−0.22 −0.38
−0.32 −0.42
−0.32 −0.19

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.32 0.35
−0.39 0.35
−0.39 0.33
−0.45 −0.10
−0.22 −0.02
−0.39 −0.58
−0.45 −0.38

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 −0.22 0.19
u2 −0.22 0.35
u3 −0.22 0.28
u4 −0.22 0.25
u5 −0.22 −0.22
u6 −0.22 −0.02
u7 −0.22 −0.38
u8 −0.22 −0.29
u9 −0.22 −0.14
t1 −0.22 0.25
t2 −0.22 0.32
t3 −0.22 0.19
t4 −0.22 −0.05
t5 −0.22 −0.02
t6 −0.22 −0.33
t7 −0.22 −0.19

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first vector of Z assigns all users and tags to the same community, which does
not provide much useful information, thus is typically discarded. If we run k-means with k =
2 on the remaining column of Z, we obtain two communities {u1, u2, u3, u4, t1, t2, t3} and
{u5, u6, u7, u8, u9, t4, t5, t6, t7}, which is exactly the cut as indicated by the dashed line in Fig-
ure 4.6.

4.3.2 GENERALIZATION TO MULTI-MODE NETWORKS
Multi-mode networks involve multiple types of entities,or multiple modes. In a multi-mode network,
each pair of modes might interact with each other.We may also have within-mode interactions. How
could we extend the previous co-clustering algorithm to handle multi-mode networks?

Clearly, one key step in this spectral co-clustering algorithm is the SVD of Ã. This step
can also be interpreted as a block model approximation (Section 3.3.3) to a normalized two-mode
network, because the singular value decomposition is well known to be an optimal solution to the
following formula (Golub and Van Loan, 1996):

min
S(1),S(2),�

‖Ã − S(1)�S(2)‖2
F , s.t. (S(1))T S(1) = Ik, (S(2))T S(2) = Ik, (4.10)

where S(1) and S(2) act as the soft community indicators in corresponding modes. Based on the
same criterion, we can generalize the formula to handle a multi-mode network. For simplicity, let us
consider a special case where the multi-mode network is a star structure as in Figure 4.7. As we will
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Figure 4.7: A Star Structure Concerning Mode 1

show later, a more general multi-mode network can be decomposed into multiple star-structures
with respect to each mode.

Suppose there are p modes, with mode 1 interacting with the other p − 1 modes. Let the
interaction between mode 1 and mode q as A(q). Thus, we can minimize the overall block model
approximation error:

min
p∑

q=2

‖Ã(q) − S(1)�(q)(S(q))T ‖2
F , (4.11)

s.t. (S(1))T S(1) = Ik, (S(q))T S(q) = Ik, q = 2, · · · , p. (4.12)

In the formula, Ã(q) denotes the interaction between mode 1 and mode q, S(q) the soft community
indicator of mode q, and �(q) can be roughly considered as the inter-block density of Ã(q). It can
be shown that when {S(q)|q = 2, · · · , k} are fixed, S(1) can be computed as the left singular vectors
of the following matrix (Long et al., 2006; Tang et al., 2008):

X =
[
Ã(2)V (2), Ã(3)V (3), · · · , Ã(p)V (p)

]
. (4.13)

Or equivalently, the eigenvectors of the matrix M = XXT . The matrix X can be considered as
feature representation extracted from related modes, and M is the similarity matrix of nodes in
mode 1. Thus, if within-mode interaction (denoted as A(1)) is also available, we can simply add the
normalized within-mode interaction Ã(1) to M , i.e., M = XXT + Ã(1).

As for a general multi-mode network, we can compute the soft community indicator of each
mode one by one. If we look at one mode versus other modes, it is essentially a star structure.
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Given the soft community indicators of its related modes, the soft community of one mode can be
updated using SVD as we described in Eq. (4.13). In sum, in order to find communities at each
mode, we first normalize all the interaction matrix in a multi-mode network following Eq. (4.9).
Then, we iteratively update communities at each mode following iterative SVD. After we obtain
soft community indicators for each mode, k-means can be applied to find a disjoint partition.

The algorithm we presented here for community detection in multi-mode networks is some-
how simplified. Many extensions can be added such as assigning different weights to between-mode
interactions and a varying number of communities in different modes. Interesting readers can refer
to (Tang et al., forthcoming) for further readings.
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C H A P T E R 5

Social Media Mining
In previous chapters, we have discussed various approaches to community detection in social media.
But after we obtain communities, what can we do with the extracted communities? In this chapter,
we discuss two applications of social media mining. One is to study community evolution patterns
in social media, and the other is to leverage social media networks to predict user behaviors.

5.1 EVOLUTION PATTERNS IN SOCIAL MEDIA

In social media, networks are highly dynamic. Each day, new members might join a network and
new connections are established. Some existing members might become dormant as well.This yields
a highly dynamic network. Kumar et al. (2005) show that some statistics such as degrees, the size
of maximum connected component, and the number of communities observe a significant change
around 2001 in the blogosphere. Some social media sites also observe a tremendous growth in recent
years, e.g., the number of active users in Facebook grows from 1 million in 2004 to 500 million
in 2010 as shown in Figure 5.1. Such a tremendous growth of networks provides unprecedented
opportunities to study network dynamics.

Figure 5.1: Growth of Active Users on Facebook

One fundamental question to understand network dynamics is how new connections are cre-
ated in a dynamic network. How do network statistics change such as the size of the giant connected
component, the diameter of a network, or the density of connections? The recent availability of many
grand-size dynamic networks in social media allows researchers to investigate properties in evolving
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networks for new insights. Kossinets and Watts (2006) investigate email communications of stu-
dents in a university over time, and they discover that the probability of a new connection between
two nodes is disproportionate to their social distance.This phenomenon of decreasing probability of
new connections between two nodes with increasing distance between them, is also confirmed later
in (Leskovec et al., 2008). A large portion of new connections occur in a form of triadic closures.That
is, two actors are likely to become friends when they share common friends. Kumar et al. (2006), by
studying Flickr network comprising of 1 million nodes and 8 million directed edges spanning from
Flickr’s public launch in 2004 to 2006, and another social networking site Yahoo! 360 (now stopped),
observe a segmentation of the networks into three regions: singletons who do not participate in the
network, isolated communities which overwhelmingly display star structure, and a giant component
anchored by a well-connected core region which persists even in the absence of stars. Leskovec et al.
(2007a) study a wide range of graphs and find out that 1) most networks become more and more
dense with new nodes arrival, and 2) the average distance between nodes shrinks over time.

With the growth of networks, communities can also expand, shrink, or dissolve. As argued
by Kumar et al. (2005), communities in social media, in particular blogspace at that moment, are
different from conventional web communities. “Within a community of interacting bloggers, a given
topic may become the subject of intense debate for a period of time, then fade away. These bursts of
activity are typified by heightened hyperlinking amongst the blogs involved — within a time interval.”
By studying the explicit group subscription of users in a popular blogging site LiveJournal1, and the
co-authorship network from DBLP2, Backstrom et al. (2006) unravel the structural feature that is
most important in determining whether a user joins a group. It is the number of friends that are
already in the group affecting most in guiding an actor to join a group. Latent communities resulting
from noisy network interactions are to evolve as well, which adds a new temporal dimension to the
problem of community detection. We now discuss issues of finding community evolution in dynamic
networks

5.1.1 A NAIVE APPROACH TO STUDYING COMMUNITY EVOLUTION
In order to discover community evolution, one simple approach is to take a series of snapshots of
a network, and apply a community detection method (refer to Chapter 3) to each snapshot. Since
clustering is applied independently in each snapshot, it is called an independent clustering approach.By
comparing communities across time, different events concerning groups can be defined.These events
include growth, contraction, merging, splitting, birth, and death as shown in Figure 5.2 (Palla et al.,
2007).

A general process to analyze community evolution (Asur et al., 2007) is presented in Fig-
ure 5.3. Given a sequence of network snapshots, we can conduct community detection at each
individual snapshot. Then, event detection or other behavioral analysis can be conducted in order
to mine the evolution patterns of communities. As indicated by the general process, community

1http://www.livejournal.com/
2http://www.informatik.uni-trier.de/˜ley/db/

http://www.livejournal.com/
http://www.informatik.uni-trier.de/~ley/db/
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Contraction
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t t + 1

t t + 1

t t + 1

t t + 1
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Figure 5.2: Events in Community Evolution (based on (Palla et al., 2007))

Figure 5.3: Mining Community Evolution in Dynamic Networks
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Figure 5.4: Three Consecutive Network Snapshots

detection can be applied to each snapshot to find out latent community structures. Such a scheme
has been applied in (Hopcroft et al., 2004; Kumar et al., 2005; Palla et al., 2007; Asur et al., 2007).

Most community detection methods, however, suffer from local optima. A minute change
of network connection, algorithm initialization, or the processing order of nodes might lead to
a dramatically different community structure. For example, Hopcroft et al. (2003) show that the
community structure based on hierarchical agglomerative clustering can change sharply with the
removal of one single edge in a network. Some extracted communities are fairly random. With a
community detection method that is unstable or has multiple local optimal solutions, it is difficult to
conclude whether there is a community evolution between consecutive timestamps. It could simply
be the randomness inherited in the chosen algorithm that causes the structural change.

For example, given three consecutive network snapshots in Figure 5.4, if we apply spectral
clustering to each network snapshot to find two communities, we obtain the following community
structures H(1), H(2) and H(3) at T1, T2 and T3, respectively.

H(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H (3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Based on the derived community partition, it seems that at time T2, there is a sharp change. Nodes
{5, 6, 7, 8} are merged into the community of {1, 2, 3, 4}. While at time T3, it seems the structure is
changed again. Nodes {4, 5, 6, 7, 8} are merged with node 9 and separated from nodes {1, 2, 3}.This
shows a potential drawback of independent clustering: it can suggest spurious structural changes.

Hence, if clustering is applied to each snapshot independently, a robust method has to be
used in order to derive meaningful evolution patterns. Palla et al. (2007), for instance, adopt a clique
percolation method (Palla et al., 2005) to find communities in each snapshot. The clique percola-
tion method outputs a unique community structure given a network and pre-specified parameters.
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Hopcroft et al. (2004) resort to natural communities. They are defined as a set of nodes that are often
grouped together across multiple runs of a clustering algorithm on a network with a small portion
of connections randomly removed. These natural communities are more robust with respect to a
random change in networks or clustering algorithms. In sum, a robust clustering method should be
adopted. Otherwise, the discovered evolution pattern could be misleading.

5.1.2 COMMUNITY EVOLUTION IN SMOOTHLY EVOLVING NETWORKS
Another approach to find latent community structure at each snapshot is evolutionary cluster-
ing (Chakrabarti et al., 2006). Evolutionary clustering hinges on the assumption of temporal smooth-
ness, i.e., the community structure does not change abruptly between consecutive timestamps. This
temporal smoothness can be exploited to overcome the randomness introduced by network noise or
community detection methods.

By contrast, evolutionary clustering aims to find a smooth sequence of communities given a
series of network snapshots. The overall objective function of evolutionary clustering can be de-
composed into snapshot cost (denoted as CS) and temporal cost (denoted as CT) (Chi et al., 2007):

Cost = α · CS + (1 − α) · CT . (5.1)

The snapshot cost measures the quality of a clustering result with respect to a network snapshot, and
the temporal cost calibrates the goodness-of-fit of the current clustering result with respect to either
historic data or historic clustering results. Evolutionary clustering aims to minimize the overall cost.

Here, we use spectral clustering as a vehicle to illustrate instantiations of evolutionary cluster-
ing. For presentation convenience, we use St to denote the community indicator at timestamp t , and
Lt the graph Laplacian at time t . Given a network snapshot A(t), the snapshot cost of a community
partition according to spectral clustering (as discussed in Section 3.3.4) should be

CSt = T r(ST
t LtSt ), s.t. ST

t St = Ik. (5.2)

where Lt = I − D
− 1

2
t A(t)D

− 1
2

t is the normalized graph Laplacian for network snapshot A(t), and k

is the number of communities.
The next task is to define a proper criterion for temporal cost.The temporal cost can be defined

as the difference of current community membership and previous timestamp. Intuitively, one may
define the temporal cost as

CTt = ‖St − St−1‖2. (5.3)

However, it can be shown that the optimal solution of spectral clustering is not unique. With an
orthogonal transformation applied to a solution S, we may obtain another equivalently valid solution.
Given an orthogonal matrix Q ∈ Rk×k such that QT Q = QQT = Ik , let S̃ = SQ. It follows that

T r(S̃T LS̃) = T r(QT ST LSQ) = T r(ST LSQQT ) = T r(ST LS).
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Consequently, a solution to the spectral clustering is not unique. Any orthogonal transformation
multiplied by the solution is also an equivalent solution.A larger value in Eq. (5.3) does not necessarily
indicate a bigger difference between St and St−1.Alternatively, the difference between the two matrix
can be defined as

CTt = 1

2
‖StS

T
t − St−1S

T
t−1‖2. (5.4)

Here, 1/2 is added for derivation convenience. It can be shown (Chi et al., 2007) that

Costt = T r
[
ST

t L̃tSt

]
with

L̃t = I − α · D
−1/2
t A(t)D

−1/2
t − (1 − α) · St−1S

T
t−1. (5.5)

Hence, the optimal solution St corresponds to the top minimal eigenvectors (excluding the first one)
of a modified graph Laplacian defined in Eq. (5.5).

Consider the example in Figure 5.4. The optimal S1 based on spectral clustering is listed
below:

S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 −0.44
0.27 −0.43
0.33 −0.44
0.38 −0.16
0.38 0.24
0.38 0.24
0.38 0.38
0.33 0.30
0.19 0.23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let α = 0.7. Hence, the modified Laplacian for time T2 is computed as

L̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.91 −0.42 −0.33 −0.21 −0.01 −0.01 0.01 0.01 0.01
−0.42 0.92 −0.08 −0.27 0.00 0.00 0.02 0.01 0.01
−0.33 −0.08 0.91 −0.22 −0.25 −0.01 0.01 0.01 0.01
−0.21 −0.27 −0.22 0.95 −0.18 −0.24 −0.02 −0.02 −0.01
−0.01 0.00 −0.25 −0.18 0.94 −0.06 −0.37 −0.06 −0.04
−0.01 0.00 −0.01 −0.24 −0.06 0.94 −0.07 −0.45 −0.04

0.01 0.02 0.01 −0.02 −0.37 −0.07 0.91 −0.44 −0.05
0.01 0.01 0.01 −0.02 −0.06 −0.45 −0.44 0.94 −0.04
0.01 0.01 0.01 −0.01 −0.04 −0.04 −0.05 −0.04 0.97

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With this modified graph Laplacian, we can partition nodes into two communities at snapshot
T2: {1, 2, 3, 4}, and {5, 6, 7, 8, 9} following standard spectral clustering. Though node 9 becomes
isolated at T2, evolutionary clustering considers this more like a noise and assigns node 9 to be in
the same community as nodes {5, 6, 7, 8}.
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Another way to define temporal cost is to enforce current community membership match
with the network of previous timestamp. If the community evolution is smooth, then the clustering
result derived from current timestamp t should work well for the network snapshot at timestamp
t − 1 as well. Thus, the temporal cost can be approximated by

CTt = T r(ST
t Lt−1St ) (5.6)

Combining the snapshot cost in Eq. (5.2) and the temporal cost in Eq. (5.6), we have the following
cost at timestamp t :

Costt = α · CSt + (1 − α)] · CTt

= α · T r[ST
t LtSt ] + (1 − α) · T r[ST

t Lt−1St ]
= T r

[
ST

t (α · Lt + (1 − α) · Lt−1)St

]
= T r

[
ST

t L̃tSt

]
with

L̃t = α · Lt + (1 − α) · Lt−1 = I − α · D
−1/2
t A(t)D

−1/2
t − (1 − α) · D

−1/2
t−1 A(t−1)D

−1/2
t−1 (5.7)

Clearly, rather than optimizing the community structure with respect to the graph Laplacian Lt , now
we optimize with respect to a modified Laplacian defined in Eq. (5.7), It is a weighted combination
of Lt and Lt−1. This combination can be considered as a smoothing effect of graph Laplacian
between consecutive timestamps.

Let us revisit the example in Figure 5.4. The graph Laplacians for T1 and T2 are:

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.41 −0.33 −0.29 0 0 0 0 0
−0.41 1.00 −0.41 0 0 0 0 0 0
−0.33 −0.41 1.00 −0.29 0 0 0 0 0
−0.29 0 −0.29 1.00 −0.25 −0.25 0 0 0

0 0 0 −0.25 1.00 −0.25 −0.25 −0.29 0
0 0 0 −0.25 −0.25 1.00 −0.25 −0.29 0
0 0 0 0 −0.25 −0.25 1.00 −0.29 −0.50
0 0 0 0 −0.29 −0.29 −0.29 1.00 0
0 0 0 0 0 0 −0.50 0 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.41 −0.33 −0.26 0 0 0 0 0
−0.41 1.00 0 −0.32 0 0 0 0 0
−0.33 0 1.00 −0.26 −0.33 0 0 0 0
−0.26 −0.32 −0.26 1.00 −0.26 −0.32 0 0 0

0 0 −0.33 −0.26 1.00 0 −0.41 0 0
0 0 0 −0.32 0 1.00 0 −0.50 0
0 0 0 0 −0.41 0 1.00 −0.50 0
0 0 0 0 0 −0.50 −0.50 1.00 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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If we set α = 0.7. we have the following smoothed graph Laplacian for time T2.

L̃2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −0.41 −0.33 −0.27 0 0 0 0 0
−0.41 1.00 −0.12 −0.22 0 0 0 0 0
−0.33 −0.12 1.00 −0.27 −0.23 0 0 0 0
−0.27 −0.22 −0.27 1.00 −0.25 −0.30 0 0 0

0 0 −0.23 −0.26 1.00 −0.08 −0.36 −0.09 0
0 0 0 −0.30 −0.08 1.00 −0.08 −0.44 0
0 0 0 0 −0.36 −0.08 1.00 −0.44 −0.15
0 0 0 0 −0.09 −0.44 −0.44 1.00 0
0 0 0 0 0 0 −0.15 0 0.30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Based on this graph Laplacian, we can follow standard spectral clustering as we discussed in Sec-
tion 3.3.4 to find two communities {1, 2, 3, 4} and {5, 6, 7, 8, 9}.

In summary, for evolutionary spectral clustering, we modify the graph Laplacian by incorpo-
rating the information from clustering results (Eq. (5.5) in the previous timestamp, or the network
snapshot (Eq. (5.7)). A similar evolutionary clustering scheme has been instantiated with different
community detection methods, including latent space models (Sarkar and Moore, 2005), proba-
bilistic soft clustering (Lin et al., 2009), block model approximation (Yang et al., 2009), graph color-
ing (Tantipathananandh et al., 2007), and a particle-and-density method (Kim and Han, 2009). In
reality, the number of communities can change as new nodes and connections might be added. How-
ever, evolutionary clustering assumes the number of communities remains unchanged. It requires
additional effort to handle these cases.

5.1.3 SEGMENT-BASED CLUSTERING WITH EVOLVING NETWORKS
While independent clustering at each network snapshot may output specious evolution patterns, the
evolutionary clustering, by taking temporal information of networks, enforces smoothness between
detected communities at consecutive timestamps. This assumption, however, could result in the
failure of capturing drastic changes due to external events. Hence, one needs to balance between
gradual change under normal circumstances and drastic changes caused by major events.

Another assumption that has been employed is that the community structure remains un-
changed in a segment of time. Suppose a sequence of p network snapshots, {A(1), · · · , A(p)}, we can
cut it into several segments, say {A(1, · · · , A(q1)} is one segment, A(q1+1), A(q2+2), · · · , A(q2)} is an-
other segment, and so on. In each network segment, the community structure remains a constant. Be-
tween two consecutive segments, there is a time point signaling the change. GraphScope (Sun et al.,
2007) is such a graph clustering algorithm for segment-based community detection. Essentially, if
the network connections do not change much over time, consecutive network snapshots should have
the same community structure, thus should be grouped together into one segment. Whenever a new
network snapshot does not fit into an existing segment (say, the community structure of current
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Enron timeline

Nov 1999:Enron launched
Feb 2001: Jeffrey Skilling takes over as CEO
June 2001: Rove divests his stocks in energy

14 Aug 2001: Kenneth Lay takes over as CEO
19 Nov 2001: Enron restates 3rd quarter earnings

10 Jan 2002: DOJ confirms criminal investigation begun
23 Jan 2002: Kenneth Lay resigns from CEO
23 Jan 2002: FBI begins investigation of document shredding
30 Jan 2002: Enron names Stephen F. Cooper new CEO
4 Feb 2002: Lay implicated in plot to inflate profits and hide losses
24 apr 2002: House passes accounting reform package

29 Nov 2001: Dynegy deal collapses

Figure 5.5: Change Points in Enron Email Communication (based on (Sun et al., 2007))

segment induces a high cost on this new snapshot), GraphScope introduces a change point and
starts a new segment.

Within one network segment (i.e., multiple consecutive network snapshots), the community
partition does not change. A cost function can be defined given a network segment and its partition
assignment. GraphScope (Sun et al., 2007), for example, defines the cost as the minimum number
of bits in order to compress the network interaction and transmit the information hidden in the
partition of a segment. Whenever a new network snapshot arrives, it computes the cost of adding the
new snapshot to the old segment, as well as the cost of treating the snapshot as a new segment. If the
former cost is lower, then the new snapshot is combined with the old segment and its corresponding
community partition is updated; otherwise, a new segment should start, indicating a change point.
Figure 5.5 shows those change points found by GraphScope on the Enron email communication
network. The X-axis denotes time, each week from January 1999 to July 2002. The Y-axis shows the
cost saving of starting a new segment compared with that of incorporating the network snapshot
into current segment. A large cost indicates a change point. It is observed that most of the change
points coincides with some significant external events.
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Identifying community evolution is still a fledgling field. All the methods discussed so far in
Section 5.1 require an input of a series of network snapshots. But in reality, a dynamic network is
presented in a stream of pairwise interactions. Sometimes, it is not clear what should be a proper time
interval to construct network snapshots. It can be tricky to break down a stream of interactions into
different snapshots. Distinctive patterns might be found with varying time scales. Novel algorithms
are to be developed to discover evolving communities in a network stream.

5.2 CLASSIFICATION WITH NETWORK DATA

In a network environment, individual behaviors are often correlated. For example, if one’s friends buy
something, there is a better-than-average chance that she will buy it, too. Such correlation between
user behaviors can be attributed to both influence and homophily as discussed in Chapter 2. When an
individual is exposed to a social environment, their behavior or decisions are likely to be influenced
by each other. This influence naturally leads to correlation between connected users. Since we tend
to link up with one another in ways that confirm rather than test our core beliefs, we are more
likely to connect to others sharing certain similarities. Consequently, connected users demonstrate
correlations in terms of behavior.

An intriguing question is whether one can leverage extant correlations in social media networks
to infer user behavior. Take social networking advertising as an example. A common approach to
targeted marketing in the past is to build a model mapping from user profiles (e.g., geography
location, education level, gender) or user online activities (e.g., search queries, clicked web pages)
to ads categories. Since social media often comes with a friendship network between users and
their daily interactions, how can we exploit this rich interaction information to infer the ads that
might attract a user? Or more generally, how to integrate both user attribute information with their
interaction information together for more effective targeting?

These problems can be formulated as a classification task with network data. In particular, the
problem of learning with network data can be stated as follows:

Given a social network with behavior information of some actors, and individual attributes
if possible, how can we infer the behavior outcome of the remaining ones within the same
network?

Typically, the behavior information can be represented as a label, e.g., whether a user clicks on an ad,
whether he would like to join a group of interest, etc. Figure 5.6 shows one example of classification
with network data. In the network, four nodes are provided with label information. Nodes 6 and 7
are labeled as positive, while nodes 1 and 2 as negative. Each node could have additional information
such as profile attributes. The goal is to predict labels for other five nodes within the same network.

Classification with network data is also known as within-network classification, graph-based
classification, or a special case of relational learning. Of course, such a classification problem is not
confined to only social media networks. Other instantiations include classification based on tradi-
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Figure 5.6: An Example for Classification with Network Data

tional web with hyperlink information, email communication networks, and mobile call networks
as well.

5.2.1 COLLECTIVE CLASSIFICATION
When data instances are presented in a network form, the samples are not independently and
identically distributed (i.i.d.). Their class labels tend to be interdependent on each other. Therefore,
collective classification (Sen et al., 2008) is proposed to take into account this autocorrelation present
in labels of adjacent nodes. Let variable yi denote the label of node vi . And yi = 1 if node vi is
positive, and yi = 0 if negative. A commonly used Markov assumption is that the label of one node
depends on the labels (and attributes) of its neighbors. Specifically,

p(yi |A) = p(yi |Ni)

Here, A is the network, and Ni denotes the neighborhood of node vi . For example, in the network
in Figure 5.6, in order to determine the label for node 5, we only need to collect information about
nodes 4, 6, 7, and 8.

In order to address the classification task with network data, we typically need three compo-
nents (Macskassy and Provost, 2007): a local classifier, a relational classifier and collective inference. A
general collective classification process can be decomposed into the following steps:

1. Build a local classifier to predict labels based on node attributes. Local classifiers are models to
map from one node’s attributes to the label of the node. Local classifiers do not employ any
network information. It only considers the attribute information of nodes in a conventional
sense of classification. Hence, conventional classifiers such as naïve Bayes classifiers, logistic
regression and support vector machines (Tan et al., 2005) can be used. This local classifier can
generate priors that comprise the initial state for subsequent learning and inference.

2. Take the prediction of local classifier as initial label assignment, build a relational classifier based
on labeled nodes and their neighboring labels. A relational classifier makes use of connections
as well as the values of the attributes of related entities. This relational classifier typically takes
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the labels (and attributes) of one’s neighboring nodes as input. If no attributes are available,
then only the labels of one node’s neighbors are taken as input. For instance, we may take the
percentage of positive and negative nodes in neighborhood as feature input to build a relational
classifier.

3. Perform collective inference by applying the relational classifier to nodes in the network itera-
tively. Collective inference determines the labels of all nodes in one network as a whole, rather
than independently predicting the label of each node. It aims to find an assignment of labels
such that the inconsistency between neighboring nodes are minimized. It iteratively updates
the label (a.k.a. iterative classification) or class membership probability (a.k.a. relaxation label-
ing) of one node given its neighbors by applying the constructed relational classifier in Step
2.

One recommended approach to handle classification with network data is weighted
vote relational neighborhood (wvRN) classifier in conjunction with relaxation label-
ing (Macskassy and Provost, 2007). Take Figure 5.6 as an example. Suppose we only have access to
the network connectivity information between nodes and to four labeled nodes as indicated in the
figure. Since there is no information about node attributes, no local classifier is constructed. Instead,
we build a relational classifier directly. The wvRN classifier builds a model as follows:

p(yi = 1|Ni) = 1∑
vj ∈Ni

Aij

∑
vj ∈Ni

Aij · p(yj = 1|Nj)

= 1

|Ni |
∑

vj ∈Ni

p(yj = 1|Nj). (5.8)

It is simply the weighted average of the class memberships of neighboring nodes. Clearly, such a
classifier does not require any learning during training.

As for prediction, collective inference is exploited to take into account the interdependency
between the labels of neighboring nodes. As for the example in Figure 5.6, let’s initiate all the
unlabeled nodes with p(yi = 1|Ni) = 0.53. Then we can iteratively update the class membership of
each node by applying the aforementioned wvRN classifier. Suppose we update the class membership
of unlabeled nodes following their node identifications, i.e.,update nodes following the order 3,4,5,8,
and 9. For node 3, it has three friends (nodes 1, 2 and 4), with p(y1 = 1|N1) = 0,p(y2 = 1|N2) = 0,
p(y4 = 1|N4) = 0.5. Hence, its class membership is updated as

p(y3 = 1|N3) = 1

3
(0 + 0 + 0.5) = 0.17.

3This probability can be established by a local classifier in Step 1 of collective classification.
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In a similar vein, we can compute nodes 4 and 5’ class memberships as follows:

p(y4 = 1|N4) = 1

4
{p(y1 = 1|N1) + p(y3 = 1|N3) + p(y5 = 1|N5) + p(y6 = 1|N6)}

= 1

4
(0 + 0.17 + 0.5 + 1) = 0.42.

p(y5 = 1|N5) = 1

4
{p(y4 = 1|N4) + p(y6 = 1|N6) + p(y7 = 1|N7) + p(y8 = 1|N8)}

= 1

4
(0.42 + 1 + 1 + 0.5) = 0.73.

Hence, the class membership of each node is updated one by one. If p(t) denotes the class member-
ships at iteration t , it follows that

p(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0.17
0.42
0.73

1
1

0.91
1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, p(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0.14
0.47
0.85

1
1

0.95
1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, p(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0.16
0.50
0.86

1
1

0.95
1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, p(4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0.17
0.51
0.87

1
1

0.96
1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, p(5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0.17
0.51
0.87

1
1

0.96
1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, after 5 iterations, the class membership stabilizes. As can be seen from this simple example,
it requires multiple scans of the whole network to reach convergence for collective inference. Of
course, other heuristics can be used to expedite the process, such as shuffling the processing order
of nodes at each interaction.

Roughly speaking, the label of one node is determined the distance of the node to other labeled
nodes. For instance, node 5 is closer to positive nodes 6 and 7. That is why node 5 has a higher
probability of belonging to class +, indicated by p(y5 = 1|N5) = 0.87 in p(5).By contrast,node 4 lies
in the middle between both positive and negative nodes. Hence, it does not show a strong inclination
toward either class, as indicated by p(y4 = 1|N4) = 0.51. This simple wvRN classifier is highly
related to a graph-based semi-supervised learning method following the Gaussian field (Zhu et al.,
2003). Alternatively, the collective inference process can be considered as an approximation to label
propagation, i.e., labeled nodes propagate their labels to their friends, and then friends of friends,
and so on.

5.2.2 COMMUNITY-BASED LEARNING
Connections in social media are often inhomogeneous.The heterogeneity present in network connec-
tions can hinder the success of collective inference. People can connect to their relatives, colleagues,
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Figure 5.7: An example of a user’s contacts in Facebook, involving three different relations: friends met
at ASU, undergraduate classmates at Fudan University, and some high school friends at Sanzhong.

college classmates, or some buddies met online. These relations play different roles in helping de-
termine targeted behaviors. For instance, the Facebook contacts of the first author can be seen in
three key groups, as shown in Figure 5.7: friends at Arizona State University (ASU), undergradu-
ate classmates at Fudan University, and some high-school friends in Sanzhong. For example, it is
reasonable to infer that his friends at ASU are presumably interested to know if Lei is watching
an ASU football game, while his other friends at Fudan and Sanzhong are probably indifferent to
his excitement4. In other words, users can be involved in different relations, or a social network
can consist of heterogeneous relations. Therefore, it is not appropriate to directly apply collective
inference to this kind of networks as it does not differentiate these heterogeneous relations. It is
recommended to differentiate relations for collective classification.

However, detailed relation information is not readily available. Though some sites like
LinkedIn and Facebook do ask people how they know each other when they become connected,
most of the time, people decline, or simply are too lazy to share such specific information, resulting in
a social network among users without explicit information about pairwise relations. Differentiating
pairwise relations based on network connectivity alone is by no means an easy task.

Alternatively, we can look at social dimensions (Tang and Liu, 2009b) of actors. Social dimen-
sions are latent dimensions defined by social connections. It is introduced to represent latent relations

4People in China mainly follow soccer matches.
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Table 5.1: Social Dimensions
Actors ASU Fudan Sanzhong
Lei 1 1 1

Actor1 1 0 0
...

...
...

. . .

associated with actors, with each dimension denoting one relation. Suppose two actors ai and aj

are connected because of relationship R, both ai and aj should have a non-zero entry in the social
dimension which represents R. Let us revisit the Facebook example. The relations between Lei
and his friends can be characterized by three affiliations: Arizona State University (ASU), Fudan
University (Fudan), and a high school (Sanzhong). The corresponding social dimensions of actors
are shown in Table 5.1. In the table, if one actor belongs to one affiliation, then the corresponding
entry is non-zero. Since Lei is a student at ASU, his social dimension includes a non-zero entry for
the ASU dimension.

Social dimensions capture prominent interaction patterns presented in a network. Note that
one actor is very likely to be involved in multiple different social dimensions (e.g., Lei engages in
three different relations in the example). This is consistent with the multi-facet nature of human
social life which states that one is likely to be involved in distinctive relations with different people.

The social dimensions shown in Table 5.1 are constructed based on explicit relation informa-
tion. In reality, without knowing the true relationship, how can we extract social dimensions? One
key observation is that actors of the same relation tend to connect to each other as well. For instance,
most of Lei’s friends at ASU are themselves friends as well. Hence, to infer a social dimension, we
first find out a group of people who interact with each other more frequently than random. This
boils down to a classical community detection problem. A requirement is that one actor is allowed to
be assigned to multiple communities. We can resort to soft clustering or methods finding overlapping
communities to extract social dimensions.

After we extract the social dimensions, we consider them as normal features and combine
them with the behavioral information for supervised learning to construct a classifier.This supervised
learning is critical as it will determine which dimensions are relevant to a target behavior and assign
proper weights to different social dimensions. In summary, this social-dimension based learning
framework (SocioDim) (Tang and Liu, 2010a) consists of three steps:

1. Extract meaningful social dimensions based on network connectivity via community detection.

2. Determine relevant social dimensions (plus node attributes) through supervised learning.

3. Apply the constructed model in Step 2 to the social dimensions of actors without behavioral
information, to obtain behavior predictions.

This SocioDim framework basically assumes that an actor’s community membership deter-
mines his behavior.This can be visualized more clearly using an example in Figure 5.8.The circles in
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Figure 5.8: A Collective Behavior Model for the SocioDim framework (based on (Tang and Liu,2010a))

orange denote individuals, the green rectangles affiliations and the red blocks at the bottom behav-
iors. Individuals are associated with different affiliations in varying degrees and distinctive affiliations
regulate the member behavior differently. For instance, in the green blocks, Catholic Church opposes
smoking and abortion while Democratic Party supports abortion. Note that some affiliations might
have no influence over certain behavior such as the blocks of the Democratic Party and Republican
Party over smoking.The final output of individual behavior depends on the affiliation regularization
and individual associations. The first step of our proposed SocioDim framework essentially finds
out the individual associations and the second step learns the affiliation regularization by assigning
weights to different affiliations.

Such a SocioDim learning strategy can be applied to the network in Figure 5.6. We can
use community detection methods discussed in Chapter 3 to extract heterogeneous relations in a
network. Since one is likely to involve in multiple relations, we resort to soft clustering or methods
finding overlapping communities. The soft community indicator is obtained by spectral clustering
with normalized graph Laplacian:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.33 −0.44
0.27 −0.43
0.33 −0.44
0.38 −0.16
0.38 0.24
0.38 0.24
0.38 0.38
0.33 0.30
0.19 0.23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By treating the above soft community indicator as features for each node, we can construct con-
ventional attribute data as in Table 5.2. Based on the community membership (S1 and S2), we can
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Table 5.2: Communities are Features
Node S1 S2 Label Pred. Score Pred.

1 0.33 -0.44 −
2 0.27 -0.43 −
3 0.33 -0.44 ? -0.53 -
4 0.38 -0.16 ? -0.13 -
5 0.38 0.24 ? 0.42 +
6 0.38 0.24 +
7 0.38 0.38 +
8 0.33 0.30 ? 0.50 +
9 0.19 0.23 ? 0.38 +

construct a classifier such as logistic regression, support vectors machines, decision trees, and many
more. A support vector machine can be learned from labeled data, resulting in the following decision
function:

y = sign(0.16S1 + 1.39S2 + 0.03).

Applying the classifier to the remaining unlabeled nodes, we have prediction scores and correspond-
ing predictions as in the table.

While such a soft clustering scheme leads to an accurate prediction, it might require extensive
memory to hold the community membership. The soft community indicator is a full matrix. When
a network scales to millions of nodes, the memory footprint of holding the social dimensions alone
becomes unbearable. By contrast, overlapping communities might be able to induce sparse repre-
sentations. For the example, we can find two overlapping communities {1, 2, 3, 4} and {4, 5, 6, 7, 8}
via the clique percolation method (CPM) (Section 3.1.1). Then its community membership repre-
sentation would be sparse as follows:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 1
0 1
0 1
0 1
0 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With a sparse representation, the subsequent learning could be accomplished efficiently. However,
finding overlapping communities is not a simple task. The CPM method is computational costly.
Recently, new techniques to find overlapping communities such as EdgeCluster (Tang and Liu,
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Table 5.3: Collective Classification vs. Community-Based Learning
Collective Classification SocioDim

Computational cost for training low high
Computational cost for prediction high low
Handling heterogeneous relations �
Handling evolving networks �
Integrating network information and
node attributes

� �

2009a) and MROC (Tang et al., 2010) were developed to handle large-scale networks of millions
of nodes for classification.

5.2.3 SUMMARY
Collective classification and community-based learning are two very different schemes for classifi-
cation. Collective classification relies on collective inference to handle the interdependency between
connected nodes. It is typically very fast during the training phase, e.g., the wvRN classifier does
not require any learning during training. However, the prediction phase can be time-consuming
because we need to iteratively update the class or class membership probability for each node. Most
collective classification algorithms can be easily adapted to handle an evolving network.

Community-based learning, however, focuses on extracting social dimensions before super-
vised learning. The computational cost of extracting communities could be expensive, but the pre-
diction using social dimensions is very fast as no collective inference is necessary. Since SocioDim
can differentiate connections in a network, thus it typically outperforms collective classification
when a network presents heterogeneous relations. However, there is no natural efficient solution for
SocioDim to handle an evolving network. Their strengths and weaknesses are shown in Table 5.3.

As mentioned earlier, one may need to integrate network information and node attributes
for learning. Collective classification embeds this integration in its relational classifier construction
and collective inference while SocioDim separates these two types of information. Communities
are extracted from a network and treated as features of nodes, which can be combined with other
features (e.g., attribute values) for learning.

Community detection and mining in social media is an exciting and vibrant area with many
open research questions. The journey of searching for solutions is full of challenges and uncertainty.
We hope this lecture will help make the journey less circuitous and more enjoyable.
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A P P E N D I X A

Data Collection
The first step in many social computing tasks is to collect data. Network data collection in social
media is radically different from that in traditional social sciences. Traditional social sciences use
surveys and involve subjects in the data collection process.The subject are asked to answer questions
about their friends and other related information. A network is then constructed conditioned on
the responses. Limited by this process, data collected is of small sizes, typically dozens or hundreds
of subjects in one study. By contrast, hundreds and thousands of users of social media produce
inordinate amounts of data with rich user interactions, but few of them would be interested to
answer any survey questionnaires. Thus, a different approach is needed.

From a social media host’s viewpoint, it is straightforward to collect network information.
Every piece of data can be stored in databases. The host can query the databases to obtain desired
network information. Under some circumstances, researchers may be able to access to the data with
an agreement of use. For example, all the participants of the first Netflix prize competition could
access the user-movie rating data. Some benchmark network data may also be accessible for research
purposes, e.g., http://snap.stanford.edu/data/index.html.

More often than not, a researcher may have to resort to Web crawling to collect network
data. There are two common approaches: 1) crawling using site provided APIs, or 2) scraping
needed information from rendered html pages. Many social media sites provide APIs, e.g.,Twitter1,
Facebook2, YouTube3, Flickr4, Digg5, etc. Normally, APIs are faster in response to html requests,
and the results are provided in a site-specific (semi) structured format. However, restrictions are
imposed. Some sites return only the top-k results. One can obtain at most 100 friends per actor
through Twitter API. To avoid being overwhelmed by the requests from an IP address, most sites
also cap the number of requests from the same crawler token or the same IP address in some time
period (say, 100 requests per hour or per day). Twitter allows for 150 requests per hour, for instance.
However, if one is registered in Twitter’s whitelist, he is allowed to send 20, 000 requests per hour
per IP.

One could also parse the available html pages of each user and extract desired information.
One can scrutinize the profile pages of users and analyze the templates of html pages to extract
related information like friends, location, birthday, etc. Hence, an html parser needs to be developed
and customized for each site. It can get most information a user shares online, but requires laborious
1http://apiwiki.twitter.com/
2http://developers.facebook.com/
3http://code.google.com/apis/youtube/overview.html
4http://www.flickr.com/services/api/
5http://digg.com/api/docs/overview

http://snap.stanford.edu/data/index.html
http://apiwiki.twitter.com/
http://developers.facebook.com/
http://code.google.com/apis/youtube/overview.html
http://www.flickr.com/services/api/
http://digg.com/api/docs/overview
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efforts like parser designing than the crawling using APIs. Parsing html pages is also typically slower
than using site provided APIs.

Figure A.1: Snowball Sampling. Blue nodes are the seeds, red and green ones are the nodes in the first
and second waves, respectively.

In order to obtain the network data, a standard approach is snowball sampling (Goodman,
1961). It is originally proposed in social sciences to reach those hidden populations that are normally
difficult to reach by random sampling, such as drug users, sex workers, and unregulated workers.
Snowball sampling allows the sampled individuals to provide information about their contacts. In
social media, a similar procedure can be adopted. Figure A.1 shows the idea of snowball sampling.
That is, through seed users (blue nodes in the center), we can obtain their friends (in pink), or the
first wave. We can then get friends of their friends (in green), the second wave. Essentially, given the
nodes in the k-th wave, we expand the network by finding their friends, forming the (k + 1)-th wave.
In the process, the “snowball” (network of users) is rolling larger and larger. Typically, a breadth-first
search procedure is preferred to reduce the sample sensitivity to the initial nodes (Menczer, 2006)
because those very popular nodes can be reached in a few hops even starting from unpopular seeds,
which enables the collection of sufficient amounts of data. Snowball sampling explores connections
starting from seed nodes. Thus, the crawled network is within the same component. Alternative
solutions should be explored if one is interested in networks of different components.

Another approach to network data collection is to examine the patterns in user IDs or profile
URLs. Flickr, for example, always assigns a user ID in a specified format. Below are three user IDs
randomly scraped from Flickr:

30720482@N05
81544085@N00
14048444@N08

The URL template of their corresponding user profile pages looks like http://www.flickr.com/
people/[userid]. By changing the first 8 digits and the last one digit, one can randomly generate

http://www.flickr.com/people/[userid]
http://www.flickr.com/people/[userid]


95

user IDs, either valid or invalid, and then crawl their corresponding contacts in Flickr if the IDs
exist in Flickr. This approach is able to reach nodes that are distributed in different components,
whereas snowball crawling can only reach nodes within the same components of the seed nodes.
Unfortunately, not all social media sites provide observable patterns as Flickr does. Hence, snowball
sampling and its variants are more popular in practice.





97

A P P E N D I X B

Computing Betweenness
Betweenness can be defined for both nodes and edges. Node (edge) betweenness is defined as
the number of shortest paths that pass one node (or along one edge). Both node betweenness
and edge betweenness are commonly used in network analysis. For example, node betweenness is
adopted for centrality analysis in Section 2.1, and edge betweenness is utilized to find the “weakest”
tie for hierarchical clustering in Section 3.4.1. We present an algorithm to compute node and edge
betweenness in an unweighted undirected network. The algorithm requires O(n + m) space and
O(nm) time where n and m are the number of nodes and edges, respectively (Brandes, 2001). With
minor changes, it can be adapted to handle directed and/or weighted networks (Brandes, 2001;
Newman and Girvan, 2004).

The algorithm traverses each node, finds all shortest paths starting from a source node s, and
accumulates betweenness for related nodes and edges. For presentation convenience, the following
concepts are defined.

• gs[t]: the geodesic distance from node s to node t .

• σs[t]: the number of shortest paths from node s to node t ;

• The dependency of shortest paths from node s over node v:

δs(v) =
∑
t∈V

σst (v)

σs[t] .

where σst (v) is the number of shortest paths from s to t that pass node v.

• Ps[w]: a list of parent nodes of w in shortest paths starting from node s. A node v is a parent
node of w if gs[w] = gs[v] + 1. In other words, there is a shortest path starting from node s

that has to pass node v in order to reach w.

The pseudocode of the algorithm to compute betweenness is detailed in Figure B.1. Starting from
a source node s, the algorithm carries out the following two steps:

1. Conduct a breadth-first search starting from node s in order to determine the number of
shortest paths starting from node s and terminating at another node (line 10 − 23). Once we
reach a new node (line 14 − 17) during the search, its geodesic distance to the source node s

is updated. When we find a parent node v for w (line 18 − 21), the total number of shortest
paths reaching w is increased by σv as all the shortest paths reaching node v are also shortest
paths to w following edge e(v, w).
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1: CB [v] ← 0, v ∈ V ; //node betweenness
2: CB [e] ← 0, e ∈ E; //edge betweenness
3: for s ∈ V do
4: S ← empty stack;
5: Ps[w] ← empty list, w ∈ V ; //initialize the parent nodes of each node
6: gs[t] = −1, t ∈ V ; gs[s] = 0; //the geodesic distance of each node to s

7: σs[t] = 0, t ∈ V ; σs[s] = 1; //the number of shortest paths from s to t

8: Q ← empty queue; //a queue for breadth-first search
9: enqueue vs → Q;

10: while Q not empty do
11: dequeue v ← Q;
12: push v → S;
13: foreach neighbor w of v do
14: if gs[w] < 0 then //encounter w for the first time
15: gs[w] ← gs[v] + 1;
16: enqueue w → Q;
17: end
18: if gs[w] = gs[v] + 1 then //v is a parent node of w

19: σs[w] ← σs[w] + σs[v];
20: append v → Ps[w];
21: end
22: end
23: end
24: δs[v] = 0, v ∈ V ;
25: //S returns vertices in order of non-increasing distance from s

26: while S not empty do
27: pop w ← S;
28: for v ∈ Ps[w] do
29: CB(e(v, w)) ← CB(e(v, w)) + σs [v]

σs [w] · (1 + δs[w]);
30: δs[v] ← δs[v] + σs [v]

σs [w] · (1 + δs[w]);
31: end
32: if w �= s, then CB(w) ← CB(w) + δs(w);
33: end
34: end
35: CB [v] ← CB [v]/2, v ∈ V ; // reduce betweenness by half in undirected networks
36: CB [e] ← CB [e]/2, e ∈ E; // as each shortest path is counted twice

Figure B.1: Algorithm to Compute Betweenness in Undirected Unweighted Networks
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(a) BFS Tree in the 1st Step (b) Betweenness Update in the 2nd Step

Figure B.2: Algorithm Applied to the Network in Figure 1.1 Starting From Node 1

2. Traverse nodes in the order of non-increasing distance from node s and update the betweenness
accordingly (line 26 − 33). In particular (line 29), given a node w and its parent node v, we
update the betweenness of the edge e(v, w) by adding a weight

� = σs[v]
σs[w] · (1 + δs[w]), (B.1)

where δs[w] is the dependency over node w, i.e., the weighted sum of shortest paths passing
node w. Meanwhile, there is a total weight of 1 for the shortest paths terminating at node
w. Among all these shortest paths that terminate at or pass node w, only σs [v]

σs [w] of them are
through node w’s parent node v. The weight in Eq. (B.1) is added to the parent node v’s
betweenness as well (line 30).

Take the network in Figure 1.1 as an example. Suppose we start with node 1 to perform a
breadth-first search. The corresponding BFS tree in the first step is shown in Figure B.2(a) where
the number besides each node denotes σ1(v). In the figure, the dashed lines denote the cases when
we encounter a parent node as in line 18 − 21. That’s why node 7, 8 and 9 have σ1(v) = 2. Then in
the second step, we traverse all nodes in a bottom-up fashion. The corresponding weights updated
to edges and nodes are shown in Figure B.2(b). In the figure, the blue numbers besides each edge
denote betweenness update � to each edge, and the red numbers besides each node are the node’s
dependency δ1(v). For example, we start from node 9 with δ1(9) = 0. Since node 7 is a parent node
of node 9, the weight update on edge e(7,9) should be σ1(7)

σ1(9)
(1 + δ1(9)) = 2

2 (1 + 0) = 1. Note that
the quantities shown in the figure are different from the betweenness reported in Section 2.1. This
is because we only count the shortest paths from node 1 here. After we exhaust shortest paths from
all nodes, we should get the same betweenness values for each node as reported.
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A P P E N D I X C

k-Means Clustering
The k-means clustering algorithm has been used frequently to find communities in networks in
Chapters 3 and 4. k-means clustering finds clusters of data in attribute format. Given a parameter k,
the k-means clustering algorithm partitions data instances into k clusters. Each cluster is associated
with a centroid (center point).The centroid of a cluster is typically computed as the mean of the data
points assigned to the cluster. And each data point is assigned to the closest cluster, or the distance
between its centroid and the data point is the shortest. The closeness of data points to a centroid
depends on the definition of distance or the inverse of similarity. In classical k-means, Euclidean
distance is employed and a data instance is assigned to the centroid with minimum distance. As in
Section 3.3.1, we can also assign a data instance to a centroid with maximum cosine similarity or
Jaccard similarity. The basic k-means clustering algorithm (Tan et al., 2005) is listed in Figure C.1.

1: select k points as initial centroids;
2: repeat
3: form k clusters by assigning all points to their closest centroids;
4: recompute the centroid of each cluster;
5: until the centroids do not change.

Figure C.1: The k-Means Clustering Algorithm

Here, we apply k-means clustering algorithm with k = 2 to a data set X of 7 instances listed
below:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 X2

1 −1.51 0.06
2 −2.56 0.17
3 −1.51 0.06
4 −0.53 −0.01
5 0.47 −0.08
6 0.47 −0.08
7 1.47 0.14
8 1.29 −0.95
9 2.42 0.70

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Each column above indicates one attribute (X1 and X2, respectively). We start by randomly selecting
two data points (say, #2 and #4) as the initial centroids:
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X1 X2

Centroid 1 -2.56 0.17
Centroid 2 -0.53 -0.01

The Euclidean distance of each data instance to the centroid is given below:

Centroid 1 Centroid 2 Cluster Assignment
1 1.06 0.98 2
2 0 2.04 1
3 1.06 0.98 2
4 2.04 0 2
5 3.04 1.01 2
6 3.04 1.01 2
7 4.03 2.01 2
8 4.02 2.06 2
9 5.01 3.04 2

We assign each data instance to the cluster with the closest centroid. Thus, we have the assignment
as in the last column in the above table.The cluster assignment is also shown in the upper-left corner
of Figure C.2, with circles and squares each denote one cluster. Based on the cluster assignment,
we can compute an updated centroid for each cluster as indicated by the red triangles. Then, we
can repeat the above process to assign data points and update centroids for the clusters. The clusters
and centroids in each iteration are depicted in Figure C.2. After 4 iterations, the centroids do not
change anymore, and the k-means clustering algorithm converges. The two clusters are: {1, 2, 3, 4}
and {5, 6, 7, 8, 9}.

Indeed, the data X in the above example is the soft community indicator S (Eq. (3.9)) following
the latent space model (Section 3.3.2). Clearly, the final clusters recover the community structure in
the network in Figure 1.1.
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Figure C.2: Cluster Assignment and Corresponding Centroids in Each Iteration. Circles and squares
each denote a cluster, and triangles are the centroids.
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