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EveryBOTy Counts: Examining Human-Machine Teams  
in Open Source Software Development 

 
Abstract  
 

In this study we explore the future of work by examining differences in productivity when teams are 

composed of only humans or both humans and machine agents. Our objective was to characterize the 

similarities and differences between human and human-machine teams as they work to coordinate across 

their specialized roles. This form of research is increasingly important given that machine agents are 

becoming commonplace in sociotechnical systems and playing a more active role in collaborative work. 

One particular class of machine agents, bots, is being introduced to these systems to facilitate both 

taskwork and teamwork. We investigated the association between bots and productivity outcomes in open 

source software development through an analysis of hundreds of project teams. The presence of bots in 

teams was associated with higher levels of productivity and higher work centralization in addition to 

greater amounts of observed communication. The adoption of bots in software teams may have tradeoffs, 

in that doing so may increase productivity, but could also increase workload. We discuss the theoretical 

and practical implications of these findings for advancing human-machine teaming research.   
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EveryBOTy Counts: Examining Human-Machine Teams  
in Open Source Software Development 

 

Collaboration continues to influence the future of work as problems become more complex and 

innovation becomes a primary driver for change, increasing the need for complementary forms of 

knowledge and skills (Fiore, 2008; Fiore et al., 2010; M. McNeese et al., 2020; N. J. McNeese et al., 

2018). Concomitant with this, though, is a need to develop collaborative technologies that are able to 

scaffold work (Fiore & Wiltshire, 2016). To support modern work, a number of online collaborative 

support tools have emerged, some of which include artificial intelligence (AI) to create new forms of 

human-machine teaming. From a practical standpoint, it is unclear to what degree these intelligent 

technologies enable or hinder collaboration. From a theoretical standpoint, researchers must address how 

these technologies alter the nature of collaborative work. The field of cognitive science, grounded in 

interdisciplinarity, is well positioned to address these questions.  

In this paper, we examine how open source software (OSS) development, a popular paradigm in 

modern software development, is altered when machine agents are members of the team. The creation and 

adoption of AI to support human work, referred to as bots, was made possible by advances in automation 

for continuous activities and repetitive tasks in this work domain. In this context, bots are autonomous 

software agents that complete critical work activities with humans in software development projects. 

These machine agents have communication and decision capabilities that enable them to interact with 

their human teammates to support their activities in addition to completing their own tasks (Golzadeh et 

al., 2021) in service of a shared goal, improved software.  

We focus our research on open source projects hosted on GitHub, an online platform for 

collaborative software development, to explore how the presence of bots in teams is related to team 

productivity. Our goal is to set the stage for cognitive science research on the future of work via an 

interdisciplinary analysis that combines theory from the study of teams (e.g., Claggett & Karahanna, 

2018; Rico et al., 2008), team cognition (Cooke et al., 2013), and macrocognition in teams (Fiore et al., 
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2010; Fiore & Wiltshire, 2016) with computational social science (e.g., Goggins, Mascaro, & Valetto, 

2013; Lazer et al., 2009). We first briefly review sociotechnical systems theory and its relevance to 

understanding human-machine teaming. We then focus on open source development, a particular work 

domain where human-machine teaming is on the rise. We describe a study comparing human-only teams 

to human-machine teams and discuss how the inclusion of a machine agent as a member of a team alters 

collaborative processes and outcomes.  

 

Sociotechnical Systems and Team Cognition 

The future of work has been designated as one of the most significant challenges for research 

across disciplines. Academia, industry, and government are focusing on how to understand the changing 

nature of the sociotechnical systems, how to develop technologies for improving the nature of work, as 

well as how to design technologies to support human workers (e.g., NSF’s 10 Big Ideas: Future of Work 

at the Human-Technology Frontier, 2020). The growing presence of intelligent machines altering the 

labor landscape in a number of organizational domains makes this even more challenging for researchers 

and practitioners (Erickson et al., 2018). Little is known about the effects of the inclusion of intelligent 

machines as team members. Although various forms of intelligent technologies have been studied for 

decades, much of the related research focuses on technology as part of a work system rather than a full-

fledged member of a team. It is therefore imperative that researchers examine how socially intelligent 

machine teammates alter the behavior of humans engaged in collaborative work (Wiltshire et al., 2017).  

The Macrocognition in Teams Model (MITM) was developed as a theoretical approach capable 

of addressing complex cognition when humans and machines interact (Fiore et al., 2010) and provides an 

appropriate foundation for this shift in research. It encompasses individual and collaborative processes as 

well as internal and external cognition and the processes associated with each (Figure 1). Relevant to the 

present context, the MITM has been applied to study how the integration of technology alters teams and 

augments their cognitive processes (Fiore et al., 2014). It can be used to examine how technology as a 

teammate influences coordinative activities across areas like individual and team knowledge building. 
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Researchers have also developed foundational work for the application of the MITM to the development 

of intelligent machines to support team cognition and improve collaborative processes for problem 

solving (Newton, Wiltshire, et al., 2018).  

In initial work studying the communication-technology linkage, Fiore et al. (2014) drew from the 

MITM in a study of NASA mission control teams. They specifically focused on collaborative problem 

solving dealing with a failure of technology on the International Space Station. In that analysis, they 

found that macrocognitive functions, such as knowledge building activities, often extended cognition 

from individual to team, using technological scaffolds co-created by problem-solving teams. Fiore and 

Wiltshire (2016) elaborated on these and related findings to develop a theoretical framework for studying 

intelligent technology as a teammate by more clearly linking elements of the team cognition theory to 

technological scaffolds. In the MITM, humans and technology are seen as functioning as an integrated 

unit in which cognition is amplified.  

 

[Figure 1 Placeholder] 

Figure 1. The Macrocognition in Teams Model 

 

More recent work has studied the deliberative processes that underlie major macrocognitive 

functions associated with collaborative problem solving in a lab setting. In a study of communication 

patterns and phases, Wiltshire et al. (2018) showed that the MITM was able to capture changes in 

collaboration processes while working to solve a problem. This ranged from variations in information 

requests and provisions to situation updates and affirmations of information. The proportion of differing 

macrocognitive processes shifted as teams solved problems (e.g., moving from knowledge constructions 

to deliberations around solution options).  

Prior work on the effect of machine agents on coordination and team cognition has been limited 

by the availability and prevalence of intelligence technology in work domains. Advances in machine 

intelligence have, however, led to the introduction of software agents in online spaces (e.g., 
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communication channels and social media). In the current context, we build on this to consider how 

machines alter human work when the technology itself exhibits a form of intelligent, agentic behavior in 

service of collaborative work. This introduces a set of research issues that must be understood from not 

only the computational standpoint, but also the psychological and organizational standpoint. Further, we 

add to newly developing areas of study where researchers are examining these forms of human-machine 

collaboration, including human-autonomy teaming, to understand how machine agents influence 

coordination and team performance.  

In human-autonomy teaming, a human teammate collaborates with an autonomous agent to 

achieve a shared task goal and the autonomous agent has the ability to “take initiative and give orders to 

both human and automated counterparts” (Demir et al., 2019, p. 150). The literature describes an 

autonomous agent as a member of a team if it holds a unique role, but maintains interdependence with 

human activities, and completes tasks that would otherwise be assigned to a human, exhibiting 

independence and proactivity to alter process and performance (Fiore & Wiltshire, 2016; Larson & 

DeChurch, 2020; O’Neill et al., 2020). From that theoretical perspective, recent studies have examined 

differences between human-only teams and human-machine teams through the lens of interactive team 

cognition theory. This draws from complex systems theory, defining teams as a particular type of 

nonlinear dynamical system in which team cognition is an emergent property of team interactions.  

Informed by the aforementioned theories, Demir and colleagues (2019) varied team composition 

in a controlled experiment, assigning participants to an all-human team, a human-machine team, or a 

human-confederate team where an experimenter played the role of an autonomous agent. When looking at 

teams interacting over time, and how perturbations altered performance, they found that coordination in 

human-machine teams was more stable than in all-human teams. The human-machine teams did not 

however achieve metastability in coordination—characterized by agility and responsiveness—as observed 

in the human-confederate teams. The rigidity of the human-machine teams resulted in lower levels of 

effectiveness in terms of both team performance and situation awareness. This finding supports recent 

theorizing that metastable coordination underpins optimal levels of team performance in demanding 
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environments (Demir et al., 2018). Demir et al. (2019) theorize that their findings serve as evidence for an 

“inverted U-shaped relationship between team stability and team effectiveness” where optimal 

performance requires teams to “strike a balance between stability and instability” (p. 157). These findings 

add to prior research by Demir et al. (2018) and McNeese et al. (2018), who similarly showed, in different 

task contexts, that teams who were stable rather than metastable in their coordination demonstrated a lack 

of adaptability and less effectiveness in dynamic environments.  

Researchers have also found that team structure and team building interventions influence social 

dynamics (e.g., communication patterns) in human-machine teaming, but only the latter factor contributes 

to changes in performance (Walliser et al., 2019). Such research finds that the use of team building 

activities, like mutual goal setting and role clarification, were associated with higher performance 

compared to informal cooperative gameplay between human and machine collaborators prior to the 

completion of the experimental task.  

Across these studies, machine teammates seemingly contributed to the achievement of stability, 

but the development of machine agents with higher levels of flexibility and adaptability is paramount for 

the achievement of metastability. This gap in machine capabilities is evident, for example, in the 

observation that machine teammates failed to “anticipate information needs” at the same level of human-

only teams (N. J. McNeese et al., 2018, p. 272). In addition to altering communication dynamics, low 

language skills on the part of the machine agents may have increased the workload of human teammates 

as they had to ensure their communications were unambiguous and without error lest they be 

incomprehensible to their machine teammate (e.g., human teammates could not use abbreviations). 

Indeed, Demir et al. (2018, 2019) note that the machine agents used in their experiments had limited 

language capabilities, imposing constraints on communication used by the humans on the team.  

In sum, these studies provide insights into team processes and performance when intelligent 

machines are both a component of, and contributing members in, collaborations. This body of work, 

however, has relied on experiments using artificial tasks in addition to samples made up of primarily 

naive/novice participants (e.g., university students). Few studies have examined collaboration and 
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coordination in human-machine teams in real-world work contexts. We next discuss how we addressed 

this gap and describe the particular context in which we study human-machine teaming.  

 

Open Source Software Development 

In the past two decades, the OSS development paradigm has become increasingly common in 

software development. This trend emerged, to some extent, as a result of changes in organizational 

practices (e.g., adoption of agile and distributed development approaches; Abrahamsson, Salo, 

Ronkainen, & Warsta, 2002; Dingsøyr, Nerur, Balijepally, & Moe, 2012) but was also driven by the 

popularity of software freedom among developers and self-described hackers (Coleman, 2013). 

Furthermore, online platforms for “social coding” have gained popularity among both organizations and 

individuals, promoting the temporal and geographic distribution of collaborative work in open source 

projects (Yu et al., 2014). For example, GitHub, a widely-adopted social coding platform, is used to host 

a variety of software projects, including those associated with major companies and those without direct 

or indirect corporate support (Octoverse 2020, 2020). Its community is made up of salaried and 

independent developers (Reyes López, 2017; Yu et al., 2014), resulting in collaborations that blend 

crowdsourcing with traditional teams (McDonald & Goggins, 2013). 

 In social coding platforms, developers may integrate commercially developed apps or create their 

own forms of intelligent automation to streamline and distribute elements of their work (Lebeuf, 2018). 

These technologies are commonly referred to as bots and their inclusion creates human-machine hybrids 

in which work is distributed across people and intelligent technology. We contend that the combination of 

the distributed nature of work in online platforms, the varied complexity of open source projects, and the 

inclusion of bots as members of the team, provides an ideal real-world context to study the future of work 

and the increasingly prevalent sociotechnical system resulting from humans collaborating with intelligent 

machines.  
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GitHub as a Sociotechnical System 

Social coding platforms are a relatively new and significant means of supporting social 

interaction and technological advancement (Newton, Fiore, et al., 2018). In line with studies of 

collaboration in science and technology, collaborative software development relies on both social and task 

factors for goal completion. More specifically, this work requires an effective integration of both 

teamwork and taskwork (Fiore et al., 2015; Fiore & Wiltshire, 2016; Mathieu et al., 2000) and, as a 

collaborative platform for software development, GitHub aims to support these needs. In support of 

taskwork, for example, it purports to help users maintain awareness of their collaborators’ activity, while 

in support of teamwork, it provides an infrastructure for communication and other forms of coordination. 

On the social side, the platform relies on features characteristic of social networking sites (e.g., following 

users, favoriting content, and threaded discussions) to connect users with shared interests and support 

resulting collaborations.  

Despite the intent of platform designers, a number of challenges have been identified by its users 

and linked to direct or indirect effects on teamwork and problem solving in open source projects. For 

example, GitHub users have reported not using certain features (e.g., following users) because they are 

not particularly useful in terms of staying up to date with projects. Instead, these features negatively affect 

their productivity by introducing noise and information overload (Blincoe & Damian, 2015). Nonetheless, 

other features, such as the inclusion of bots to reduce developer workload, afford the possibility of 

increased productivity. This context, then, provides both theoretical and practical research directions. 

From a theoretical standpoint, there is a need to understand how this complex system is altered by these 

newer forms of collaboration. From a practical perspective, studying this context can contribute to the 

design of more intelligent machine teammates, and offer guidance on improving human-machine teaming 

requirements.  

The diversity and complexity of the work observed in GitHub makes an analysis of team 

processes challenging. Despite this, we can examine work in a social coding platform from a task analytic 
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perspective to identify the sociotechnical features supporting team functioning. In the extant literature, the 

structure of the platform is typically broken down into users, repositories, and features (Reyes López, 

2017). The combination of these, summarized in Table 1, forms the foundation for GitHub as a 

sociotechnical system for OSS development.  

 
 

Table 1. The structure of GitHub as it relates to taskwork. The third column provides examples of the 

macrocognitive processes and products that are associated with different aspects of the online platform. 

GitHub Component Description Link to MITM 

Users Individual (personal) account - 

Organizational account 
● Can link people (individuals) to 

organizational account 

- 

Public Repositories 
(Repos) 

Repos are a online project space used to host 
files, coordinate work, and engage in discussion 
around artifacts (e.g., source code) 

● Multiple repos may form a larger project 
ecosystem 

Externalized team 
knowledge 
 
Individual knowledge 
building (e.g., knowledge 
object development) 

Interaction Modes: 
User-Repo Create/delete a repo Individual knowledge 

building  
 
Externalized team 
knowledge 

Fork: create a copy of an existing repo Individual knowledge 
building (e.g., knowledge 
object development) 

Issue: report a problem, make a request, or 
initiate other discussion 

Externalized team 
knowledge (e.g., artifact 
construction) 

Push: update a repo, changes recorded via 
commits 

Individual knowledge 
building (e.g., individual 
information synthesis) 

Pull request (PR): suggest change(s) to a repo Individual knowledge 
building (e.g., knowledge 
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object development) 
 
Team knowledge building 
processes (e.g., team 
solution option generation) 

Comment: documentation and discussion linked 
to commits, issues, and PRs 

Externalized team 
knowledge 
 
Team knowledge building 
processes (e.g., team 
evaluation and negotiation 
of alternatives) 

Watch: receive updates about activity in repo Individual knowledge 
building (e.g., individual 
information gathering) 

Star: bookmark a repo Individual knowledge 
building  

Interaction Modes: 
User-User 

Follow: receive updates about an individual 
user’s activity 

Individual knowledge 
building processes (e.g., 
individual knowledge 
gathering) 
 

Issue: communicate with specific user(s) via 
tagging/assigning mechanism, or broadcast 
message to project community 

Externalized team 
knowledge (e.g., artifact 
construction) 
 
Team knowledge building 
processes (e.g., information 
exchange) 

Comment: communicate rationale, knowledge, 
and/or solutions related to project files to user(s), 
linked to commits, issues, and pull requests  

Team knowledge building 
processes (e.g., team 
evaluation and negotiation 
of alternatives) 

 

  

In GitHub and other similar platforms, repositories, or repos, are used to host project files (e.g., 

source code and documentation) and serve as a shared space for collaborative work. In these repositories, 

there is a significant amount of both collaborative activity and individual activity. Platform users can 

contribute to, track, and discuss changes to project files. Developers with ‘write’ privileges can make 
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direct changes to files by pushing content from a local copy of the repository (e.g., on their personal 

machine) to the online repository. Any platform user can attempt to contribute to a repository by creating 

their own local copy, making changes, and submitting a pull request. Project integrators can then review 

the submission, discuss modifications through pull request review comments, and accept or reject the 

request to integrate suggested changes. Overall, the collective that makes up a repository are all 

contributing to a shared goal—that is, an improved software product.  

In sum, platforms like GitHub represent an important development for the future of work. 

Decades of research in sociotechnical systems provide a foundation from which to build an understanding 

of these newer forms of collaboration. First, the work activity fits well with theories of teams. In the case 

of GitHub and similar online work, we refer to the collective as a team because their combined output is 

based on a significant amount of interdependencies with shared goals, and results in a unified product 

(Salas et al., 2008). Second, in line with sociotechnical systems theory, this work is distributed across 

people and machines, and increasingly, intelligent and autonomous technologies. Third, in line with 

cognitive science, this fits with the MITM by providing a space for integration of internalized and 

externalized knowledge in service of developing solutions to complex problems. We turn next to a 

discussion of cognition and coordination in these new forms of teams. We then discuss how the 

introduction of bots is potentially producing new interaction dynamics that alter collaboration and 

cognition. 

In order to focus our analyses of GitHub differences, we considered specific elements of the 

MITM. Given the structure of GitHub, and how work is produced in open source projects, we consider 

the knowledge building processes and problem solving outcomes elements of MITM. We consider 

information sharing as it occurs through the use of issues and comments, and how these forms of 

externalized cognition, makes distributed cognition more concrete. In particular, these serve as important 

artifacts that support the communication and coordination within repositories. As such, they form the 

basis for how we examine differences in teams to study how the inclusion of bots may alter 

macrocognitive processes and overall team productivity.  
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Cognition and Coordination in Open Source Projects 

In open source projects, a number of tools and communication channels are used to coordinate the 

work of developers. Some of these tools and channels are embedded in social coding platforms (e.g., issue 

tracking and user tagging) while others originate from these platforms (e.g., email notifications) or 

outside of them (e.g., in communication channels like Slack and social media like Reddit). Bots are a 

newer and increasingly common means through which developers coordinate and delegate their work 

(Hukal et al., 2019). Importantly, these technologies, including bots, vary in the degree to which they 

support taskwork (i.e., behaviors for meeting objectives) and teamwork (behaviors for working well with 

team members). We note here that this theoretical distinction is particularly important for cognitive 

science and the introduction of intelligent technologies. Understanding how bots can differentially 

contribute to taskwork and/or teamwork can inform the development of technologies that are more 

appropriately designed for different components of collaborative work.  

Several threads of research on software development in GitHub are most relevant to the present 

work; namely, studies of individual and collective productivity in addition to studies of coordination. In 

these domains, researchers typically examine developers’ activity profiles and/or their responses to 

surveys and interviews to better understand development processes, social dynamics, and project 

outcomes. The literature discusses differences between contributors, including their influence on each 

other (e.g., Blincoe, Sheoran, Goggins, Petakovic, & Damian, 2016), and their levels and length of 

participation (Onoue et al., 2013; Vasilescu, Posnett, et al., 2015). The evaluation of collective processes 

and outcomes, like productivity and efficiency, is important as it provides insights about the viability of 

the OSS approach for a given software product or service. Although performance measurement in GitHub 

is challenging, some measures have been proposed in the literature, including integrator productivity (e.g., 

proportion of merged pull requests), code quality (e.g., density of bug-fixing commits; Vasilescu, Yu, 

Wang, Devanbu, & Filkov, 2015), issue support quality (e.g., issue resolution times; Jarczyk, 
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Jaroszewicz, Wierzbicki, Pawlak, & Jankowski-Lorek, 2018), and average developer productivity (e.g., 

work per person; Murić et al., 2019).  

Researchers have also begun to explore different approaches for the study of coordination (Joblin 

et al., 2017) and its relationship with productivity (Choudhary et al., 2018). Coordination can be implicit 

or explicit, but it generally describes the means through which team members organize their activities 

towards a shared goal (Rico et al., 2008). These processes shape the team’s understanding of 

interdependencies for individual and collaborative output, leading them to develop strategies for the 

effective integration of multiple contributions. Various coordination processes in social coding support 

the knowledge building function of the MITM. This includes information sharing and discussion and 

deliberation of externalized cognition maintained in repos. For example, implicit coordination in social 

coding endeavors takes the form of information-gathering behaviors for the maintenance of awareness, 

such as reviewing code artifacts or following a developer’s activities (Blincoe & Damian, 2015), whereas 

explicit coordination is observed in comments linked to issues and source code. In complement to each 

other, these processes support knowledge building through internalized cognition (coding expertise) and 

externalized cognition (e.g., artifacts). Last, research on coordination shows that the size of a team is 

likely to influence its members’ performance due to associated social dynamics (e.g., social loafing and 

freeriding; Kidwell & Bennett, 1993) and evolving coordination requirements (Joblin et al., 2017).  

In the context of software development, researchers have suggested that an investigation of the 

relationship between team size and productivity can aid in the identification of a “critical size” for a 

project’s community in terms of its efficiency (Murić et al., 2019; von Krogh et al., 2003). This is an 

important feature of coordination given that researchers applying sociotechnical systems theory have long 

studied how process changes relative to team size. Community growth in open source projects has been 

positively associated with task completion (Chou & He, 2011) and is used by developers as an indicator 

of project success (McDonald & Goggins, 2013), but it can be negatively associated with issue resolution 

times (Jarczyk et al., 2018).  
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Coordination is also affected by team size. Studies of distributed software development suggest 

that, as in other industries, increasing team size results in increased communication costs and the need for 

task delegation (e.g., Joblin et al., 2017; Romero et al., 2015). But studies also show that coordination 

problems arising from large teams can be ameliorated. For example, the presence of a small team of 

developers, who focus on managing and coordinating work in large open source projects, is linked to 

improved issue resolution (Jarczyk et al., 2018). One way that open source teams have sought to improve 

their performance and manage coordination challenges is through the adoption of technologies based in 

AI: bots. We next discuss some of the research that has explored the implementation of bots in open 

source projects.  

 

Bots in Software Development 

The widespread adoption of bots in software development is attributable to technological 

advances that ease their integration in systems that support collaborative work (Lebeuf, 2018). Bots are 

expected to improve software development processes, resulting in increased productivity and better 

products (Lebeuf et al., 2018). Developers have recognized the utility of bots as facilitators of their 

collaborative work and have thus sought to harness their potential. These bots can differ in terms of their 

capabilities, as well as how they interact with the humans on a team. In the relevant literature, bots are 

conceptualized as an interface between user and services, enabling a distinct interaction style that 

provides value above and beyond traditional user interfaces.  

Role-based classification of software bots reveals that the majority are taskwork-oriented, with 

capabilities for a particular set of tasks in the development process (see Table 2). Although bots vary in 

terms of their reasoning and agency, they are increasingly autonomous and equipped with social, 

perceptual, and cognitive capabilities associated with agent-hood. GitHub bots have been classified as 

having mid to high levels of agency, being able to take goal-directed action both with and without 

supervision (i.e., partial and complete autonomy, respectively; Lebeuf, 2018; Lebeuf et al., 2019). These 

capabilities enable bots to respond to their human counterparts’ taskwork needs (e.g., running tests on 
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their code and offering potential followup actions) in addition to assigning taskwork to them (e.g., 

directing them to sign an agreement or review code modifications and submitted issues). Some research 

has begun to explore how bots can move beyond taskwork to also improve teamwork by, for example, 

reducing conflict between developers (Lebeuf et al., 2017).  

 
 
Table 2. The types and roles of bots in software development, adapted from Storey and Zagalsky (2016). 

In the fourth column, we identify the MITM processes and products that are supported by each bot type.    

Bot Type Role  Work Orientation Link to MITM 

Coding Support Coding support bots help 
developers to improve their 
workflow efficiency while 
engaged in coding activities. 
This includes, for example, 
synchronizing tools to reduce 
workload, supporting awareness 
of changes to the code, and 
merging code changes from 
multiple sources. 

Taskwork Individual knowledge 
building 

Code Testing Test bots help developers 
offload repetitive tasks by 
evaluating code. These bots can 
help reduce the time developers 
devote to testing and may assess 
the quality of the code or user 
interfaces, keep track of 
potential issues, and offer 
suggestions for improvement. 

Taskwork Individual knowledge 
building 

DevOps DevOps (AKA ChatOps) bots 
are designed to reduce 
communication needs and 
improve the efficiency of 
operations associated with 
software development and 
release. These bots specifically 
help coordinate the activities of 
developers and other personnel 
across communication tools, and 
can help “bridge the technical-
knowledge gap for stakeholders 
on the team” (p. 930). 

Taskwork/Teamwork Team knowledge 
building 

User Support User support bots help 
developers manage reports and 
requests from the software 
product’s user base. For 
example, these bots can directly 
communicate with users, provide 
answers to frequently asked 
questions, and record user 
feedback.  

Taskwork Team problem solving 
outcomes 
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Documenting  Documenting bots, as their name 
implies, help with code and 
software release documentation 
by “aggregating information 
from code commits and issue 
comments” (p. 930).  

Taskwork Externalized team 
knowledge  

 

 

Some bots used in open source projects are provided for developers through GitHub Marketplace, 

the platform’s store for development tools. GitHub Apps, which are official GitHub bots, are provided to 

automate developer tasks and potentially improve efficiency. Recent research on software bots in GitHub 

finds that, although they complete a variety of tasks, their adoption in a project does not yield significant 

increases in developer productivity (Wessel et al., 2018). Furthermore, some developers perceive bots as 

lacking sufficient intelligence for decision support roles and report dissatisfaction with bots’ contributions 

to collaborative processes (e.g., because of perceived unfriendly tone; Wessel et al., 2018).  

Researchers have also analyzed differences in software repositories before and after the adoption 

of Continuous Integration bots (Bernardo et al., 2018). In this study, it was observed that 51% of teams 

increased their pull request merge rate after bot adoption. Researchers found that the reason for the slower 

integration of external contributions in the remaining teams was a substantial increase in pull request 

submissions after bot adoption. These mixed results suggest time delays associated with the introduction 

of bots are not necessarily reflective of stagnant productivity levels. Instead, this reflects how bots can 

change development processes and potentially influence project growth and performance. While bots may 

help reduce developers’ workload for some tasks, they may also inadvertently increase workload for 

developers managing the repository due to greater participation by both newcomers and established 

collaborators in open source projects.  

 

Present Study 

As we have described, the increasing role of AI in teams requires interdisciplinary research 

within the cognitive science community to improve their implementation and evaluation. From this, 
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research can better account for the ways in which machine agents change performance and how such 

changes differently affect taskwork and teamwork (Fiore & Wiltshire, 2016). In the present study, we 

build on this body of work by taking a multifaceted approach to the study of productivity to explore 

differences between human-only and human-bot teams. Towards this end, we conducted a study of large-

scale, distributed collaborative work in open source projects by analyzing data extracted from GitHub. As 

this is a relatively new area of research in the future of work, our hypotheses are exploratory in nature. 

Our hypotheses were guided by an overarching research question: Does the introduction of bots into the 

sociotechnical ecosystem alter the nature of work? We set out to compare two fundamental team 

parameters. First, we separated out team types; that is, whether or not a bot is present. Second, given the 

aforementioned issues of size and coordination, we considered the size of a team as a variable for 

analyses. With these distinctions, we developed the following hypotheses to determine if there are 

differences in productivity between human-only teams and human-bot-teams.  

○ Hypothesis 1. Bots alter the productivity levels observed in a team. 

○ Hypothesis 2. Bots alter the degree to which work is centralized in a team. 

○ Hypothesis 3. Bots alter the efficiency of productivity observed in a team. 
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Methods 

To test our hypotheses, we analyzed data extracted from an online platform, GitHub, used by 

developers to work on open source projects. Information about both projects and individuals can be 

gleaned from these data to study collaborative work in the wild as opposed to in the controlled laboratory 

environment in which much prior research on human-machine interaction and teaming is typically set. In 

the following paragraphs, we describe in detail the approaches employed to collect, process, and analyze 

the data.  

 

Data Source and Preprocessing 

The data set analyzed for the purposes of this study represents a subset of a larger social media 

platform data set curated and provided to us by a data provider as part of a larger grant program. In 

accordance with the requirements of the organization funding the research, the data provider, an 

information technology corporation, anonymized the data set prior to sharing it with researchers to protect 

the privacy of GitHub users. The data set was collected from the GitHub API1 in 2017. In past research, 

project age has been established as a significant predictor of activity levels and number of contributors 

(Fronchetti et al., 2019). To control for the effect of project age, we selected GitHub repositories of the 

same age in our larger sample, specifically only including data from repositories created in January 2016. 

This resulted in the selection of approximately 900,000 repos. We additionally only included repos with a 

specified programming language to ensure our analyses were applied to software projects as GitHub repos 

are sometimes used for purposes other than software development (e.g., content curation and data storage; 

Kalliamvakou et al., 2014), reducing the original selection to approximately 500,000 repositories.  

Work Events. We refer to four specific GitHub event types as work events: pushes (internal file 

modifications), issue comments and pull request review comments (team communications), and accepted 

pull requests (external file modifications). Prior research has classified pushes as work events (e.g., 

 
1 https://docs.github.com/en/rest  
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(Murić et al., 2019); we additionally included external file modifications because our study sample 

included projects that relied on this type of contribution in addition to pushes.  

Project Team. We considered a project contributor to be a team member if they submitted: at 

least one push; at least ten issue comments or ten pull request review comments; or at least five merged 

(i.e., accepted) pull requests to the repository. Push events were used as criteria for team membership 

because they are made by individuals with special permissions, or access, to the repo in question. We 

used the stated thresholds for comments and merge requests because they represent relatively high levels 

of activity associated with higher levels of engagement with a project. The individuals who met these 

thresholds thus made substantial contributions and were classified as team members. Similar thresholds 

have been applied in prior research on collaborative work in GitHub (Murić et al., 2019). Teams that 

generated fewer than 20 work events in the platform in the first 6 months were excluded from the data set. 

These criteria were used to ensure that the projects were maintained by an 

active group of developers (≥ 2) and not abandoned soon after creation as 

has been observed in GitHub (e.g., Kalliamvakou et al., 2014). We identified 20,119 GitHub 

repositories that met these criteria. Event data for the first 13 months following repository creation was 

extracted for further processing and analysis. 

Team Type. As part of the data sharing agreement, the data provider labeled a user as a bot if: the 

account type was identified by GitHub as a bot; the username ends with ’-bot’; and/or the account 

generated repeated identical comments. Similar approaches have been described in the literature (e.g., 

Golzadeh et al., 2021). This information was used to classify the teams in the data set as either a human-

only team or human-bot team. Of the over 20,000 teams in the data set, only 304 (2%) teams had at least 

one bot.  

Smart Sampling. In addition to the issue of significant group imbalance between team types, there 

is a possibility that the members of human-bot teams had higher levels of expertise than the members of 

human-only teams in our data (i.e., only more experienced developers choose to adopt bots). To address 
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this, we adapted a smart sampling approach developed by Saadat and Sukthankar (2020) and 

implemented in Python using metrics in the Scikit-learn library (Pedregosa et al., 2011) to control for 

variations in developer expertise. This algorithm was used to select the subset of human-only teams that 

were most similar to the human-bot teams in terms of expertise.  

First, we identified GitHub features that serve as proxies for expertise in the platform and 

extracted a vector for every team member. While expertise research in other domains has identified 

specific criteria to differentiate experience levels, what counts as expertise in open source development is 

less well defined (Baltes & Diehl, 2018). As such, we determined a set of user characteristics that could 

differentiate more from less expert teams. For each team member, we created a vector consisting of: 1) 

their number of followers, 2) the number of users they follow, 3) the number of public repositories they 

own, and 4) their gh-impact. A user’s gh-impact is based on the popularity of the repositories they own 

and thus quantifies influence on GitHub (Miller, 2016). A high gh-impact score indicates that the user 

owns many projects that exhibit high levels of activity.  

Then, we generated a team-level expertise vector by summing each variable in the expertise 

vector of team members to represent their collective expertise. For example, in a team with two human 

members, let 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) and 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) be their individual expertise vectors. The sum of 

𝑢 and 𝑣	is their collective expertise vector, 𝑢 + 𝑣 = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2, 𝑢3 + 𝑣3, 𝑢4 + 𝑣4). To mitigate the 

dominance of variables with large values, we normalized the expertise vectors to range between zero and 

one prior to running the similarity calculation. For example, prior to normalization, the number of 

followers varied between 0 and 1,644 and the number of repos owned varied between 8 and 88,791. 

Finally, team expertise vectors were matched between team type groups. For each human-bot 

team, the smart sampling algorithm selected the most similar human-only team based on minimum 

Euclidean distance. This process was repeated for each human-bot team and resulted in the selection of 

304 human-only teams with expertise levels corresponding to the 304 human-bot teams in the data set. 

The final data set consisted of work events generated by these 608 teams (i.e., our study sample; Table 3). 
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Team Size. We classified teams as small if they had two or three human contributors, medium if 

they had between four and six human contributors, and large if they had more than six human 

contributors. Other researchers (e.g., Vasilescu et al., 2015) have used higher thresholds to categorize 

teams. However, we chose these thresholds in order to align with the traditional definition of team size as 

found in the human factors and organizational sciences literature (e.g., Weiss & Hoegl, 2016). 

Furthermore, by separating along these three size categories, we can better characterize how the presence 

of bots alters work activity in teams of traditional size as compared to those where their larger size may 

increase coordination demands.  

 

Table 3. The number of teams in our sample by team size and team type. Team size range is provided in 

brackets. Although the small team size category was the largest (281 teams), the majority of teams in the 

sample had at least four human members (327 teams). 

Team Size [min, max] Team Type Number of Teams 

Small [2, 3] Human-only 153 

 Human-bot 128 

Medium [4, 6] Human-only 96 

 Human-bot 84 

Large [7, 246] Human-only 55 

 Human-bot 92 

 
 

Team Productivity Variables 

Our analysis of productivity focused on three complementary measures derived to help us 

characterize the amount and efficiency of work completed in a repository as well as the distribution of 

work across members of an open source project. This multifaceted approach helped us investigate and 

interpret differences in productivity in relation to the presence or absence of bots on a team, and thus test 

each of our aforementioned hypotheses.  
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Work Per Person. First, to evaluate the productivity levels of teams (H1), we aggregated team 

members’ GitHub activity during the first 13 months following the repositories’ creation. Raw event 

counts and median values are provided in Table 4. This time period was selected to ensure that we 

collected a sufficient amount of data for our analyses. From these event counts we calculated the average 

amount of work per team member—number of pushes, issue comments, pull request review comments, 

and accepted pull requests—within a repository during this period. We used this measure because teams 

varied in size and our interest was not necessarily overall productivity, but the proportionate amount of 

activity per team member. The primary question of interest is whether work per person is higher or lower 

in traditional versus human-bot teams. Our approach can be distinguished from Murić et al.’s (2019) 

productivity measure in that our definition of team and work extends beyond code contributors (i.e., those 

that submit pushes and pull requests) to include other teamwork aspects of OSS development, including 

the coordination of work and knowledge building observed in comments, a team process foundational in 

the macrocognition in teams model (Fiore et al., 2010).  

 

 

 

 

Table 4. Total counts and median values for work events generated by humans in each team type. Pull 

request is abbreviated to PR and pull request review comment is abbreviated to PRRC. Median values 

have been rounded to the nearest whole number. Only 60 (52 human-bot) of the 608 teams in the sample 

had PRs generated by humans and 346 (237 human-bot) of the 608 teams had PRRCs generated by 

humans.  

Team 
Type 

Total 
Push 

Median 
Push 

Total 
Issue 

Comms  

Median 
Issue 

Comms 

Total 
PRRC 

Median 
PRRC 

Total 
Merged 

PR 

Median 
Merged 

PR 

Human-
only 45,348 64 28,744 4 9,194 0 217 0 
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Human-
bot 80,985 130 85,983 46 39,820 16 1,184 0 

 

 

Work Centralization. Second, to understand how work activity varies within a team (H2), we 

considered the distribution of work across team members. This allowed us to examine an important issue 

with regard to variations in productivity and team size—that is, the high amount of work completed by a 

small number of open source project team members. In the management sciences and economics 

literature, the unequal distribution of a given variable is explained by the Pareto principle, or the 80-20 

rule, which states that, in this context, 80% of the work in a team is completed by 20% of team members 

(Newman, 2005).  

The inequality of work distribution can be measured using the Gini coefficient, a calculation 

initially developed to study income disparity (Dorfman, 1979), and has more recently been adapted to 

study disparities in other domains (e.g., in group diversity; Solanas, Selvam, Navarro, & Leiva, 2012), 

including work in OSS development (Jarczyk et al., 2018). The larger the Gini coefficient, the higher the 

centralization among a small number of people in a population, and thus, the more unequal the work 

distribution. With this, the Gini coefficient can help us determine if the distribution of work done per 

team member differs between human-bot teams and human-only teams. We calculated a Gini coefficient 

for each team using the inequality analysis method2 provided in the Explore package of the PySAL 

Python library (Rey & Anselin, 2010). This function was applied to human-generated work events, which 

were positive, nonzero data.  

Work Efficiency. Third, to characterize differences in work efficiency (H3), we examined the rate 

at which teams resolve open issues in a project. Within GitHub’s issue handling infrastructure, users can 

report a bug or provide a feature request, among other things, by opening an issue. The issue is closed 

when the problem or request is resolved or otherwise addressed. Issue closure rates thus reflect the speed 

 
2 https://github.com/pysal/inequality/blob/master/inequality/gini.py  
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with which teams resolve problems and have been proposed as a means to quantify development process 

performance of open source project teams (Jarczyk et al., 2018). In linking this measure with the MITM, 

we propose that the time to resolve, or close, an issue is a team problem solving outcome and specifically 

reflects efficiency in planning process and plan execution.  

We performed survival analysis to calculate how quickly an issue is addressed by the teams in our 

sample. Survival analysis is primarily used to model the duration of time until an event happens (Klein & 

Moeschberger, 2003), and has been adapted to study many phenomena with temporal characteristics, 

including how long issues remain unresolved in software development projects (Jarczyk et al., 2018). We 

used a non-parametric statistic, the Kaplan-Meier estimator, to estimate the survival curve (Kaplan & 

Meier, 1958). The work efficiency variable was computed using lifelines, a Python implementation of 

survival analysis (Davidson-Pilon, 2014).  

The repositories in our sample were active at the time of data collection. As a result, it was likely 

that there were open issues at the time of data collection that may have been closed after data collection, 

resulting in incomplete information about these issues. This means without an endpoint for such issues, it 

is unknown if and when they were resolved. Survival analysis is designed to utilize data containing 

incomplete information to make inferences and is thus well suited to our needs. For this analysis, we 

included only repositories that had at least 5 issues, resulting in the selection of 303 teams (191 human-

bot teams). This threshold was applied to ensure meaningful results (i.e., based on teams who made use of 

the issue handling infrastructure) and was based on prior research on issue survival in GitHub (Jarczyk et 

al., 2018). 

 

Statistical Tests and Transformations 

Control Check: Smart Sampling. The variables selected as expertise proxies did not follow a 

normal distribution. As a control check, we used the Mann-Whitney U test, a nonparametric alternative to 

the independent sample t-test that does not assume normality, to statistically evaluate expertise 

differences between team types.  



BOTS AND PRODUCTIVITY 

26 

Transformations of Productivity Variables. The distribution of work per person was right-

skewed. Therefore, for the purposes of visualization and statistical analysis, we applied a log 

transformation to the variable. The distribution of the work efficiency variable, median survival days, was 

also skewed and, because some of the teams in our sample had a median survival day of zero (i.e., they 

frequently resolved issues in less than a day), we applied a square root transformation to this variable. 

Transformations failed to sufficiently approximate a normal distribution leading us to apply 

nonparametric statistical tests in our analysis of work efficiency.   

Productivity Variables Analysis. To statistically analyze differences in work per person and work 

centralization between team types, we used a series of Welch's unequal variances t-tests, a modification of 

the two sample t-test that is appropriate for cases in which there are unequal groups and there is unequal 

variance between those groups. The Holm method was applied to p-values to control the family-wise 

error rate (Holm, 1979) and we report Cohen’s d effect sizes and corresponding confidence intervals (CI) 

for each analysis. We analyzed differences in work efficiency between team types with a series of Mann-

Whitney U tests; p-values were adjusted using the Holm method and effect size for each analysis was 

calculated by dividing the z-score by the square root of the sample size.  

 

Results 

Data Characterization 

We first provide an overview of the data to ground the presentation of our analyses. All 

visualizations and statistical tests were conducted using statistical computation software R (R Core Team, 

2019) while data processing, the smart sampling algorithm, and survival analysis described earlier were 

implemented in Python (Python Software Foundation, 2019)3. Referring back to Table 4, work event 

counts and median values by team types reveal that humans in the human-bot teams generally engaged in 

 
3 Aggregated data and code files are available at https://github.com/small0live/bots-research.  
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more discussion around code artifacts (issue comments and pull request review comments) and more 

frequently submitted and accepted changes to source code (merged pull requests). 

Team Sizes. We observed that larger teams had higher proportions of merged pull requests (i.e., 

accepted more external contributions). Summary statistics for team size are provided in Table 5 and 

counts for teams in each team size level in Table 6. Over half (54%) of the teams in the sample had at 

least four team members and most (84%) had at least three members. The human-bot teams were more 

evenly distributed across team size levels. In the large team size class, the majority of teams had 49 or 

fewer team members. This means the data were skewed with respect to team size, which limits our 

analysis of interaction effects between team types and team sizes. 

 

 

 

Table 5. Summary statistics for team size (i.e., number of team members).  

 Median Min. 25th 
Percentile 

50th 
Percentile 

75th 
Percentile Max. 

Team Size 4 2 3 4 7 246 

 

Table 6. The distribution of teams by number of members and the number and percent of human-bot 

teams in each team size level. 

Team Size Number of Teams Overall Number of Human-Bot Teams (%) 

Small [2, 3] 281 128 (45.6%) 

Medium [4, 6] 180 84 (46.7%) 

Large [7, 246] 147 92 (62.6%) 

 
 

Bots in Teams. Most of the human-bot teams in our sample had only a single identified bot and 

just over twenty teams had two bots, but a few large teams made use of four or more bots (Table 7). The 
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distribution of work events completed by bots is presented in Figure 2: bots produced a higher proportion 

of issue comments compared to the other events. This indicates that the bots were coordinating and 

prompting developer activity. The distribution of bot events suggests that the human-bot teams in our 

sample likely comprised coding support, code testing, and/or DevOps bots.  

 
Table 7. The number of bots in human-only teams broken down by team size.  

Number of Bots Small Teams Medium-Sized Teams Large Teams Total 

1 122 78 80 280 

2 6 6 9 21 

4 - - 1 1 

8 - - 1 1 

12 - - 1 1 

 
 

 
[Figure 2 Placeholder] 

Figure 2. Work events generated by bots grouped by team size. Relative to other event types, bot work is 

characterized by a high proportion of issue comments and pushes. Pull request is abbreviated to PR in 

labels on x-axis.  

 

Expertise Control Check. Our smart sampling procedure was intended to serve as a control for 

expertise differences between teams that use bots and those that do not use bots. A series of Mann-

Whitney U tests were run to analyze the difference in expertise values between team types and confirmed 

that they were not statistically significant (Table 8). 

 

Table 8. Mann-Whitney U test results for expertise proxies by team type. As is standard for 

nonparametric approaches, median values are reported for each team type.  

 MedianHuman- MedianHuman-Bot  U p 
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Only 

# Followers 33.5 34.5 45735 .827 

# Following 82 84.5 45500 .744 

# Repos Owned 173.5 186.5 45552 .762 

gh-impact 5 5 46056 .944 

 

Productivity Differences 

Work per Person. Because teams varied in size within each team size class, we calculated the 

amount of work activity generated per person on a team to examine differences in productivity levels. 

Figure 3 presents the distribution of work per person by team size and type. To reiterate, the analyses are 

only applied to human-work event data. Across team sizes, human members on the human-bot teams 

tended to have higher levels of productivity compared to members of human-only teams. Additionally, 

there is no clear trend—increase or decrease—in productivity as team size changes. Small human-bot 

teams (M = 3.86, SD = 1.07) compared to small human-only teams (M = 3.30, SD = 0.87) had higher 

levels of productivity t(243) = 4.81, p < .001; d = 0.57 (lower CI: 0.34; upper CI: 0.82). Medium-sized 

human-bot teams (M = 4.06, SD = 0.96) compared to medium-sized human-only teams (M = 3.14, SD = 

0.97) had higher levels of productivity t(175) = 6.34, p < .001; d = 0.95 (lower CI: 0.64; upper CI: 1.26). 

Large human-bot teams (M = 4.02, SD = 1.11) compared to large human-only teams (M = 3.51, SD = 

1.18) had higher levels of productivity t(108) = 2.59, p < .001; d = 0.45 (lower CI: 0.11; upper CI: 0.79). 

These results suggest that bots alter productivity levels and provide support for Hypothesis 1.  

 
[Figure 3 Placeholder] 

Figure 3. Notched boxplots of productivity in GitHub teams. Data are grouped by team type and size. 

Notch displays approximately 95% confidence interval around the median which is based on the median 

+/- 1.58 x IQR/sqrt(n) (Chambers et al., 1983; R Core Team, 2019). There were significant differences 

between team types across team size classes.  
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Work Centralization. We were also interested in examining the degree to which work is 

centralized or distributed across human team members. For this analysis, we used a common measure of 

inequality, the Gini coefficient. In this context, the Gini coefficient, which ranges from 0 to 1, is 0 if all 

team members perform an equal amount of work and increases as work distribution among team members 

becomes more skewed. Thus, a Gini coefficient approaching 1 suggests that work is unevenly distributed 

and centralized to a small subset of team members. The distribution of Gini coefficients is plotted in 

Figure 4 and additional information about these distributions is provided in Table 9. These boxplots show 

that human-bot teams tended to have higher levels of work centralization compared to human-only teams. 

In other words, the presence of bots is associated with greater disparity in how work is distributed across 

human team members.  

We found higher work centralization, t(267) = 3.21, p = .004, d = 0.38 (lower CI: 0.14; upper CI: 

0.61), in small human-bot teams (M = 0.38, SD = 0.16) compared to small human-only teams (M = 0.32, 

SD = 0.16). Similarly, medium-sized human-bot teams (M = 0.50, SD = 0.13) compared to medium-sized 

human-only teams (M = 0.43, SD = 0.16) had higher work centralization t(178) = 2.93, p < .008, d = 0.44 

(lower CI: 0.14; upper CI: 0.73). For large teams, there was no significant effect for team type, t(97) = 

0.77, p = .45, d = 0.14 (lower CI: -0.19; upper CI: 0.48), with human-bot teams (M = 0.58, SD = 0.13) 

having, on average, the same amount of work centralization compared to human-only teams (M = 0.56, 

SD = 0.16). These results suggest bots alter the degree to which work is centralized in small and medium-

sized teams, providing partial support for Hypothesis 2.  

 
[Figure 4 Placeholder] 

Figure 4. Notched boxplots of work centralization in GitHub teams as indicated by the Gini coefficient, 

where higher values represent higher levels of centralization. Data are grouped by team type and size. 

There were significant differences between team types in small and medium teams. There was no 

significant difference between team types in large teams.  

 



BOTS AND PRODUCTIVITY 

31 

Table 9. Sampling distribution of the Gini coefficient. Information is provided for each team size category 

in addition to all 608 teams in the sample and all 20,119 teams that met our selection criteria prior to the 

application of the smart sampling algorithm. 

Team Size Median Gini Coefficient Standard Error 95% CI 

Small 0.37 0.16 0.02, 0.62  

Medium 0.48 0.15 0.16, 0.72  

Large 0.58 0.14 0.26, 0.80 

Study Sample 0.45 0.18 0.06, 0.74 

~20k Teams 0.32 0.17 0.02, 0.64  

 
 

Work Efficiency. To evaluate the efficiency of work carried out by the teams in our sample, we 

used the median number of days that issues survived in a project. A series of Mann Whitney U tests 

revealed no significant differences between team types across team size classes. Boxplots of the 

distribution of median survival days are provided in Figure 5 and summary statistics and Mann-Whitney 

U tests results are presented in Tables 10 and 11, respectively. These results suggest that bots do not 

significantly alter this particular dimension of efficiency in teams, failing to provide support for 

Hypothesis 3.  

A closer look at the number of issues reported in projects managed by human-only teams versus 

human-bot teams reveals that human-bot teams document, on average, far more issues than human-only 

teams (see Mean Number of Issues column in Table 10). This difference in issue documenting behavior is 

greatest between team types when the team is either medium-sized or large. This suggests that there is a 

positive association between the presence of bots and issue documentation, and this relationship is 

magnified in larger teams (i.e., more issues are identified and documented likely as a result of both bots 

and an increase in team size). Additionally, for human-only teams, the median number of days an issue 

remained unresolved and number of documented issues were both highest when the team was large and 

lowest when the team was small. This suggests that work efficiency in human-only teams appeared to be 
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sensitive to differences in team size. This does not appear to be the case for human-bot teams—although 

the number of documented issues increased with team size, the difference in median number of survival 

days across team size classes is smaller.  

 

 

[Figure 5 Placeholder] 

Figure 5. Notched boxplots of median number of days that issues remain unresolved in a project. In this 

plot, lower values indicate greater efficiency. Data are grouped by team size and team type. There were 

no significant differences between team types across team size classes. 

 

Table 10. Summary statistics for issue resolution. The mean and median values presented in this table 

have not been transformed. 

Team Type Team Size  Number of Teams Mean Number  
of Issues 

Median of Median Issue 
Survival Days 

Human-only Small 39 41.97 3 

Medium 43 52.74 5 

Large 30 232.97 11 

Human-bot Small 65 47.68 8 

Medium 55 102.55 11 

Large 71 422.49 9 

 

Table 11. Mann-Whitney U test results and effect sizes for issue resolution by team type. As is standard 

for nonparametric approaches, median values are reported for each team type.  

Team Size MedianHuman-

Only 
MedianHuman-Bot  U p abs(r) 
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Small  1.73 2.83 1111 .58 0.10 

Medium 2.24 3.32 992 .52 0.14 

Large 3.32 3.00 1079 .92 0.01 

 

Discussion 

We set out to study an important technological change altering the future of work, namely, how 

the introduction of AI to the workplace alters team processes and outcomes. As intelligent technology is 

more common, researchers need to study how work is altered when a machine agent becomes a member 

of a team. The objective of this research was to explore the association between bots and productivity 

outcomes in open source projects. To this end, we analyzed GitHub event data generated by hundreds of 

teams. We used a multifaceted approach to characterize differences in productivity between human-bot 

teams and human-only teams. Our results suggest that variations in processes and productivity are 

associated with the presence of bots in open source project teams. We find that: 1) human-bot teams have 

higher levels of human activity in general and this is among a subset of the team, 2) human-bot teams 

have higher levels of work centralization, and 3) human-bot teams did not differ significantly in their 

efficiency when compared to human-only teams, but do show increases in coordination processes. We 

next discuss the implications of these findings for future research and the development of AI in support of 

teamwork. 

In our analysis of productivity levels, we observed consistent differences in work per person 

across team sizes. Human-bot teams were more productive than human-only teams, with medium-sized 

human-bot teams showing the highest levels of productivity. This finding is important because our 

measure of productivity is work per person. This means that individual team members are showing 

greater productivity when bots are members of a team. This finding suggests that software bots play a role 

in altering individual output and momentum of work in GitHub repositories—for example, by prompting 

users to complete an action after code is pushed to the repository or sharing requested information 

through comments. In our data, this is evidenced by the higher levels of discussion observed in human-
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bot teams (see Table 4) and the large quantity of comment and push events produced by the bots in hybrid 

teams (Figure 2). This suggests that bots are fostering the collaborative component of the team and 

increasing the team’s task output. An investigation of how bots affect collective productivity in addition 

to individual productivity may help clarify the cases (e.g., different phases of the development process) in 

which bots can best support individual and collaborative work as others have found evidence for the 

relationship between individual and collective output in GitHub (Murić et al., 2019). 

Fitting these findings within our theoretical framework, the discussion around code artifacts 

illustrates a key bridging function between internal and external cognition as described in the 

Macrocognition in Teams Model (MITM). In particular, the macrocognitive function of knowledge 

building emerges from various forms of information sharing and deliberative communications on the part 

of teams. Thus, we found that human-bot teams engaged in more knowledge building activities around 

their code artifacts. This was also associated with increases in submissions and acceptances of changes to 

source code. Similarly, with regard to findings on issue comments, the human-bot teams were engaged in 

more knowledge building activities around deliberations of problems to be resolved.  

Despite our findings on communications, it is common for open source project teams to use 

communication channels outside of social coding platforms (Storey et al., 2017). We therefore do not 

know to what degree, and how much, communication may have also been occurring outside of the repos 

in our study sample. Further, this could be to the detriment of team functioning. Specifically, when 

information and knowledge about the team’s tasks and members are distributed across a potentially 

unmanageable number of tools and online spaces, this can attenuate performance. Not only might this 

increase workload by requiring attention to ‘where’ information and knowledge resides, but it also serves 

as a barrier to participation in the project by introducing learning challenges for project newcomers, both 

human and machine. Based on this we suggest that additional research is needed to understand how 

differences in the number and use of communication channels interact with the presence of bots to alter 

team growth and productivity in open source projects.  
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Our results also suggest that bots were associated with higher levels of work centralization. One 

interpretation of this finding is that the smaller subset of team members who did the majority of the work 

were more productive in human-bot teams than in human-only teams. On the one hand, given that bots 

are associated with increased human activity and centralization is related to team size, it is possible that 

bots are boosting the productivity of team members. On the other hand, it is possible that bots help 

increase user awareness and participation and this, in turn, increases the task workload of the team 

members who manage the project. Indeed, research on online innovation communities shows that new 

members are more likely to participate when other, more active members are responsive to them (Zhang 

et al., 2013) and, as previously mentioned, bots have been associated with increased workload for project 

integrators (Bernardo et al., 2018). Future research can build on these findings by examining how 

different types of bots can be leveraged to diminish or increase work centralization, and shift 

centralization among members of a team throughout the lifetime of a project.  

To assess work efficiency, we examined the speed with which teams address documented issues. 

In our analysis of issue resolution times, there were no significant differences. But, given that this is 

exploratory research, and we used conservative levels of significance, the numerical differences are worth 

reporting to set the stage for future research. First, we found that the median value for issue survival days 

was lower for human-only compared to human-bot teams when the team was small or medium-sized. The 

difference between team types was reversed but less in large teams; that is, issues remained unresolved 

for fewer days in large human-bot teams compared to their human-only counterparts. Again, the 

differences between these teams were not statistically significant, limiting interpretation of our results. In 

future research, analysis of issue resolution times as a measure of work efficiency may be enhanced by 

evaluating the likelihood that an issue will be reopened after initial closure and examining differences in 

time to resolution based on issue topic and issue comment contents to capture nuances in problem-solving 

outcomes.      

In the context of prior research, our results suggest that work centralization may have predictive 

utility with respect to variations in work efficiency. Relevant to efficiency in issue resolution, across team 
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sizes, human-bot teams, on average, documented more issues than human-only teams. We can interpret 

this difference in the context of how the types of events generated by bots in our data affects coordination. 

Bots produced a large proportion of issue comments and thus likely played a significant role in 

information sharing and the coordination of work around issues in addition to automating the 

documentation of issues. Jarczyk et al. (2018) found that the centralization of work, specifically code 

modifications, was positively associated with issue closure in mature open source projects. Although we 

did not observe a similar trend across team size levels in our sample of relatively new open source 

projects, the presence of bots was positively associated with work centralization in small and medium-

sized teams. These mixed findings reflect an opportunity to identify factors that moderate the relationship 

between efficiency and quality in growing projects. 

These findings also contribute to the future of work for open source projects. As noted, we 

utilized a definition of work that was broader than traditional studies because it extended beyond code 

contributions to include teamwork aspects of open source development. This included for example, the 

coordination of work and knowledge building observed in comments, a process foundational to the 

MITM (Fiore et al., 2010). We consider the differentiation and study of teamwork and taskwork critical to 

advancing research in human-machine teaming. This is relevant to the broader open source landscape 

because social coding platform researchers whose findings inform the design of the online workspace are 

recognizing the importance of other types of contributions to collaboration that are not captured when 

focusing strictly on code. For example, in a recent report, GitHub not only emphasized the importance of 

discussions, but also included statistics to emphasize different aspects of teamwork and roles involved in 

open source projects. They note that this illustrates a shift showing that “the world of GitHub is 

growing—not just in numbers, but also in diversity, with existing users reimagining the projects they can 

build and how they collaborate" (Octoverse 2020, 2020, p. 9). 

In sum, the data suggest that human-only teams and human-bot teams differ along a number of 

productivity dimensions, signaling a shift in work practices that warrants further investigation by the 

cognitive science community. From this, we can interpret how existing theory on team cognition provides 
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a way forward for future research. First, in the context of the MITM, the use of shared artifacts seems to 

affect coordination by making concrete the extended cognitive system that can assist interactions (Fiore & 

Wiltshire, 2016). Specifically, OSS development bots contribute to coordination through the 

externalization of information, aiding human memory and prompting action. We suggest that research 

focusing on this area can help us understand additional ways bots can be used to create such artifacts and 

strategically organize them in the online work environment. In this way, research can study how to design 

AI to more specifically focus on what are traditionally abstract facets of team cognition, and help us 

understand how to ease, for example, memory loads on humans to improve overall coordination. Second, 

in the context of work centralization, our findings suggest that information gleaned from different 

distributions for different types and aggregations of work needs to be studied to understand changes in 

coordination behavior in online environments. This can be leveraged to examine varying team needs and 

performance differences in open source projects and identify opportunities for bots to support taskwork 

and/or teamwork. 

 

Limitations  

Although this is one of the first studies to examine real-world behavioral changes between 

human-only and human-machine teams, there are limitations that identify important future directions. 

First, the nature of the data collected did not allow us to conduct a natural experiment comparing team 

productivity before and after the introduction of machine agents in a project. Thus, our results, while 

informative, do not provide insights about the causal relationship between bots and team productivity. 

Future research should identify appropriate data collection methods for the study of work in real-world 

contexts that allow for pre- and post-type evaluation of technological interventions.  

The approach used in this research can be extended to include the effects of bot adoption in 

addition to analyses based on temporal information that can elucidate the relationship between our 

measures of productivity and the concepts of stability and metastability introduced earlier in this work. 

For example, high degrees of work centralization may be associated with stability and the particular 
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network structure characteristics (e.g., hierarchy, modularity, etc.) that emerge as open source projects 

grow, might reflect the conditions and interactions that are needed to achieve metastability. This could be 

manifested in terms of how expertise, knowledge, or influence is distributed among team members in a 

project over time, potentially resulting in the evolution of a network towards or away from stability and 

metastability. An analysis of burstiness applied to GitHub event data (Saadat et al., 2020) and phase 

transitions in collaborative problem solving (Wiltshire et al., 2018) observed around documented issues 

can complement such an approach to provide a more comprehensive understanding of how bots 

contribute to and alter team dynamics.  

The interpretation of the analyses carried out in this study was primarily limited to comparisons 

within team size categories (e.g., small human-only teams were compared to small human-bot teams). 

This was due not only to the statistical tests selected based on the characteristics of the data and our 

research questions but also the measures we selected to operationalize variables of interest. Work 

centralization was quantified using the Gini coefficient, an approach susceptible to bias in small samples. 

In our research, this bias would result in lower Gini coefficient values for small teams compared to large 

teams with a proportional distribution of work. However, because we compared teams of similar sizes, we 

contend that this measure provides insights regarding the effects of bots on the distribution of work in 

open source projects.   

Furthermore, because bot identification remains challenging for researchers, it is possible that the 

bot classification method described here failed to capture all automated activity. Approximately 8% of the 

accounts in our sample were identified as bots. Manual identification of bots in prior research has 

detected and labeled 11% of GitHub accounts as bots (Golzadeh et al., 2021), suggesting that our 

classification method may be relatively conservative. We also did not have access to usernames due to 

data sharing constraints. This limited our ability to conduct any aliasing to identify users who may have 

used multiple accounts to contribute to projects in GitHub. It is unclear whether this can be overcome, but 

if so, researchers can also examine how team cognitive factors, like team familiarity, might interact with 

variables of interest when studying human-bot teams. Lastly, the anonymized nature of the data did not 
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allow for an analysis of differences in motivation between salaried and volunteer developers as it relates 

to productive output and bot adoption. Although prior research on motivation in open source projects 

provides evidence for the effects of both altruistic and economic incentives on participation (Baytiyeh & 

Pfaffman, 2010; Wu et al., 2007), less is known about the relationship between motivation and bot 

adoption.  

 

Conclusions 

We conducted an observational study of large-scale collaborations in distributed software 

development in which we characterized the role of bots in open source teams to better understand the 

future of work in complex sociotechnical systems. In this study, we found that only a small number of 

teams maintaining repositories in our sample are human-machine hybrids and most of these teams have 

less than two bots. Our results indicate that there are significant differences in productivity between 

human-bot teams and human-only teams and that human-bot teams generally have higher levels of 

productivity compared to human-only teams. Relevant to communication and efficiency, more issues 

were documented in human-bot teams than in human-only teams. Lastly, in considering social dynamics, 

bots remain limited in their ability to support teamwork, necessitating further research on developing 

socially intelligent machine agents (Fiore et al., 2021). 

Our research characterizes the association between machine agents and team outcomes. The 

results of our analyses indicate that bots contribute to the productive capacity of teams engaged in 

distributed complex collaborative work. The findings presented here can help researchers in cognitive 

science and beyond conceptualize next steps for human-machine teaming research. In their current state, 

machine agents in the context of OSS development are able to take on a specific set of tasks with relative 

ease. Although the bots in our sample produced a high proportion of comments, their ability to engage in 

social interactions is greatly limited. Indeed, bot communications tend to be limited to predefined, or 

canned, messages. To more adequately engage in communication with humans, bots need to be more 

intelligent about not only the taskwork in a project but also about their teammates (Fiore & Wiltshire, 
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2016). We contend that human-machine teams built on a strong foundation of team theory are more likely 

to exhibit improved team performance.  

In terms of practical implications, our results suggest there are tradeoffs associated with the 

adoption of bots in GitHub teams. Bots seem to be drivers of increased human activity in software 

development projects. High levels of activity and an influx of new contributors are both used as indicators 

of project success by developers (McDonald & Goggins, 2013). However, these patterns of user behavior 

can also result in higher workload for key developers in the projects. This was evidenced by Wessel et 

al.’s (2018) work showing that bot adoption results in an increase of pull request submissions and our 

finding that human-bot teams handle more issues than human-only teams. Additionally, the inclusion of 

many bots in a team may introduce challenges associated with the management of the bots themselves. 

Indeed, developers report that they experience notification fatigue as a result of automated activity 

(Mirhosseini & Parnin, 2017). The development of more socially intelligent bots may help reduce these 

issues. For example, machine agents able to derive social cues and signals from developer behavior to 

infer mental states may be able to detect the most appropriate time windows for notifications (Fiore et al., 

2013).  

Overall, this research provides important insights for the future of work. Given the changing 

nature of the sociotechnical systems, cognitive science must build both a theoretical and empirical 

foundation of research to help develop technologies for improving work, as well as inform design of 

intelligent technologies that can augment human performance. As intelligent machines become more 

prevalent parts of the labor landscape, we need to better understand how they influence cognition and 

collaboration.  
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