
BOTS AND PRODUCTIVITY

1

EveryBOTy Counts: Examining Human-Machine Teams

in Open Source Software Development

Olivia B. Newton1,2, Samaneh Saadat3, Jihye Song1,2,

Stephen M. Fiore2,4, and Gita Sukthankar3

1College of Engineering and Computer Science

2Institute for Simulation and Training

3Department of Computer Science

4Department of Philosophy

University of Central Florida, Orlando, FL, USA

Keywords: Collaboration; Cognition; Software Development; Bots; Sociotechnical Systems

Corresponding Authors: Stephen M. Fiore (sfiore@ucf.edu)

and Olivia B. Newton (olivia.newton@ucf.edu)

3100 Technology Pkwy, Orlando, FL 32826

BOTS AND PRODUCTIVITY

2

EveryBOTy Counts: Examining Human-Machine Teams
in Open Source Software Development

Abstract

In this study we explore the future of work by examining differences in productivity when teams are

composed of only humans or both humans and machine agents. Our objective was to characterize the

similarities and differences between human and human-machine teams as they work to coordinate across

their specialized roles. This form of research is increasingly important given that machine agents are

becoming commonplace in sociotechnical systems and playing a more active role in collaborative work.

One particular class of machine agents, bots, is being introduced to these systems to facilitate both

taskwork and teamwork. We investigated the association between bots and productivity outcomes in open

source software development through an analysis of hundreds of project teams. The presence of bots in

teams was associated with higher levels of productivity and higher work centralization in addition to

greater amounts of observed communication. The adoption of bots in software teams may have tradeoffs,

in that doing so may increase productivity, but could also increase workload. We discuss the theoretical

and practical implications of these findings for advancing human-machine teaming research.

BOTS AND PRODUCTIVITY

3

EveryBOTy Counts: Examining Human-Machine Teams
in Open Source Software Development

Collaboration continues to influence the future of work as problems become more complex and

innovation becomes a primary driver for change, increasing the need for complementary forms of

knowledge and skills (Fiore, 2008; Fiore et al., 2010; M. McNeese et al., 2020; N. J. McNeese et al.,

2018). Concomitant with this, though, is a need to develop collaborative technologies that are able to

scaffold work (Fiore & Wiltshire, 2016). To support modern work, a number of online collaborative

support tools have emerged, some of which include artificial intelligence (AI) to create new forms of

human-machine teaming. From a practical standpoint, it is unclear to what degree these intelligent

technologies enable or hinder collaboration. From a theoretical standpoint, researchers must address how

these technologies alter the nature of collaborative work. The field of cognitive science, grounded in

interdisciplinarity, is well positioned to address these questions.

In this paper, we examine how open source software (OSS) development, a popular paradigm in

modern software development, is altered when machine agents are members of the team. The creation and

adoption of AI to support human work, referred to as bots, was made possible by advances in automation

for continuous activities and repetitive tasks in this work domain. In this context, bots are autonomous

software agents that complete critical work activities with humans in software development projects.

These machine agents have communication and decision capabilities that enable them to interact with

their human teammates to support their activities in addition to completing their own tasks (Golzadeh et

al., 2021) in service of a shared goal, improved software.

We focus our research on open source projects hosted on GitHub, an online platform for

collaborative software development, to explore how the presence of bots in teams is related to team

productivity. Our goal is to set the stage for cognitive science research on the future of work via an

interdisciplinary analysis that combines theory from the study of teams (e.g., Claggett & Karahanna,

2018; Rico et al., 2008), team cognition (Cooke et al., 2013), and macrocognition in teams (Fiore et al.,

BOTS AND PRODUCTIVITY

4

2010; Fiore & Wiltshire, 2016) with computational social science (e.g., Goggins, Mascaro, & Valetto,

2013; Lazer et al., 2009). We first briefly review sociotechnical systems theory and its relevance to

understanding human-machine teaming. We then focus on open source development, a particular work

domain where human-machine teaming is on the rise. We describe a study comparing human-only teams

to human-machine teams and discuss how the inclusion of a machine agent as a member of a team alters

collaborative processes and outcomes.

Sociotechnical Systems and Team Cognition

The future of work has been designated as one of the most significant challenges for research

across disciplines. Academia, industry, and government are focusing on how to understand the changing

nature of the sociotechnical systems, how to develop technologies for improving the nature of work, as

well as how to design technologies to support human workers (e.g., NSF’s 10 Big Ideas: Future of Work

at the Human-Technology Frontier, 2020). The growing presence of intelligent machines altering the

labor landscape in a number of organizational domains makes this even more challenging for researchers

and practitioners (Erickson et al., 2018). Little is known about the effects of the inclusion of intelligent

machines as team members. Although various forms of intelligent technologies have been studied for

decades, much of the related research focuses on technology as part of a work system rather than a full-

fledged member of a team. It is therefore imperative that researchers examine how socially intelligent

machine teammates alter the behavior of humans engaged in collaborative work (Wiltshire et al., 2017).

The Macrocognition in Teams Model (MITM) was developed as a theoretical approach capable

of addressing complex cognition when humans and machines interact (Fiore et al., 2010) and provides an

appropriate foundation for this shift in research. It encompasses individual and collaborative processes as

well as internal and external cognition and the processes associated with each (Figure 1). Relevant to the

present context, the MITM has been applied to study how the integration of technology alters teams and

augments their cognitive processes (Fiore et al., 2014). It can be used to examine how technology as a

teammate influences coordinative activities across areas like individual and team knowledge building.

BOTS AND PRODUCTIVITY

5

Researchers have also developed foundational work for the application of the MITM to the development

of intelligent machines to support team cognition and improve collaborative processes for problem

solving (Newton, Wiltshire, et al., 2018).

In initial work studying the communication-technology linkage, Fiore et al. (2014) drew from the

MITM in a study of NASA mission control teams. They specifically focused on collaborative problem

solving dealing with a failure of technology on the International Space Station. In that analysis, they

found that macrocognitive functions, such as knowledge building activities, often extended cognition

from individual to team, using technological scaffolds co-created by problem-solving teams. Fiore and

Wiltshire (2016) elaborated on these and related findings to develop a theoretical framework for studying

intelligent technology as a teammate by more clearly linking elements of the team cognition theory to

technological scaffolds. In the MITM, humans and technology are seen as functioning as an integrated

unit in which cognition is amplified.

[Figure 1 Placeholder]

Figure 1. The Macrocognition in Teams Model

More recent work has studied the deliberative processes that underlie major macrocognitive

functions associated with collaborative problem solving in a lab setting. In a study of communication

patterns and phases, Wiltshire et al. (2018) showed that the MITM was able to capture changes in

collaboration processes while working to solve a problem. This ranged from variations in information

requests and provisions to situation updates and affirmations of information. The proportion of differing

macrocognitive processes shifted as teams solved problems (e.g., moving from knowledge constructions

to deliberations around solution options).

Prior work on the effect of machine agents on coordination and team cognition has been limited

by the availability and prevalence of intelligence technology in work domains. Advances in machine

intelligence have, however, led to the introduction of software agents in online spaces (e.g.,

BOTS AND PRODUCTIVITY

6

communication channels and social media). In the current context, we build on this to consider how

machines alter human work when the technology itself exhibits a form of intelligent, agentic behavior in

service of collaborative work. This introduces a set of research issues that must be understood from not

only the computational standpoint, but also the psychological and organizational standpoint. Further, we

add to newly developing areas of study where researchers are examining these forms of human-machine

collaboration, including human-autonomy teaming, to understand how machine agents influence

coordination and team performance.

In human-autonomy teaming, a human teammate collaborates with an autonomous agent to

achieve a shared task goal and the autonomous agent has the ability to “take initiative and give orders to

both human and automated counterparts” (Demir et al., 2019, p. 150). The literature describes an

autonomous agent as a member of a team if it holds a unique role, but maintains interdependence with

human activities, and completes tasks that would otherwise be assigned to a human, exhibiting

independence and proactivity to alter process and performance (Fiore & Wiltshire, 2016; Larson &

DeChurch, 2020; O’Neill et al., 2020). From that theoretical perspective, recent studies have examined

differences between human-only teams and human-machine teams through the lens of interactive team

cognition theory. This draws from complex systems theory, defining teams as a particular type of

nonlinear dynamical system in which team cognition is an emergent property of team interactions.

Informed by the aforementioned theories, Demir and colleagues (2019) varied team composition

in a controlled experiment, assigning participants to an all-human team, a human-machine team, or a

human-confederate team where an experimenter played the role of an autonomous agent. When looking at

teams interacting over time, and how perturbations altered performance, they found that coordination in

human-machine teams was more stable than in all-human teams. The human-machine teams did not

however achieve metastability in coordination—characterized by agility and responsiveness—as observed

in the human-confederate teams. The rigidity of the human-machine teams resulted in lower levels of

effectiveness in terms of both team performance and situation awareness. This finding supports recent

theorizing that metastable coordination underpins optimal levels of team performance in demanding

BOTS AND PRODUCTIVITY

7

environments (Demir et al., 2018). Demir et al. (2019) theorize that their findings serve as evidence for an

“inverted U-shaped relationship between team stability and team effectiveness” where optimal

performance requires teams to “strike a balance between stability and instability” (p. 157). These findings

add to prior research by Demir et al. (2018) and McNeese et al. (2018), who similarly showed, in different

task contexts, that teams who were stable rather than metastable in their coordination demonstrated a lack

of adaptability and less effectiveness in dynamic environments.

Researchers have also found that team structure and team building interventions influence social

dynamics (e.g., communication patterns) in human-machine teaming, but only the latter factor contributes

to changes in performance (Walliser et al., 2019). Such research finds that the use of team building

activities, like mutual goal setting and role clarification, were associated with higher performance

compared to informal cooperative gameplay between human and machine collaborators prior to the

completion of the experimental task.

Across these studies, machine teammates seemingly contributed to the achievement of stability,

but the development of machine agents with higher levels of flexibility and adaptability is paramount for

the achievement of metastability. This gap in machine capabilities is evident, for example, in the

observation that machine teammates failed to “anticipate information needs” at the same level of human-

only teams (N. J. McNeese et al., 2018, p. 272). In addition to altering communication dynamics, low

language skills on the part of the machine agents may have increased the workload of human teammates

as they had to ensure their communications were unambiguous and without error lest they be

incomprehensible to their machine teammate (e.g., human teammates could not use abbreviations).

Indeed, Demir et al. (2018, 2019) note that the machine agents used in their experiments had limited

language capabilities, imposing constraints on communication used by the humans on the team.

In sum, these studies provide insights into team processes and performance when intelligent

machines are both a component of, and contributing members in, collaborations. This body of work,

however, has relied on experiments using artificial tasks in addition to samples made up of primarily

naive/novice participants (e.g., university students). Few studies have examined collaboration and

BOTS AND PRODUCTIVITY

8

coordination in human-machine teams in real-world work contexts. We next discuss how we addressed

this gap and describe the particular context in which we study human-machine teaming.

Open Source Software Development

In the past two decades, the OSS development paradigm has become increasingly common in

software development. This trend emerged, to some extent, as a result of changes in organizational

practices (e.g., adoption of agile and distributed development approaches; Abrahamsson, Salo,

Ronkainen, & Warsta, 2002; Dingsøyr, Nerur, Balijepally, & Moe, 2012) but was also driven by the

popularity of software freedom among developers and self-described hackers (Coleman, 2013).

Furthermore, online platforms for “social coding” have gained popularity among both organizations and

individuals, promoting the temporal and geographic distribution of collaborative work in open source

projects (Yu et al., 2014). For example, GitHub, a widely-adopted social coding platform, is used to host

a variety of software projects, including those associated with major companies and those without direct

or indirect corporate support (Octoverse 2020, 2020). Its community is made up of salaried and

independent developers (Reyes López, 2017; Yu et al., 2014), resulting in collaborations that blend

crowdsourcing with traditional teams (McDonald & Goggins, 2013).

 In social coding platforms, developers may integrate commercially developed apps or create their

own forms of intelligent automation to streamline and distribute elements of their work (Lebeuf, 2018).

These technologies are commonly referred to as bots and their inclusion creates human-machine hybrids

in which work is distributed across people and intelligent technology. We contend that the combination of

the distributed nature of work in online platforms, the varied complexity of open source projects, and the

inclusion of bots as members of the team, provides an ideal real-world context to study the future of work

and the increasingly prevalent sociotechnical system resulting from humans collaborating with intelligent

machines.

BOTS AND PRODUCTIVITY

9

GitHub as a Sociotechnical System

Social coding platforms are a relatively new and significant means of supporting social

interaction and technological advancement (Newton, Fiore, et al., 2018). In line with studies of

collaboration in science and technology, collaborative software development relies on both social and task

factors for goal completion. More specifically, this work requires an effective integration of both

teamwork and taskwork (Fiore et al., 2015; Fiore & Wiltshire, 2016; Mathieu et al., 2000) and, as a

collaborative platform for software development, GitHub aims to support these needs. In support of

taskwork, for example, it purports to help users maintain awareness of their collaborators’ activity, while

in support of teamwork, it provides an infrastructure for communication and other forms of coordination.

On the social side, the platform relies on features characteristic of social networking sites (e.g., following

users, favoriting content, and threaded discussions) to connect users with shared interests and support

resulting collaborations.

Despite the intent of platform designers, a number of challenges have been identified by its users

and linked to direct or indirect effects on teamwork and problem solving in open source projects. For

example, GitHub users have reported not using certain features (e.g., following users) because they are

not particularly useful in terms of staying up to date with projects. Instead, these features negatively affect

their productivity by introducing noise and information overload (Blincoe & Damian, 2015). Nonetheless,

other features, such as the inclusion of bots to reduce developer workload, afford the possibility of

increased productivity. This context, then, provides both theoretical and practical research directions.

From a theoretical standpoint, there is a need to understand how this complex system is altered by these

newer forms of collaboration. From a practical perspective, studying this context can contribute to the

design of more intelligent machine teammates, and offer guidance on improving human-machine teaming

requirements.

The diversity and complexity of the work observed in GitHub makes an analysis of team

processes challenging. Despite this, we can examine work in a social coding platform from a task analytic

BOTS AND PRODUCTIVITY

10

perspective to identify the sociotechnical features supporting team functioning. In the extant literature, the

structure of the platform is typically broken down into users, repositories, and features (Reyes López,

2017). The combination of these, summarized in Table 1, forms the foundation for GitHub as a

sociotechnical system for OSS development.

Table 1. The structure of GitHub as it relates to taskwork. The third column provides examples of the

macrocognitive processes and products that are associated with different aspects of the online platform.

GitHub Component Description Link to MITM

Users Individual (personal) account -

Organizational account
● Can link people (individuals) to

organizational account

-

Public Repositories
(Repos)

Repos are a online project space used to host
files, coordinate work, and engage in discussion
around artifacts (e.g., source code)

● Multiple repos may form a larger project
ecosystem

Externalized team
knowledge

Individual knowledge
building (e.g., knowledge
object development)

Interaction Modes:
User-Repo Create/delete a repo Individual knowledge

building

Externalized team
knowledge

Fork: create a copy of an existing repo Individual knowledge
building (e.g., knowledge
object development)

Issue: report a problem, make a request, or
initiate other discussion

Externalized team
knowledge (e.g., artifact
construction)

Push: update a repo, changes recorded via
commits

Individual knowledge
building (e.g., individual
information synthesis)

Pull request (PR): suggest change(s) to a repo Individual knowledge
building (e.g., knowledge

BOTS AND PRODUCTIVITY

11

object development)

Team knowledge building
processes (e.g., team
solution option generation)

Comment: documentation and discussion linked
to commits, issues, and PRs

Externalized team
knowledge

Team knowledge building
processes (e.g., team
evaluation and negotiation
of alternatives)

Watch: receive updates about activity in repo Individual knowledge
building (e.g., individual
information gathering)

Star: bookmark a repo Individual knowledge
building

Interaction Modes:
User-User

Follow: receive updates about an individual
user’s activity

Individual knowledge
building processes (e.g.,
individual knowledge
gathering)

Issue: communicate with specific user(s) via
tagging/assigning mechanism, or broadcast
message to project community

Externalized team
knowledge (e.g., artifact
construction)

Team knowledge building
processes (e.g., information
exchange)

Comment: communicate rationale, knowledge,
and/or solutions related to project files to user(s),
linked to commits, issues, and pull requests

Team knowledge building
processes (e.g., team
evaluation and negotiation
of alternatives)

In GitHub and other similar platforms, repositories, or repos, are used to host project files (e.g.,

source code and documentation) and serve as a shared space for collaborative work. In these repositories,

there is a significant amount of both collaborative activity and individual activity. Platform users can

contribute to, track, and discuss changes to project files. Developers with ‘write’ privileges can make

BOTS AND PRODUCTIVITY

12

direct changes to files by pushing content from a local copy of the repository (e.g., on their personal

machine) to the online repository. Any platform user can attempt to contribute to a repository by creating

their own local copy, making changes, and submitting a pull request. Project integrators can then review

the submission, discuss modifications through pull request review comments, and accept or reject the

request to integrate suggested changes. Overall, the collective that makes up a repository are all

contributing to a shared goal—that is, an improved software product.

In sum, platforms like GitHub represent an important development for the future of work.

Decades of research in sociotechnical systems provide a foundation from which to build an understanding

of these newer forms of collaboration. First, the work activity fits well with theories of teams. In the case

of GitHub and similar online work, we refer to the collective as a team because their combined output is

based on a significant amount of interdependencies with shared goals, and results in a unified product

(Salas et al., 2008). Second, in line with sociotechnical systems theory, this work is distributed across

people and machines, and increasingly, intelligent and autonomous technologies. Third, in line with

cognitive science, this fits with the MITM by providing a space for integration of internalized and

externalized knowledge in service of developing solutions to complex problems. We turn next to a

discussion of cognition and coordination in these new forms of teams. We then discuss how the

introduction of bots is potentially producing new interaction dynamics that alter collaboration and

cognition.

In order to focus our analyses of GitHub differences, we considered specific elements of the

MITM. Given the structure of GitHub, and how work is produced in open source projects, we consider

the knowledge building processes and problem solving outcomes elements of MITM. We consider

information sharing as it occurs through the use of issues and comments, and how these forms of

externalized cognition, makes distributed cognition more concrete. In particular, these serve as important

artifacts that support the communication and coordination within repositories. As such, they form the

basis for how we examine differences in teams to study how the inclusion of bots may alter

macrocognitive processes and overall team productivity.

BOTS AND PRODUCTIVITY

13

Cognition and Coordination in Open Source Projects

In open source projects, a number of tools and communication channels are used to coordinate the

work of developers. Some of these tools and channels are embedded in social coding platforms (e.g., issue

tracking and user tagging) while others originate from these platforms (e.g., email notifications) or

outside of them (e.g., in communication channels like Slack and social media like Reddit). Bots are a

newer and increasingly common means through which developers coordinate and delegate their work

(Hukal et al., 2019). Importantly, these technologies, including bots, vary in the degree to which they

support taskwork (i.e., behaviors for meeting objectives) and teamwork (behaviors for working well with

team members). We note here that this theoretical distinction is particularly important for cognitive

science and the introduction of intelligent technologies. Understanding how bots can differentially

contribute to taskwork and/or teamwork can inform the development of technologies that are more

appropriately designed for different components of collaborative work.

Several threads of research on software development in GitHub are most relevant to the present

work; namely, studies of individual and collective productivity in addition to studies of coordination. In

these domains, researchers typically examine developers’ activity profiles and/or their responses to

surveys and interviews to better understand development processes, social dynamics, and project

outcomes. The literature discusses differences between contributors, including their influence on each

other (e.g., Blincoe, Sheoran, Goggins, Petakovic, & Damian, 2016), and their levels and length of

participation (Onoue et al., 2013; Vasilescu, Posnett, et al., 2015). The evaluation of collective processes

and outcomes, like productivity and efficiency, is important as it provides insights about the viability of

the OSS approach for a given software product or service. Although performance measurement in GitHub

is challenging, some measures have been proposed in the literature, including integrator productivity (e.g.,

proportion of merged pull requests), code quality (e.g., density of bug-fixing commits; Vasilescu, Yu,

Wang, Devanbu, & Filkov, 2015), issue support quality (e.g., issue resolution times; Jarczyk,

BOTS AND PRODUCTIVITY

14

Jaroszewicz, Wierzbicki, Pawlak, & Jankowski-Lorek, 2018), and average developer productivity (e.g.,

work per person; Murić et al., 2019).

Researchers have also begun to explore different approaches for the study of coordination (Joblin

et al., 2017) and its relationship with productivity (Choudhary et al., 2018). Coordination can be implicit

or explicit, but it generally describes the means through which team members organize their activities

towards a shared goal (Rico et al., 2008). These processes shape the team’s understanding of

interdependencies for individual and collaborative output, leading them to develop strategies for the

effective integration of multiple contributions. Various coordination processes in social coding support

the knowledge building function of the MITM. This includes information sharing and discussion and

deliberation of externalized cognition maintained in repos. For example, implicit coordination in social

coding endeavors takes the form of information-gathering behaviors for the maintenance of awareness,

such as reviewing code artifacts or following a developer’s activities (Blincoe & Damian, 2015), whereas

explicit coordination is observed in comments linked to issues and source code. In complement to each

other, these processes support knowledge building through internalized cognition (coding expertise) and

externalized cognition (e.g., artifacts). Last, research on coordination shows that the size of a team is

likely to influence its members’ performance due to associated social dynamics (e.g., social loafing and

freeriding; Kidwell & Bennett, 1993) and evolving coordination requirements (Joblin et al., 2017).

In the context of software development, researchers have suggested that an investigation of the

relationship between team size and productivity can aid in the identification of a “critical size” for a

project’s community in terms of its efficiency (Murić et al., 2019; von Krogh et al., 2003). This is an

important feature of coordination given that researchers applying sociotechnical systems theory have long

studied how process changes relative to team size. Community growth in open source projects has been

positively associated with task completion (Chou & He, 2011) and is used by developers as an indicator

of project success (McDonald & Goggins, 2013), but it can be negatively associated with issue resolution

times (Jarczyk et al., 2018).

BOTS AND PRODUCTIVITY

15

Coordination is also affected by team size. Studies of distributed software development suggest

that, as in other industries, increasing team size results in increased communication costs and the need for

task delegation (e.g., Joblin et al., 2017; Romero et al., 2015). But studies also show that coordination

problems arising from large teams can be ameliorated. For example, the presence of a small team of

developers, who focus on managing and coordinating work in large open source projects, is linked to

improved issue resolution (Jarczyk et al., 2018). One way that open source teams have sought to improve

their performance and manage coordination challenges is through the adoption of technologies based in

AI: bots. We next discuss some of the research that has explored the implementation of bots in open

source projects.

Bots in Software Development

The widespread adoption of bots in software development is attributable to technological

advances that ease their integration in systems that support collaborative work (Lebeuf, 2018). Bots are

expected to improve software development processes, resulting in increased productivity and better

products (Lebeuf et al., 2018). Developers have recognized the utility of bots as facilitators of their

collaborative work and have thus sought to harness their potential. These bots can differ in terms of their

capabilities, as well as how they interact with the humans on a team. In the relevant literature, bots are

conceptualized as an interface between user and services, enabling a distinct interaction style that

provides value above and beyond traditional user interfaces.

Role-based classification of software bots reveals that the majority are taskwork-oriented, with

capabilities for a particular set of tasks in the development process (see Table 2). Although bots vary in

terms of their reasoning and agency, they are increasingly autonomous and equipped with social,

perceptual, and cognitive capabilities associated with agent-hood. GitHub bots have been classified as

having mid to high levels of agency, being able to take goal-directed action both with and without

supervision (i.e., partial and complete autonomy, respectively; Lebeuf, 2018; Lebeuf et al., 2019). These

capabilities enable bots to respond to their human counterparts’ taskwork needs (e.g., running tests on

BOTS AND PRODUCTIVITY

16

their code and offering potential followup actions) in addition to assigning taskwork to them (e.g.,

directing them to sign an agreement or review code modifications and submitted issues). Some research

has begun to explore how bots can move beyond taskwork to also improve teamwork by, for example,

reducing conflict between developers (Lebeuf et al., 2017).

Table 2. The types and roles of bots in software development, adapted from Storey and Zagalsky (2016).

In the fourth column, we identify the MITM processes and products that are supported by each bot type.

Bot Type Role Work Orientation Link to MITM

Coding Support Coding support bots help
developers to improve their
workflow efficiency while
engaged in coding activities.
This includes, for example,
synchronizing tools to reduce
workload, supporting awareness
of changes to the code, and
merging code changes from
multiple sources.

Taskwork Individual knowledge
building

Code Testing Test bots help developers
offload repetitive tasks by
evaluating code. These bots can
help reduce the time developers
devote to testing and may assess
the quality of the code or user
interfaces, keep track of
potential issues, and offer
suggestions for improvement.

Taskwork Individual knowledge
building

DevOps DevOps (AKA ChatOps) bots
are designed to reduce
communication needs and
improve the efficiency of
operations associated with
software development and
release. These bots specifically
help coordinate the activities of
developers and other personnel
across communication tools, and
can help “bridge the technical-
knowledge gap for stakeholders
on the team” (p. 930).

Taskwork/Teamwork Team knowledge
building

User Support User support bots help
developers manage reports and
requests from the software
product’s user base. For
example, these bots can directly
communicate with users, provide
answers to frequently asked
questions, and record user
feedback.

Taskwork Team problem solving
outcomes

BOTS AND PRODUCTIVITY

17

Documenting Documenting bots, as their name
implies, help with code and
software release documentation
by “aggregating information
from code commits and issue
comments” (p. 930).

Taskwork Externalized team
knowledge

Some bots used in open source projects are provided for developers through GitHub Marketplace,

the platform’s store for development tools. GitHub Apps, which are official GitHub bots, are provided to

automate developer tasks and potentially improve efficiency. Recent research on software bots in GitHub

finds that, although they complete a variety of tasks, their adoption in a project does not yield significant

increases in developer productivity (Wessel et al., 2018). Furthermore, some developers perceive bots as

lacking sufficient intelligence for decision support roles and report dissatisfaction with bots’ contributions

to collaborative processes (e.g., because of perceived unfriendly tone; Wessel et al., 2018).

Researchers have also analyzed differences in software repositories before and after the adoption

of Continuous Integration bots (Bernardo et al., 2018). In this study, it was observed that 51% of teams

increased their pull request merge rate after bot adoption. Researchers found that the reason for the slower

integration of external contributions in the remaining teams was a substantial increase in pull request

submissions after bot adoption. These mixed results suggest time delays associated with the introduction

of bots are not necessarily reflective of stagnant productivity levels. Instead, this reflects how bots can

change development processes and potentially influence project growth and performance. While bots may

help reduce developers’ workload for some tasks, they may also inadvertently increase workload for

developers managing the repository due to greater participation by both newcomers and established

collaborators in open source projects.

Present Study

As we have described, the increasing role of AI in teams requires interdisciplinary research

within the cognitive science community to improve their implementation and evaluation. From this,

BOTS AND PRODUCTIVITY

18

research can better account for the ways in which machine agents change performance and how such

changes differently affect taskwork and teamwork (Fiore & Wiltshire, 2016). In the present study, we

build on this body of work by taking a multifaceted approach to the study of productivity to explore

differences between human-only and human-bot teams. Towards this end, we conducted a study of large-

scale, distributed collaborative work in open source projects by analyzing data extracted from GitHub. As

this is a relatively new area of research in the future of work, our hypotheses are exploratory in nature.

Our hypotheses were guided by an overarching research question: Does the introduction of bots into the

sociotechnical ecosystem alter the nature of work? We set out to compare two fundamental team

parameters. First, we separated out team types; that is, whether or not a bot is present. Second, given the

aforementioned issues of size and coordination, we considered the size of a team as a variable for

analyses. With these distinctions, we developed the following hypotheses to determine if there are

differences in productivity between human-only teams and human-bot-teams.

○ Hypothesis 1. Bots alter the productivity levels observed in a team.

○ Hypothesis 2. Bots alter the degree to which work is centralized in a team.

○ Hypothesis 3. Bots alter the efficiency of productivity observed in a team.

BOTS AND PRODUCTIVITY

19

Methods

To test our hypotheses, we analyzed data extracted from an online platform, GitHub, used by

developers to work on open source projects. Information about both projects and individuals can be

gleaned from these data to study collaborative work in the wild as opposed to in the controlled laboratory

environment in which much prior research on human-machine interaction and teaming is typically set. In

the following paragraphs, we describe in detail the approaches employed to collect, process, and analyze

the data.

Data Source and Preprocessing

The data set analyzed for the purposes of this study represents a subset of a larger social media

platform data set curated and provided to us by a data provider as part of a larger grant program. In

accordance with the requirements of the organization funding the research, the data provider, an

information technology corporation, anonymized the data set prior to sharing it with researchers to protect

the privacy of GitHub users. The data set was collected from the GitHub API1 in 2017. In past research,

project age has been established as a significant predictor of activity levels and number of contributors

(Fronchetti et al., 2019). To control for the effect of project age, we selected GitHub repositories of the

same age in our larger sample, specifically only including data from repositories created in January 2016.

This resulted in the selection of approximately 900,000 repos. We additionally only included repos with a

specified programming language to ensure our analyses were applied to software projects as GitHub repos

are sometimes used for purposes other than software development (e.g., content curation and data storage;

Kalliamvakou et al., 2014), reducing the original selection to approximately 500,000 repositories.

Work Events. We refer to four specific GitHub event types as work events: pushes (internal file

modifications), issue comments and pull request review comments (team communications), and accepted

pull requests (external file modifications). Prior research has classified pushes as work events (e.g.,

1 https://docs.github.com/en/rest

BOTS AND PRODUCTIVITY

20

(Murić et al., 2019); we additionally included external file modifications because our study sample

included projects that relied on this type of contribution in addition to pushes.

Project Team. We considered a project contributor to be a team member if they submitted: at

least one push; at least ten issue comments or ten pull request review comments; or at least five merged

(i.e., accepted) pull requests to the repository. Push events were used as criteria for team membership

because they are made by individuals with special permissions, or access, to the repo in question. We

used the stated thresholds for comments and merge requests because they represent relatively high levels

of activity associated with higher levels of engagement with a project. The individuals who met these

thresholds thus made substantial contributions and were classified as team members. Similar thresholds

have been applied in prior research on collaborative work in GitHub (Murić et al., 2019). Teams that

generated fewer than 20 work events in the platform in the first 6 months were excluded from the data set.

These criteria were used to ensure that the projects were maintained by an

active group of developers (≥ 2) and not abandoned soon after creation as

has been observed in GitHub (e.g., Kalliamvakou et al., 2014). We identified 20,119 GitHub

repositories that met these criteria. Event data for the first 13 months following repository creation was

extracted for further processing and analysis.

Team Type. As part of the data sharing agreement, the data provider labeled a user as a bot if: the

account type was identified by GitHub as a bot; the username ends with ’-bot’; and/or the account

generated repeated identical comments. Similar approaches have been described in the literature (e.g.,

Golzadeh et al., 2021). This information was used to classify the teams in the data set as either a human-

only team or human-bot team. Of the over 20,000 teams in the data set, only 304 (2%) teams had at least

one bot.

Smart Sampling. In addition to the issue of significant group imbalance between team types, there

is a possibility that the members of human-bot teams had higher levels of expertise than the members of

human-only teams in our data (i.e., only more experienced developers choose to adopt bots). To address

BOTS AND PRODUCTIVITY

21

this, we adapted a smart sampling approach developed by Saadat and Sukthankar (2020) and

implemented in Python using metrics in the Scikit-learn library (Pedregosa et al., 2011) to control for

variations in developer expertise. This algorithm was used to select the subset of human-only teams that

were most similar to the human-bot teams in terms of expertise.

First, we identified GitHub features that serve as proxies for expertise in the platform and

extracted a vector for every team member. While expertise research in other domains has identified

specific criteria to differentiate experience levels, what counts as expertise in open source development is

less well defined (Baltes & Diehl, 2018). As such, we determined a set of user characteristics that could

differentiate more from less expert teams. For each team member, we created a vector consisting of: 1)

their number of followers, 2) the number of users they follow, 3) the number of public repositories they

own, and 4) their gh-impact. A user’s gh-impact is based on the popularity of the repositories they own

and thus quantifies influence on GitHub (Miller, 2016). A high gh-impact score indicates that the user

owns many projects that exhibit high levels of activity.

Then, we generated a team-level expertise vector by summing each variable in the expertise

vector of team members to represent their collective expertise. For example, in a team with two human

members, let 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) and 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) be their individual expertise vectors. The sum of

𝑢 and 𝑣	is their collective expertise vector, 𝑢 + 𝑣 = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2, 𝑢3 + 𝑣3, 𝑢4 + 𝑣4). To mitigate the

dominance of variables with large values, we normalized the expertise vectors to range between zero and

one prior to running the similarity calculation. For example, prior to normalization, the number of

followers varied between 0 and 1,644 and the number of repos owned varied between 8 and 88,791.

Finally, team expertise vectors were matched between team type groups. For each human-bot

team, the smart sampling algorithm selected the most similar human-only team based on minimum

Euclidean distance. This process was repeated for each human-bot team and resulted in the selection of

304 human-only teams with expertise levels corresponding to the 304 human-bot teams in the data set.

The final data set consisted of work events generated by these 608 teams (i.e., our study sample; Table 3).

BOTS AND PRODUCTIVITY

22

Team Size. We classified teams as small if they had two or three human contributors, medium if

they had between four and six human contributors, and large if they had more than six human

contributors. Other researchers (e.g., Vasilescu et al., 2015) have used higher thresholds to categorize

teams. However, we chose these thresholds in order to align with the traditional definition of team size as

found in the human factors and organizational sciences literature (e.g., Weiss & Hoegl, 2016).

Furthermore, by separating along these three size categories, we can better characterize how the presence

of bots alters work activity in teams of traditional size as compared to those where their larger size may

increase coordination demands.

Table 3. The number of teams in our sample by team size and team type. Team size range is provided in

brackets. Although the small team size category was the largest (281 teams), the majority of teams in the

sample had at least four human members (327 teams).

Team Size [min, max] Team Type Number of Teams

Small [2, 3] Human-only 153

 Human-bot 128

Medium [4, 6] Human-only 96

 Human-bot 84

Large [7, 246] Human-only 55

 Human-bot 92

Team Productivity Variables

Our analysis of productivity focused on three complementary measures derived to help us

characterize the amount and efficiency of work completed in a repository as well as the distribution of

work across members of an open source project. This multifaceted approach helped us investigate and

interpret differences in productivity in relation to the presence or absence of bots on a team, and thus test

each of our aforementioned hypotheses.

BOTS AND PRODUCTIVITY

23

Work Per Person. First, to evaluate the productivity levels of teams (H1), we aggregated team

members’ GitHub activity during the first 13 months following the repositories’ creation. Raw event

counts and median values are provided in Table 4. This time period was selected to ensure that we

collected a sufficient amount of data for our analyses. From these event counts we calculated the average

amount of work per team member—number of pushes, issue comments, pull request review comments,

and accepted pull requests—within a repository during this period. We used this measure because teams

varied in size and our interest was not necessarily overall productivity, but the proportionate amount of

activity per team member. The primary question of interest is whether work per person is higher or lower

in traditional versus human-bot teams. Our approach can be distinguished from Murić et al.’s (2019)

productivity measure in that our definition of team and work extends beyond code contributors (i.e., those

that submit pushes and pull requests) to include other teamwork aspects of OSS development, including

the coordination of work and knowledge building observed in comments, a team process foundational in

the macrocognition in teams model (Fiore et al., 2010).

Table 4. Total counts and median values for work events generated by humans in each team type. Pull

request is abbreviated to PR and pull request review comment is abbreviated to PRRC. Median values

have been rounded to the nearest whole number. Only 60 (52 human-bot) of the 608 teams in the sample

had PRs generated by humans and 346 (237 human-bot) of the 608 teams had PRRCs generated by

humans.

Team
Type

Total
Push

Median
Push

Total
Issue

Comms

Median
Issue

Comms

Total
PRRC

Median
PRRC

Total
Merged

PR

Median
Merged

PR

Human-
only 45,348 64 28,744 4 9,194 0 217 0

BOTS AND PRODUCTIVITY

24

Human-
bot 80,985 130 85,983 46 39,820 16 1,184 0

Work Centralization. Second, to understand how work activity varies within a team (H2), we

considered the distribution of work across team members. This allowed us to examine an important issue

with regard to variations in productivity and team size—that is, the high amount of work completed by a

small number of open source project team members. In the management sciences and economics

literature, the unequal distribution of a given variable is explained by the Pareto principle, or the 80-20

rule, which states that, in this context, 80% of the work in a team is completed by 20% of team members

(Newman, 2005).

The inequality of work distribution can be measured using the Gini coefficient, a calculation

initially developed to study income disparity (Dorfman, 1979), and has more recently been adapted to

study disparities in other domains (e.g., in group diversity; Solanas, Selvam, Navarro, & Leiva, 2012),

including work in OSS development (Jarczyk et al., 2018). The larger the Gini coefficient, the higher the

centralization among a small number of people in a population, and thus, the more unequal the work

distribution. With this, the Gini coefficient can help us determine if the distribution of work done per

team member differs between human-bot teams and human-only teams. We calculated a Gini coefficient

for each team using the inequality analysis method2 provided in the Explore package of the PySAL

Python library (Rey & Anselin, 2010). This function was applied to human-generated work events, which

were positive, nonzero data.

Work Efficiency. Third, to characterize differences in work efficiency (H3), we examined the rate

at which teams resolve open issues in a project. Within GitHub’s issue handling infrastructure, users can

report a bug or provide a feature request, among other things, by opening an issue. The issue is closed

when the problem or request is resolved or otherwise addressed. Issue closure rates thus reflect the speed

2 https://github.com/pysal/inequality/blob/master/inequality/gini.py

BOTS AND PRODUCTIVITY

25

with which teams resolve problems and have been proposed as a means to quantify development process

performance of open source project teams (Jarczyk et al., 2018). In linking this measure with the MITM,

we propose that the time to resolve, or close, an issue is a team problem solving outcome and specifically

reflects efficiency in planning process and plan execution.

We performed survival analysis to calculate how quickly an issue is addressed by the teams in our

sample. Survival analysis is primarily used to model the duration of time until an event happens (Klein &

Moeschberger, 2003), and has been adapted to study many phenomena with temporal characteristics,

including how long issues remain unresolved in software development projects (Jarczyk et al., 2018). We

used a non-parametric statistic, the Kaplan-Meier estimator, to estimate the survival curve (Kaplan &

Meier, 1958). The work efficiency variable was computed using lifelines, a Python implementation of

survival analysis (Davidson-Pilon, 2014).

The repositories in our sample were active at the time of data collection. As a result, it was likely

that there were open issues at the time of data collection that may have been closed after data collection,

resulting in incomplete information about these issues. This means without an endpoint for such issues, it

is unknown if and when they were resolved. Survival analysis is designed to utilize data containing

incomplete information to make inferences and is thus well suited to our needs. For this analysis, we

included only repositories that had at least 5 issues, resulting in the selection of 303 teams (191 human-

bot teams). This threshold was applied to ensure meaningful results (i.e., based on teams who made use of

the issue handling infrastructure) and was based on prior research on issue survival in GitHub (Jarczyk et

al., 2018).

Statistical Tests and Transformations

Control Check: Smart Sampling. The variables selected as expertise proxies did not follow a

normal distribution. As a control check, we used the Mann-Whitney U test, a nonparametric alternative to

the independent sample t-test that does not assume normality, to statistically evaluate expertise

differences between team types.

BOTS AND PRODUCTIVITY

26

Transformations of Productivity Variables. The distribution of work per person was right-

skewed. Therefore, for the purposes of visualization and statistical analysis, we applied a log

transformation to the variable. The distribution of the work efficiency variable, median survival days, was

also skewed and, because some of the teams in our sample had a median survival day of zero (i.e., they

frequently resolved issues in less than a day), we applied a square root transformation to this variable.

Transformations failed to sufficiently approximate a normal distribution leading us to apply

nonparametric statistical tests in our analysis of work efficiency.

Productivity Variables Analysis. To statistically analyze differences in work per person and work

centralization between team types, we used a series of Welch's unequal variances t-tests, a modification of

the two sample t-test that is appropriate for cases in which there are unequal groups and there is unequal

variance between those groups. The Holm method was applied to p-values to control the family-wise

error rate (Holm, 1979) and we report Cohen’s d effect sizes and corresponding confidence intervals (CI)

for each analysis. We analyzed differences in work efficiency between team types with a series of Mann-

Whitney U tests; p-values were adjusted using the Holm method and effect size for each analysis was

calculated by dividing the z-score by the square root of the sample size.

Results

Data Characterization

We first provide an overview of the data to ground the presentation of our analyses. All

visualizations and statistical tests were conducted using statistical computation software R (R Core Team,

2019) while data processing, the smart sampling algorithm, and survival analysis described earlier were

implemented in Python (Python Software Foundation, 2019)3. Referring back to Table 4, work event

counts and median values by team types reveal that humans in the human-bot teams generally engaged in

3 Aggregated data and code files are available at https://github.com/small0live/bots-research.

BOTS AND PRODUCTIVITY

27

more discussion around code artifacts (issue comments and pull request review comments) and more

frequently submitted and accepted changes to source code (merged pull requests).

Team Sizes. We observed that larger teams had higher proportions of merged pull requests (i.e.,

accepted more external contributions). Summary statistics for team size are provided in Table 5 and

counts for teams in each team size level in Table 6. Over half (54%) of the teams in the sample had at

least four team members and most (84%) had at least three members. The human-bot teams were more

evenly distributed across team size levels. In the large team size class, the majority of teams had 49 or

fewer team members. This means the data were skewed with respect to team size, which limits our

analysis of interaction effects between team types and team sizes.

Table 5. Summary statistics for team size (i.e., number of team members).

 Median Min. 25th
Percentile

50th
Percentile

75th
Percentile Max.

Team Size 4 2 3 4 7 246

Table 6. The distribution of teams by number of members and the number and percent of human-bot

teams in each team size level.

Team Size Number of Teams Overall Number of Human-Bot Teams (%)

Small [2, 3] 281 128 (45.6%)

Medium [4, 6] 180 84 (46.7%)

Large [7, 246] 147 92 (62.6%)

Bots in Teams. Most of the human-bot teams in our sample had only a single identified bot and

just over twenty teams had two bots, but a few large teams made use of four or more bots (Table 7). The

BOTS AND PRODUCTIVITY

28

distribution of work events completed by bots is presented in Figure 2: bots produced a higher proportion

of issue comments compared to the other events. This indicates that the bots were coordinating and

prompting developer activity. The distribution of bot events suggests that the human-bot teams in our

sample likely comprised coding support, code testing, and/or DevOps bots.

Table 7. The number of bots in human-only teams broken down by team size.

Number of Bots Small Teams Medium-Sized Teams Large Teams Total

1 122 78 80 280

2 6 6 9 21

4 - - 1 1

8 - - 1 1

12 - - 1 1

[Figure 2 Placeholder]

Figure 2. Work events generated by bots grouped by team size. Relative to other event types, bot work is

characterized by a high proportion of issue comments and pushes. Pull request is abbreviated to PR in

labels on x-axis.

Expertise Control Check. Our smart sampling procedure was intended to serve as a control for

expertise differences between teams that use bots and those that do not use bots. A series of Mann-

Whitney U tests were run to analyze the difference in expertise values between team types and confirmed

that they were not statistically significant (Table 8).

Table 8. Mann-Whitney U test results for expertise proxies by team type. As is standard for

nonparametric approaches, median values are reported for each team type.

 MedianHuman- MedianHuman-Bot U p

BOTS AND PRODUCTIVITY

29

Only

Followers 33.5 34.5 45735 .827

Following 82 84.5 45500 .744

Repos Owned 173.5 186.5 45552 .762

gh-impact 5 5 46056 .944

Productivity Differences

Work per Person. Because teams varied in size within each team size class, we calculated the

amount of work activity generated per person on a team to examine differences in productivity levels.

Figure 3 presents the distribution of work per person by team size and type. To reiterate, the analyses are

only applied to human-work event data. Across team sizes, human members on the human-bot teams

tended to have higher levels of productivity compared to members of human-only teams. Additionally,

there is no clear trend—increase or decrease—in productivity as team size changes. Small human-bot

teams (M = 3.86, SD = 1.07) compared to small human-only teams (M = 3.30, SD = 0.87) had higher

levels of productivity t(243) = 4.81, p < .001; d = 0.57 (lower CI: 0.34; upper CI: 0.82). Medium-sized

human-bot teams (M = 4.06, SD = 0.96) compared to medium-sized human-only teams (M = 3.14, SD =

0.97) had higher levels of productivity t(175) = 6.34, p < .001; d = 0.95 (lower CI: 0.64; upper CI: 1.26).

Large human-bot teams (M = 4.02, SD = 1.11) compared to large human-only teams (M = 3.51, SD =

1.18) had higher levels of productivity t(108) = 2.59, p < .001; d = 0.45 (lower CI: 0.11; upper CI: 0.79).

These results suggest that bots alter productivity levels and provide support for Hypothesis 1.

[Figure 3 Placeholder]

Figure 3. Notched boxplots of productivity in GitHub teams. Data are grouped by team type and size.

Notch displays approximately 95% confidence interval around the median which is based on the median

+/- 1.58 x IQR/sqrt(n) (Chambers et al., 1983; R Core Team, 2019). There were significant differences

between team types across team size classes.

BOTS AND PRODUCTIVITY

30

Work Centralization. We were also interested in examining the degree to which work is

centralized or distributed across human team members. For this analysis, we used a common measure of

inequality, the Gini coefficient. In this context, the Gini coefficient, which ranges from 0 to 1, is 0 if all

team members perform an equal amount of work and increases as work distribution among team members

becomes more skewed. Thus, a Gini coefficient approaching 1 suggests that work is unevenly distributed

and centralized to a small subset of team members. The distribution of Gini coefficients is plotted in

Figure 4 and additional information about these distributions is provided in Table 9. These boxplots show

that human-bot teams tended to have higher levels of work centralization compared to human-only teams.

In other words, the presence of bots is associated with greater disparity in how work is distributed across

human team members.

We found higher work centralization, t(267) = 3.21, p = .004, d = 0.38 (lower CI: 0.14; upper CI:

0.61), in small human-bot teams (M = 0.38, SD = 0.16) compared to small human-only teams (M = 0.32,

SD = 0.16). Similarly, medium-sized human-bot teams (M = 0.50, SD = 0.13) compared to medium-sized

human-only teams (M = 0.43, SD = 0.16) had higher work centralization t(178) = 2.93, p < .008, d = 0.44

(lower CI: 0.14; upper CI: 0.73). For large teams, there was no significant effect for team type, t(97) =

0.77, p = .45, d = 0.14 (lower CI: -0.19; upper CI: 0.48), with human-bot teams (M = 0.58, SD = 0.13)

having, on average, the same amount of work centralization compared to human-only teams (M = 0.56,

SD = 0.16). These results suggest bots alter the degree to which work is centralized in small and medium-

sized teams, providing partial support for Hypothesis 2.

[Figure 4 Placeholder]

Figure 4. Notched boxplots of work centralization in GitHub teams as indicated by the Gini coefficient,

where higher values represent higher levels of centralization. Data are grouped by team type and size.

There were significant differences between team types in small and medium teams. There was no

significant difference between team types in large teams.

BOTS AND PRODUCTIVITY

31

Table 9. Sampling distribution of the Gini coefficient. Information is provided for each team size category

in addition to all 608 teams in the sample and all 20,119 teams that met our selection criteria prior to the

application of the smart sampling algorithm.

Team Size Median Gini Coefficient Standard Error 95% CI

Small 0.37 0.16 0.02, 0.62

Medium 0.48 0.15 0.16, 0.72

Large 0.58 0.14 0.26, 0.80

Study Sample 0.45 0.18 0.06, 0.74

~20k Teams 0.32 0.17 0.02, 0.64

Work Efficiency. To evaluate the efficiency of work carried out by the teams in our sample, we

used the median number of days that issues survived in a project. A series of Mann Whitney U tests

revealed no significant differences between team types across team size classes. Boxplots of the

distribution of median survival days are provided in Figure 5 and summary statistics and Mann-Whitney

U tests results are presented in Tables 10 and 11, respectively. These results suggest that bots do not

significantly alter this particular dimension of efficiency in teams, failing to provide support for

Hypothesis 3.

A closer look at the number of issues reported in projects managed by human-only teams versus

human-bot teams reveals that human-bot teams document, on average, far more issues than human-only

teams (see Mean Number of Issues column in Table 10). This difference in issue documenting behavior is

greatest between team types when the team is either medium-sized or large. This suggests that there is a

positive association between the presence of bots and issue documentation, and this relationship is

magnified in larger teams (i.e., more issues are identified and documented likely as a result of both bots

and an increase in team size). Additionally, for human-only teams, the median number of days an issue

remained unresolved and number of documented issues were both highest when the team was large and

lowest when the team was small. This suggests that work efficiency in human-only teams appeared to be

BOTS AND PRODUCTIVITY

32

sensitive to differences in team size. This does not appear to be the case for human-bot teams—although

the number of documented issues increased with team size, the difference in median number of survival

days across team size classes is smaller.

[Figure 5 Placeholder]

Figure 5. Notched boxplots of median number of days that issues remain unresolved in a project. In this

plot, lower values indicate greater efficiency. Data are grouped by team size and team type. There were

no significant differences between team types across team size classes.

Table 10. Summary statistics for issue resolution. The mean and median values presented in this table

have not been transformed.

Team Type Team Size Number of Teams Mean Number
of Issues

Median of Median Issue
Survival Days

Human-only Small 39 41.97 3

Medium 43 52.74 5

Large 30 232.97 11

Human-bot Small 65 47.68 8

Medium 55 102.55 11

Large 71 422.49 9

Table 11. Mann-Whitney U test results and effect sizes for issue resolution by team type. As is standard

for nonparametric approaches, median values are reported for each team type.

Team Size MedianHuman-

Only
MedianHuman-Bot U p abs(r)

BOTS AND PRODUCTIVITY

33

Small 1.73 2.83 1111 .58 0.10

Medium 2.24 3.32 992 .52 0.14

Large 3.32 3.00 1079 .92 0.01

Discussion

We set out to study an important technological change altering the future of work, namely, how

the introduction of AI to the workplace alters team processes and outcomes. As intelligent technology is

more common, researchers need to study how work is altered when a machine agent becomes a member

of a team. The objective of this research was to explore the association between bots and productivity

outcomes in open source projects. To this end, we analyzed GitHub event data generated by hundreds of

teams. We used a multifaceted approach to characterize differences in productivity between human-bot

teams and human-only teams. Our results suggest that variations in processes and productivity are

associated with the presence of bots in open source project teams. We find that: 1) human-bot teams have

higher levels of human activity in general and this is among a subset of the team, 2) human-bot teams

have higher levels of work centralization, and 3) human-bot teams did not differ significantly in their

efficiency when compared to human-only teams, but do show increases in coordination processes. We

next discuss the implications of these findings for future research and the development of AI in support of

teamwork.

In our analysis of productivity levels, we observed consistent differences in work per person

across team sizes. Human-bot teams were more productive than human-only teams, with medium-sized

human-bot teams showing the highest levels of productivity. This finding is important because our

measure of productivity is work per person. This means that individual team members are showing

greater productivity when bots are members of a team. This finding suggests that software bots play a role

in altering individual output and momentum of work in GitHub repositories—for example, by prompting

users to complete an action after code is pushed to the repository or sharing requested information

through comments. In our data, this is evidenced by the higher levels of discussion observed in human-

BOTS AND PRODUCTIVITY

34

bot teams (see Table 4) and the large quantity of comment and push events produced by the bots in hybrid

teams (Figure 2). This suggests that bots are fostering the collaborative component of the team and

increasing the team’s task output. An investigation of how bots affect collective productivity in addition

to individual productivity may help clarify the cases (e.g., different phases of the development process) in

which bots can best support individual and collaborative work as others have found evidence for the

relationship between individual and collective output in GitHub (Murić et al., 2019).

Fitting these findings within our theoretical framework, the discussion around code artifacts

illustrates a key bridging function between internal and external cognition as described in the

Macrocognition in Teams Model (MITM). In particular, the macrocognitive function of knowledge

building emerges from various forms of information sharing and deliberative communications on the part

of teams. Thus, we found that human-bot teams engaged in more knowledge building activities around

their code artifacts. This was also associated with increases in submissions and acceptances of changes to

source code. Similarly, with regard to findings on issue comments, the human-bot teams were engaged in

more knowledge building activities around deliberations of problems to be resolved.

Despite our findings on communications, it is common for open source project teams to use

communication channels outside of social coding platforms (Storey et al., 2017). We therefore do not

know to what degree, and how much, communication may have also been occurring outside of the repos

in our study sample. Further, this could be to the detriment of team functioning. Specifically, when

information and knowledge about the team’s tasks and members are distributed across a potentially

unmanageable number of tools and online spaces, this can attenuate performance. Not only might this

increase workload by requiring attention to ‘where’ information and knowledge resides, but it also serves

as a barrier to participation in the project by introducing learning challenges for project newcomers, both

human and machine. Based on this we suggest that additional research is needed to understand how

differences in the number and use of communication channels interact with the presence of bots to alter

team growth and productivity in open source projects.

BOTS AND PRODUCTIVITY

35

Our results also suggest that bots were associated with higher levels of work centralization. One

interpretation of this finding is that the smaller subset of team members who did the majority of the work

were more productive in human-bot teams than in human-only teams. On the one hand, given that bots

are associated with increased human activity and centralization is related to team size, it is possible that

bots are boosting the productivity of team members. On the other hand, it is possible that bots help

increase user awareness and participation and this, in turn, increases the task workload of the team

members who manage the project. Indeed, research on online innovation communities shows that new

members are more likely to participate when other, more active members are responsive to them (Zhang

et al., 2013) and, as previously mentioned, bots have been associated with increased workload for project

integrators (Bernardo et al., 2018). Future research can build on these findings by examining how

different types of bots can be leveraged to diminish or increase work centralization, and shift

centralization among members of a team throughout the lifetime of a project.

To assess work efficiency, we examined the speed with which teams address documented issues.

In our analysis of issue resolution times, there were no significant differences. But, given that this is

exploratory research, and we used conservative levels of significance, the numerical differences are worth

reporting to set the stage for future research. First, we found that the median value for issue survival days

was lower for human-only compared to human-bot teams when the team was small or medium-sized. The

difference between team types was reversed but less in large teams; that is, issues remained unresolved

for fewer days in large human-bot teams compared to their human-only counterparts. Again, the

differences between these teams were not statistically significant, limiting interpretation of our results. In

future research, analysis of issue resolution times as a measure of work efficiency may be enhanced by

evaluating the likelihood that an issue will be reopened after initial closure and examining differences in

time to resolution based on issue topic and issue comment contents to capture nuances in problem-solving

outcomes.

In the context of prior research, our results suggest that work centralization may have predictive

utility with respect to variations in work efficiency. Relevant to efficiency in issue resolution, across team

BOTS AND PRODUCTIVITY

36

sizes, human-bot teams, on average, documented more issues than human-only teams. We can interpret

this difference in the context of how the types of events generated by bots in our data affects coordination.

Bots produced a large proportion of issue comments and thus likely played a significant role in

information sharing and the coordination of work around issues in addition to automating the

documentation of issues. Jarczyk et al. (2018) found that the centralization of work, specifically code

modifications, was positively associated with issue closure in mature open source projects. Although we

did not observe a similar trend across team size levels in our sample of relatively new open source

projects, the presence of bots was positively associated with work centralization in small and medium-

sized teams. These mixed findings reflect an opportunity to identify factors that moderate the relationship

between efficiency and quality in growing projects.

These findings also contribute to the future of work for open source projects. As noted, we

utilized a definition of work that was broader than traditional studies because it extended beyond code

contributions to include teamwork aspects of open source development. This included for example, the

coordination of work and knowledge building observed in comments, a process foundational to the

MITM (Fiore et al., 2010). We consider the differentiation and study of teamwork and taskwork critical to

advancing research in human-machine teaming. This is relevant to the broader open source landscape

because social coding platform researchers whose findings inform the design of the online workspace are

recognizing the importance of other types of contributions to collaboration that are not captured when

focusing strictly on code. For example, in a recent report, GitHub not only emphasized the importance of

discussions, but also included statistics to emphasize different aspects of teamwork and roles involved in

open source projects. They note that this illustrates a shift showing that “the world of GitHub is

growing—not just in numbers, but also in diversity, with existing users reimagining the projects they can

build and how they collaborate" (Octoverse 2020, 2020, p. 9).

In sum, the data suggest that human-only teams and human-bot teams differ along a number of

productivity dimensions, signaling a shift in work practices that warrants further investigation by the

cognitive science community. From this, we can interpret how existing theory on team cognition provides

BOTS AND PRODUCTIVITY

37

a way forward for future research. First, in the context of the MITM, the use of shared artifacts seems to

affect coordination by making concrete the extended cognitive system that can assist interactions (Fiore &

Wiltshire, 2016). Specifically, OSS development bots contribute to coordination through the

externalization of information, aiding human memory and prompting action. We suggest that research

focusing on this area can help us understand additional ways bots can be used to create such artifacts and

strategically organize them in the online work environment. In this way, research can study how to design

AI to more specifically focus on what are traditionally abstract facets of team cognition, and help us

understand how to ease, for example, memory loads on humans to improve overall coordination. Second,

in the context of work centralization, our findings suggest that information gleaned from different

distributions for different types and aggregations of work needs to be studied to understand changes in

coordination behavior in online environments. This can be leveraged to examine varying team needs and

performance differences in open source projects and identify opportunities for bots to support taskwork

and/or teamwork.

Limitations

Although this is one of the first studies to examine real-world behavioral changes between

human-only and human-machine teams, there are limitations that identify important future directions.

First, the nature of the data collected did not allow us to conduct a natural experiment comparing team

productivity before and after the introduction of machine agents in a project. Thus, our results, while

informative, do not provide insights about the causal relationship between bots and team productivity.

Future research should identify appropriate data collection methods for the study of work in real-world

contexts that allow for pre- and post-type evaluation of technological interventions.

The approach used in this research can be extended to include the effects of bot adoption in

addition to analyses based on temporal information that can elucidate the relationship between our

measures of productivity and the concepts of stability and metastability introduced earlier in this work.

For example, high degrees of work centralization may be associated with stability and the particular

BOTS AND PRODUCTIVITY

38

network structure characteristics (e.g., hierarchy, modularity, etc.) that emerge as open source projects

grow, might reflect the conditions and interactions that are needed to achieve metastability. This could be

manifested in terms of how expertise, knowledge, or influence is distributed among team members in a

project over time, potentially resulting in the evolution of a network towards or away from stability and

metastability. An analysis of burstiness applied to GitHub event data (Saadat et al., 2020) and phase

transitions in collaborative problem solving (Wiltshire et al., 2018) observed around documented issues

can complement such an approach to provide a more comprehensive understanding of how bots

contribute to and alter team dynamics.

The interpretation of the analyses carried out in this study was primarily limited to comparisons

within team size categories (e.g., small human-only teams were compared to small human-bot teams).

This was due not only to the statistical tests selected based on the characteristics of the data and our

research questions but also the measures we selected to operationalize variables of interest. Work

centralization was quantified using the Gini coefficient, an approach susceptible to bias in small samples.

In our research, this bias would result in lower Gini coefficient values for small teams compared to large

teams with a proportional distribution of work. However, because we compared teams of similar sizes, we

contend that this measure provides insights regarding the effects of bots on the distribution of work in

open source projects.

Furthermore, because bot identification remains challenging for researchers, it is possible that the

bot classification method described here failed to capture all automated activity. Approximately 8% of the

accounts in our sample were identified as bots. Manual identification of bots in prior research has

detected and labeled 11% of GitHub accounts as bots (Golzadeh et al., 2021), suggesting that our

classification method may be relatively conservative. We also did not have access to usernames due to

data sharing constraints. This limited our ability to conduct any aliasing to identify users who may have

used multiple accounts to contribute to projects in GitHub. It is unclear whether this can be overcome, but

if so, researchers can also examine how team cognitive factors, like team familiarity, might interact with

variables of interest when studying human-bot teams. Lastly, the anonymized nature of the data did not

BOTS AND PRODUCTIVITY

39

allow for an analysis of differences in motivation between salaried and volunteer developers as it relates

to productive output and bot adoption. Although prior research on motivation in open source projects

provides evidence for the effects of both altruistic and economic incentives on participation (Baytiyeh &

Pfaffman, 2010; Wu et al., 2007), less is known about the relationship between motivation and bot

adoption.

Conclusions

We conducted an observational study of large-scale collaborations in distributed software

development in which we characterized the role of bots in open source teams to better understand the

future of work in complex sociotechnical systems. In this study, we found that only a small number of

teams maintaining repositories in our sample are human-machine hybrids and most of these teams have

less than two bots. Our results indicate that there are significant differences in productivity between

human-bot teams and human-only teams and that human-bot teams generally have higher levels of

productivity compared to human-only teams. Relevant to communication and efficiency, more issues

were documented in human-bot teams than in human-only teams. Lastly, in considering social dynamics,

bots remain limited in their ability to support teamwork, necessitating further research on developing

socially intelligent machine agents (Fiore et al., 2021).

Our research characterizes the association between machine agents and team outcomes. The

results of our analyses indicate that bots contribute to the productive capacity of teams engaged in

distributed complex collaborative work. The findings presented here can help researchers in cognitive

science and beyond conceptualize next steps for human-machine teaming research. In their current state,

machine agents in the context of OSS development are able to take on a specific set of tasks with relative

ease. Although the bots in our sample produced a high proportion of comments, their ability to engage in

social interactions is greatly limited. Indeed, bot communications tend to be limited to predefined, or

canned, messages. To more adequately engage in communication with humans, bots need to be more

intelligent about not only the taskwork in a project but also about their teammates (Fiore & Wiltshire,

BOTS AND PRODUCTIVITY

40

2016). We contend that human-machine teams built on a strong foundation of team theory are more likely

to exhibit improved team performance.

In terms of practical implications, our results suggest there are tradeoffs associated with the

adoption of bots in GitHub teams. Bots seem to be drivers of increased human activity in software

development projects. High levels of activity and an influx of new contributors are both used as indicators

of project success by developers (McDonald & Goggins, 2013). However, these patterns of user behavior

can also result in higher workload for key developers in the projects. This was evidenced by Wessel et

al.’s (2018) work showing that bot adoption results in an increase of pull request submissions and our

finding that human-bot teams handle more issues than human-only teams. Additionally, the inclusion of

many bots in a team may introduce challenges associated with the management of the bots themselves.

Indeed, developers report that they experience notification fatigue as a result of automated activity

(Mirhosseini & Parnin, 2017). The development of more socially intelligent bots may help reduce these

issues. For example, machine agents able to derive social cues and signals from developer behavior to

infer mental states may be able to detect the most appropriate time windows for notifications (Fiore et al.,

2013).

Overall, this research provides important insights for the future of work. Given the changing

nature of the sociotechnical systems, cognitive science must build both a theoretical and empirical

foundation of research to help develop technologies for improving work, as well as inform design of

intelligent technologies that can augment human performance. As intelligent machines become more

prevalent parts of the labor landscape, we need to better understand how they influence cognition and

collaboration.

Acknowledgements

This research was supported by the Defense Advanced Research Projects Agency (DARPA) under grants

FA8650-18-C-7823 and W911NF-20-1-0008. The views and opinions contained in this article are those

BOTS AND PRODUCTIVITY

41

of the authors and should not be construed as official or as reflecting the views of UCF, DARPA, or the

U.S. Department of Defense.

BOTS AND PRODUCTIVITY

42

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development methods:

Review and analysis. Otavamedia Oy. http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.

Baltes, S., & Diehl, S. (2018). Towards a theory of software development expertise. Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering - ESEC/FSE 2018, 187–200.

https://doi.org/10.1145/3236024.3236061

Baytiyeh, H., & Pfaffman, J. (2010). Open source software: A community of altruists. Computers in

Human Behavior, 26(6), 1345–1354. https://doi.org/10.1016/j.chb.2010.04.008

Bernardo, J. H., da Costa, D. A., & Kulesza, U. (2018). Studying the impact of adopting continuous

integration on the delivery time of pull requests. Proceedings of the 15th International

Conference on Mining Software Repositories, 131–141. https://doi.org/10.1145/3196398.3196421

Blincoe, K., & Damian, D. (2015). Implicit coordination: A case study of the Rails OSS project. IFIP

International Conference on Open Source Systems, 35–44.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., & Damian, D. (2016). Understanding the popular

users: Following, affiliation influence and leadership on GitHub. Information and Software

Technology, 70, 30–39. https://doi.org/10.1016/j.infsof.2015.10.002

Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Comparing data distributions. In

P. J. Bickel, W. S. Cleveland, & R. M. Dudley (Eds.), Graphical Methods for Data Analysis.

Wadsworth International Group.

Choudhary, S. S., Bogart, C., Rose, C. P., & Herbsleb, J. D. (2018). Modeling coordination and

productivity in open-source GitHub projects (CMU-ISR-18-101; p. 23). Carnegie Mellon

University.

Claggett, J. L., & Karahanna, E. (2018). Unpacking the Structure of Coordination Mechanisms and the

Role of Relational Coordination in an Era of Digitally Mediated Work Processes. Academy of

Management Review, 43(4), 704–722. https://doi.org/10.5465/amr.2016.0325

BOTS AND PRODUCTIVITY

43

Coleman, E. G. (2013). Coding freedom: The ethics and aesthetics of hacking. Princeton University

Press.

Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J. L. (2013). Interactive Team Cognition. Cognitive

Science, 37(2), 255–285. https://doi.org/10.1111/cogs.12009

Davidson-Pilon, C. (2014). lifelines: Survival analysis in Python.

https://github.com/CamDavidsonPilon/lifelines/

Demir, M., Cooke, N. J., & Amazeen, P. G. (2018). A conceptual model of team dynamical behaviors and

performance in human-autonomy teaming. Cognitive Systems Research, 52, 497–507.

https://doi.org/10.1016/j.cogsys.2018.07.029

Demir, M., Likens, A. D., Cooke, N. J., Amazeen, P. G., & McNeese, N. J. (2019). Team Coordination

and Effectiveness in Human-Autonomy Teaming. IEEE Transactions on Human-Machine

Systems, 49(2), 150–159. https://doi.org/10.1109/THMS.2018.2877482

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies: Towards

explaining agile software development. Journal of Systems and Software, 85(6), 1213–1221.

https://doi.org/10.1016/j.jss.2012.02.033

Erickson, I., Robert, L. P., Crowston, K., & Nickerson, J. V. (2018). Workshop: Work in the Age of

Intelligent Machines. Proceedings of the 2018 ACM Conference on Supporting Groupwork, 359–

361. https://doi.org/10.1145/3148330.3152159

Fiore, S. M. (2008). Interdisciplinarity as Teamwork: How the Science of Teams Can Inform Team

Science. Small Group Research, 39(3), 251–277. https://doi.org/10.1177/1046496408317797

Fiore, S. M., Bracken, B., Demir, M., Freeman, J., & Lewis, M. (2021). Transdisciplinary Team Research

to Develop Theory of Mind in Human-AI Teams Panelists. Proceedings of the Human Factors

and Ergonomics Society Annual Meeting, 65(1), 1605–1609.

https://doi.org/10.1177/1071181321651351

Fiore, S. M., Carter, D. R., & Asencio, R. (2015). Conflict, trust, and cohesion: Examining affective and

attitudinal factors in science teams. In E. Salas, W. B. Vessey, & A. X. Estrada (Eds.), Research

BOTS AND PRODUCTIVITY

44

on Managing Groups and Teams (Vol. 17, pp. 271–301). Emerald Group Publishing Limited.

https://doi.org/10.1108/S1534-085620150000017011

Fiore, S. M., Smith-Jentsch, K. A., Salas, E., Warner, N., & Letsky, M. (2010). Towards an understanding

of macrocognition in teams: Developing and defining complex collaborative processes and

products. Theoretical Issues in Ergonomics Science, 11(4), 250–271.

https://doi.org/10.1080/14639221003729128

Fiore, S. M., & Wiltshire, T. J. (2016). Technology as teammate: Examining the role of external cognition

in support of team cognitive processes. Frontiers in Psychology, 7, 1531.

https://doi.org/10.3389/fpsyg.2016.01531

Fiore, S. M., Wiltshire, T. J., Lobato, E. J. C., Jentsch, F. G., Huang, W. H., & Axelrod, B. (2013).

Toward understanding social cues and signals in human–robot interaction: Effects of robot gaze

and proxemic behavior. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00859

Fiore, S. M., Wiltshire, T. J., Oglesby, J. M., O’Keefe, W. S., & Salas, E. (2014). Complex Collaborative

Problem-Solving Processes in Mission Control. Aviation, Space, and Environmental Medicine,

85(4), 456–461. https://doi.org/10.3357/ASEM.3819.2014

Fronchetti, F., Wiese, I., Pinto, G., & Steinmacher, I. (2019). What Attracts Newcomers to Onboard on

OSS Projects? TL;DR: Popularity. In F. Bordeleau, A. Sillitti, P. Meirelles, & V. Lenarduzzi

(Eds.), Open Source Systems (Vol. 556, pp. 91–103). Springer International Publishing.

https://doi.org/10.1007/978-3-030-20883-7_9

Goggins, S. P., Mascaro, C., & Valetto, G. (2013). Group informatics: A methodological approach and

ontology for sociotechnical group research. Journal of the American Society for Information

Science and Technology, 64(3), 516–539. https://doi.org/10.1002/asi.22802

Golzadeh, M., Decan, A., Legay, D., & Mens, T. (2021). A ground-truth dataset and classification model

for detecting bots in GitHub issue and PR comments. Journal of Systems and Software, 175,

110911. https://doi.org/10.1016/j.jss.2021.110911

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of

BOTS AND PRODUCTIVITY

45

Statistics, 6(2), 65–70. JSTOR.

Hukal, P., Berente, N., Germonprez, M., & Schecter, A. (2019). Bots coordinating work in open source

software projects. Computer, 52(9), 52–60. https://doi.org/10.1109/MC.2018.2885970

Jarczyk, O., Jaroszewicz, S., Wierzbicki, A., Pawlak, K., & Jankowski-Lorek, M. (2018). Surgical teams

on GitHub: Modeling performance of GitHub project development processes. Information and

Software Technology, 100, 32–46. https://doi.org/10.1016/j.infsof.2018.03.010

Joblin, M., Apel, S., & Mauerer, W. (2017). Evolutionary trends of developer coordination: A network

approach. Empirical Software Engineering, 22(4), 2050–2094. https://doi.org/10.1007/s10664-

016-9478-9

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D. (2014). The

promises and perils of mining GitHub. Proceedings of the 11th Working Conference on Mining

Software Repositories - MSR 2014, 92–101. https://doi.org/10.1145/2597073.2597074

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of

the American Statistical Association, 53(282), 457–481.

https://doi.org/10.1080/01621459.1958.10501452

Kidwell, R. E., & Bennett, N. (1993). Employee Propensity to Withhold Effort: A Conceptual Model to

Intersect Three Avenues of Research. Academy of Management Review, 18(3), 429–456.

https://doi.org/10.5465/amr.1993.9309035146

Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated

data (2nd ed). Springer.

Larson, L., & DeChurch, L. A. (2020). Leading teams in the digital age: Four perspectives on technology

and what they mean for leading teams. The Leadership Quarterly, 31(1), 101377.

https://doi.org/10.1016/j.leaqua.2019.101377

Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N.,

Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009).

Computational social science. Science, 323(5915), 721–723.

BOTS AND PRODUCTIVITY

46

https://doi.org/10.1126/science.1167742

Lebeuf, C. R. (2018). A Taxonomy of Software Bots: Towards a Deeper Understanding of Software Bot

Characteristics [Masters, University of Victoria].

http://dspace.library.uvic.ca/bitstream/handle/1828/10004/Lebeuf_Carlene_MASc_2018.pdf

Lebeuf, C. R., Storey, M.-A., & Zagalsky, A. (2017). How software developers mitigate collaboration

friction with chatbots. ArXiv:1702.07011 [Cs]. http://arxiv.org/abs/1702.07011

Lebeuf, C. R., Storey, M.-A., & Zagalsky, A. (2018). Software bots. IEEE Software, 35(1), 18–23.

https://doi.org/10.1109/MS.2017.4541027

Lebeuf, C. R., Zagalsky, A., Foucault, M., & Storey, M.-A. (2019). Defining and classifying software

bots: A faceted taxonomy. Proceedings of the 1st International Workshop on Bots in Software

Engineering (BotSE ’19), 1–6. https://doi.org/10.1109/BotSE.2019.00008

Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., & Cannon-Bowers, J. A. (2000). The influence

of shared mental models on team process and performance. Journal of Applied Psychology, 85(2),

273–283. https://doi.org/10.1037/0021-9010.85.2.273

McDonald, N., & Goggins, S. (2013). Performance and participation in open source software on GitHub.

CHI ’13 Extended Abstracts on Human Factors in Computing Systems, 139–144.

https://doi.org/10.1145/2468356.2468382

McNeese, M., Salas, E., & Endsley, M. R. (Eds.). (2020). Fields of practice and applied solutions within

distributed team cognition (First edition). CRC Press.

McNeese, N. J., Demir, M., Cooke, N. J., & Myers, C. (2018). Teaming with a synthetic teammate:

Insights into human-autonomy teaming. Human Factors: The Journal of the Human Factors and

Ergonomics Society, 60(2), 262–273. https://doi.org/10.1177/0018720817743223

Miller, I. D. (2016). Gh-impact. https://github.com/iandennismiller/gh-impact

Mirhosseini, S., & Parnin, C. (2017). Can automated pull requests encourage software developers to

upgrade out-of-date dependencies? 2017 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), 84–94. https://doi.org/10.1109/ASE.2017.8115621

BOTS AND PRODUCTIVITY

47

Murić, G., Abeliuk, A., Lerman, K., & Ferrara, E. (2019). Collaboration Drives Individual Productivity.

Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–24.

https://doi.org/10.1145/3359176

Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–

351. https://doi.org/10.1080/00107510500052444

Newton, O. B., Fiore, S. M., & Song, J. (2018). Developing theory and methods to understand and

improve collaboration in open source software development on GitHub. Proceedings of the

Human Factors and Ergonomics Society Annual Meeting, 62, 1118–1122.

https://doi.org/10.1177/1541931218621256

Newton, O. B., Wiltshire, T. J., & Fiore, S. M. (2018). Macrocognition in Teams and Metacognition:

Developing Instructional Strategies for Complex Collaborative Problem Solving. In Building

Intelligent Tutoring Systems for Teams (Research on Managing Groups and Teams (Vol. 19, pp.

33–54). Emerald Publishing Limited.

NSF’s 10 Big Ideas: Future of Work at the Human-Technology Frontier. (2020). [Government]. National

Science Foundation. https://www.nsf.gov/news/special_reports/big_ideas/human_tech.jsp

O’Neill, T., McNeese, N., Barron, A., & Schelble, B. (2020). Human–Autonomy Teaming: A Review and

Analysis of the Empirical Literature. Human Factors: The Journal of the Human Factors and

Ergonomics Society, 001872082096086. https://doi.org/10.1177/0018720820960865

Onoue, S., Hata, H., & Matsumoto, K. (2013). A study of the characteristics of developers’ activities in

GitHub. 2013 20th Asia-Pacific Software Engineering Conference (APSEC), 7–12.

https://doi.org/10.1109/APSEC.2013.104

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research, 12, 2825–2830.

Python Software Foundation. (2019). Python programming language. https://www.python.org/

BOTS AND PRODUCTIVITY

48

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for

Statistical Computing. https://www.R-project.org/.

Rey, S. J., & Anselin, L. (2010). PySAL: A Python Library of Spatial Analytical Methods. In M. M.

Fischer & A. Getis (Eds.), Handbook of Applied Spatial Analysis: Software Tools, Methods and

Applications (pp. 175–193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-

03647-7_11

Reyes López, A. (2017). Analyzing GitHub as a Collaborative Software Development Platform: A

Systematic Review [Masters]. University of Victoria.

Rico, R., Sánchez-Manzanares, M., Gil, F., & Gibson, C. (2008). Team implicit coordination processes:

A team knowledge–based approach. Academy of Management Review, 33(1), 163–184.

Romero, D. M., Huttenlocher, D., & Kleinberg, J. M. (2015). Coordination and efficiency in

decentralized collaboration. Proceedings of the 9th International AAAI Conference on Web and

Social Media, 367–376.

Saadat, S., Newton, O. B., Sukthankar, G., & Fiore, S. M. (2020). Analyzing the Productivity of GitHub

Teams based on Formation Phase Activity. 2020 IEEE/WIC/ACM International Joint Conference

on Web Intelligence and Intelligent Agent Technology (WI-IAT), 169–176.

https://doi.org/10.1109/WIIAT50758.2020.00027

Saadat, S., & Sukthankar, G. (2020). Explaining Differences in Classes of Discrete Sequences.

ArXiv:2011.03371 [Cs]. http://arxiv.org/abs/2011.03371

Salas, E., Cooke, N. J., & Rosen, M. A. (2008). On Teams, Teamwork, and Team Performance:

Discoveries and Developments. Human Factors: The Journal of the Human Factors and

Ergonomics Society, 50(3), 540–547. https://doi.org/10.1518/001872008X288457

Solanas, A., Selvam, R. M., Navarro, J., & Leiva, D. (2012). Some common indices of group diversity:

Upper boundaries. Psychological Reports, 111(3), 777–796.

https://doi.org/10.2466/01.09.21.PR0.111.6.777-796

Storey, M.-A., & Zagalsky, A. (2016). Disrupting developer productivity one bot at a time. Proceedings

BOTS AND PRODUCTIVITY

49

of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering - FSE 2016, 928–931. https://doi.org/10.1145/2950290.2983989

Storey, M.-A., Zagalsky, A., Filho, F. F., Singer, L., & German, D. M. (2017). How social and

communication channels shape and challenge a participatory culture in software development.

IEEE Transactions on Software Engineering, 43(2), 185–204.

https://doi.org/10.1109/TSE.2016.2584053

The 2020 State of the Octoverse. (2020). GitHub: Octoverse. https://octoverse.github.com/static/github-

octoverse-2020-community-report.pdf

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G. J., Serebrenik, A., Devanbu, P., & Filkov, V.

(2015). Gender and tenure diversity in GitHub teams. Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems - CHI ’15, 3789–3798.

https://doi.org/10.1145/2702123.2702549

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., & Filkov, V. (2015). Quality and productivity outcomes

relating to continuous integration in GitHub. Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering - ESEC/FSE 2015, 805–816.

https://doi.org/10.1145/2786805.2786850

von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and specialization in open

source software innovation: A case study. Research Policy, 32(7), 1217–1241.

https://doi.org/10.1016/S0048-7333(03)00050-7

Walliser, J. C., de Visser, E. J., Wiese, E., & Shaw, T. H. (2019). Team Structure and Team Building

Improve Human–Machine Teaming With Autonomous Agents. Journal of Cognitive Engineering

and Decision Making, 13(4), 258–278. https://doi.org/10.1177/1555343419867563

Weiss, M., & Hoegl, M. (2016). Effects of relative team size on teams with innovative tasks: An

understaffing theory perspective. Organizational Psychology Review, 6(4), 324–351.

https://doi.org/10.1177/2041386615620837

Wessel, M., de Souza, B. M., Steinmacher, I., Wiese, I. S., Polato, I., Chaves, A. P., & Gerosa, M. A.

BOTS AND PRODUCTIVITY

50

(2018). The power of bots: Characterizing and understanding bots in OSS projects. Proceedings

of the ACM on Human-Computer Interaction, 2(CSCW), 1–19. https://doi.org/10.1145/3274451

Wiltshire, T. J., Butner, J. E., & Fiore, S. M. (2018). Problem-Solving Phase Transitions During Team

Collaboration. Cognitive Science, 42(1), 129–167. https://doi.org/10.1111/cogs.12482

Wiltshire, T. J., Warta, S. F., Barber, D., & Fiore, S. M. (2017). Enabling robotic social intelligence by

engineering human social-cognitive mechanisms. Cognitive Systems Research, 43, 190–207.

https://doi.org/10.1016/j.cogsys.2016.09.005

Wu, C.-G., Gerlach, J. H., & Young, C. E. (2007). An empirical analysis of open source software

developers’ motivations and continuance intentions. Information & Management, 44(3), 253–

262. https://doi.org/10.1016/j.im.2006.12.006

Yu, Y., Yin, G., Wang, H., & Wang, T. (2014). Exploring the patterns of social behavior in GitHub.

Proceedings of the 1st International Workshop on Crowd-Based Software Development Methods

and Technologies (CrowdSoft 2014), 31–36. https://doi.org/10.1145/2666539.2666571

Zhang, C., Hahn, J., & De, P. (2013). Research note—Continued participation in online innovation

communities: Does community response matter equally for everyone? Information Systems

Research, 24(4), 1112–1130. https://doi.org/10.1287/isre.2013.0485

