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Abstract— With the advent of quantum comput-

ers, researchers have been exploring effective and effi-

cient ways to embed quantum algorithms into physical

quantum circuits. Implementation and execution of a

logical quantum circuit on a physical quantum circuit

necessitates various constraints to be satisfied. This

requires one-to-one logical to physical qubit mappings

as well as logical qubits being mapped to physically ad-

jacent qubits for elementary CNOT instructions. In

order to successfully execute all program instructions,

swap instructions are inserted before CNOT instruc-

tions where required. These additional instructions

must be minimized in order to ensure fidelity of the

overall circuit. In this paper we propose the Deferred

Swap Embedding (DSE) technique which ensures a

minimal number of swap instructions are used to sat-

isfy the constraints of any generic quantum architec-

ture possessing a small number of qubits. Our so-

lution also identifies the initial mapping that would

lead to the minimal overall number of swap instruc-

tions. The results show that our proposed approach

performs better than the current state-of-the-art so-

lutions.

I. Introduction

Recent technological advancements in the field of quan-
tum computing [1] have led to an increasing amount of
research and development in both academia and indus-
try. Several top technology companies have invested in
developing more powerful quantum computers. Google
recently launched a quantum computer with 72 quantum
bits (qubits) [9]. IBM has developed over 2 dozen quan-
tum computers ranging from 1 to 65 qubits [8]. Similarly
the most powerful quantum machine at Rigetti is a 31-
qubit machine [10]. These companies also provide access
to their quantum computers via the cloud that empowers
the technology community to run quantum programs and
explore the technology.
IBM Quantum Experience (IBM Q) [8] is a cloud-based

service that allows users to run programs on various phys-
ical IBM quantum computers with different architectures.

The architecture of a quantum computer refers to the
number of physical qubits and how these qubits are ar-
ranged and coupled together physically. A quantum pro-
gram is a set of instructions that can be realized as a quan-
tum circuit having quantum gates. In order to correctly
implement the circuit on a physical quantum computer
certain architectural constraints must be satisfied. The
widely used CNOT gate is a binary gate which can only be
executed if both operand qubits are associated with two
connected physical qubits. These associations between
the logical and physical qubits are known as qubit map-
pings and may be visualized as a set of key-value pairs of
logical and physical qubits.

In classical computing, any logic circuit may be de-
composed into universal logic gates including NAND and
NOR gates. Similarly, in the quantum domain CNOT
and U gates are widely used as elementary quantum gates.
CNOT is a binary gate with source and target qubits; its
execution on a given quantum architecture is possible only
if the corresponding physical source and target qubits are
connected from source to target to form compatible gates,
as shown in Figure 2. If the respective physical qubits are
not connected, a series of SWAP operations are required
to bring the logical source and target qubits adjacent to
ensure that these constraints are satisfied. Therefore, to
ensure effective execution of a program, all instructions
must satisfy these architectural constraints. The problem
is that adding each additional instruction adversely affects
the fidelity of the program which makes it more error-
prone. To ensure the insertion of minimal SWAP gates we
must efficiently choose an initial mapping of qubits as well
as choose the SWAP operations which would minimize the
total SWAP operations required for the execution of the
complete program.

We propose the Deferred Swap Embedding (DSE) al-
gorithm which guarantees the minimal number of swaps
required for execution of a quantum program. For each of
the initial mappings the total cost of making all instruc-
tions compatible for execution is calculated. The mapping
which results in the minimum total cost is considered as
the best initial mapping for the quantum program. The
cost refers to the total additional elementary instructions
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required when SWAP instructions are inserted before in-
compatible CNOT instructions. While finding the mini-
mal total cost for a mapping, DSE chooses series of swap
instructions which minimize the total cost for the next
instruction. In this way we defer our decision of selecting
the best set of swap instructions until the next instruction.
Lastly, the optimization module eliminates all redundant
instructions which do not affect the overall quantum state.
Hence, DSE enhances the compatibility of quantum pro-
grams by minimizing the number of swaps while main-
taining high fidelity.

II. Preliminaries and Background

A. Quantum Program

A quantum program is a set of instructions which de-
fine a quantum circuit using a low-level programming lan-
guage called quantum assembly language. The instruc-
tions, also called quantum gates, are applied on quantum
bits called qubits. These instructions can be single-qubit,
having one qubit as the operand, or multi-qubit, having 2
or more qubits as operands. The qubits that are written
in a program are referred as logical qubits as compared to
physical qubits which are physically embedded as part of
the hardware of a quantum computer. To execute a quan-
tum program on a quantum computer, each logical qubit
must be physically realized as a physical qubit which is
referred to as mapping.

A.1 Elementary Instructions

In classical computers there are certain universal logic
gates which means any logic function can be performed
with only these gates. Similarly, to implement quantum
circuits we require gates not only satisfy universality of
gates but also require them to be error-tolerant. The
Controlled-NOT (CNOT) and single-qubit Pauli gates
possess both these properties and are considered to be
elementary gates [13].

A.2 SWAP Instruction

The swap instruction is a binary instruction that inter-
changes the states of the two operand qubits. As it is
not part of the IBM QX architecture’s set of elementary
gates, a swap instruction is decomposed into 7 elementary
gates as shown in Figure 3.

B. Quantum Architecture

The architecture of a quantum computer includes all
physical implementation details including the number of
physical qubits, n, and which qubits are physically con-
nected. This is imperative since in order for instructions
involving multiple qubits to be executed on an architec-
ture, these qubits must be physically connected.

B.1 Coupling Map

The coupling map is a graph with physical qubits as
nodes and the physical connections between correspond-
ing qubits as edges. The edges need to be directed edges
as the elementary gate CNOT is only executable on the
quantum machine if its qubits form a directed connection
from source to target.

B.2 Mapping

A mapping is a binding of logical qubits to physical
qubits; it is required for execution of quantum instruc-
tions having those set of logical qubits as operands.
We can denote a mapping using the following notation:
m = [0 → 0, 1 → 1, 2 → 3, 3 → 4, 4 → 2]. In this nota-
tion, a → b denotes that logical qubit b is mapped onto
physical qubit a. As the physical qubits form a sequence
from 0 to n − 1, where the number of physical qubits n
is 5, we can represent a mapping in an abridged notation
as m = [0, 1, 3, 4, 2]. This 1-to-1 assignment remain un-
changed throughtout the execution unless there are swap
instructions in the program which interchange the states
of the two qubits being swapped.

B.3 CNOT Constraints

A CNOT instruction having logical qubits ls and lt as
source and target qubits, respectively, must have the cor-
responding physical qubits p(ls) and p(lt) connected in a
specific directed way in the architecture i.e. a directed
edge from p(ls) to p(lt) in the coupling map, as shown in
Figure 1. This is referred to as a CNOT constraint and
must be satisfied for all CNOT instructions for successful
execution. We refer to a quantum instruction satisfying
the CNOT constraints as a compatible instruction. Simi-
larly, a program which satisfies CNOT constraints for all
instructions is referred to as a compatable program.

Fig. 1.: Coupling map for IBM QX4 architecture. [11]

Fig. 2.: Overview of compatible vs. incompatible CNOT
instructions. a) CNOT constraint from Q3 to Q4 and
logical qubits q1 and q2 mapped respectively b) Compat-
ible CNOT gate c) Incompatible CNOT gate d) Adding
4 Hadamard instructions to make c) compatible.



Fig. 3.: Decomposition of a SWAP instruction into ele-
mentary instructions. a) Symbol of a SWAP instruction
having logical qubits q1 and q2 as operands b) SWAP
instruction decomposed as 3 CNOT instructions (2nd
CNOT instruction is incompatible) c) SWAP instruction
decomposed as 7 elementary instructions having all com-
patible CNOT instructions.

III. Related Work

Many solutions have been proposed to address the qubit
mapping problem. The efficacy of most of these solu-
tions depends primarily on 1) the selection of an initial
mapping, and 2) finding the minimal number of required
swap operations. Some approaches [4, 6] focus on 5-qubit
IBM quantum architectures whereas others [3, 5, 7] sug-
gest generic solutions applicable to architectures possess-
ing an arbitrary number of qubits. The initial mapping
formulation suggested by Kole et al. [3] generates random
initial mappings using a genetic algorithm which is effi-
cient but does not guarantee an optimal initial mapping.
The minimal cost mapping is found by visualizing the
quantum program as a weighted directed graph called an
incidence graph, then formulating the mapping cost based
on the edge weights of the incidence graph and the short-
est distances between the mapped physical qubits in the
coupling map. Dueck et al. [6] focus on post-mapping
optimization of quantum circuits to help further improve
the fidelity of the circuit. Our DSE algorithm is inspired
by the Deferred-Merge Embedding (DME) algorithm used
for minimizing the clock skew in high-performance VLSI
architectures [14]. DME finds the optimal wirelength
while formulating a zero skew clock tree for a given clock
distribution network connection topology. Similarly, we
find the optimal set of swap sequences required for a
given program, or instruction topology, while satisfying
the CNOT constraints of the physical architecture.

IV. Proposed Approach

The proposed solution includes (1) generation of initial
mappings through all permutations, (2) the deferred swap
embedding (DSE) for finding a minimal cost mapping,
and (3) optimization of the resulting circuit for eliminat-
ing redundant unary and binary quantum instructions.
These steps are described in sections A, C, and E, respec-
tively. Pre-processing is performed before the execution
of DSE which includes removing all unary instructions
from the input circuit, which will be re-inserted at their
respective positions in the post-processing step. Details
about other actions performed in pre- and post-processing

are described in sections B and D. The overview of the
proposed approach is illustrated in Figure 4.

A. Generating Initial Mappings

It is imperative that mappings of logical to physical
qubits are done before running a quantum program which
includes those logical qubits. This starting assignment,
known as initial mapping, must be completed before the
execution of the first instruction of the quantum program.
An ideal initial mapping is one which results in 0 (zero)
cost when DSE is executed. This is only possible if all
CNOT instructions satisfy the CNOT constraints. As it
is not possible for all quantum programs to have ideal
initial mappings therefore we try to find a minimal cost
initial mapping which may not necessarily be zero-cost.
We generate all n! permutations of mappings e.g. for the
IBM QX4 architecture which has 5 qubits we generate
5! = 120 initial mappings. Then for each initial mapping
the DSE algorithm finds the cost of making the program
compatible and identifies initial mappings which result in
the minimum cost. There can be multiple initial mappings
resulting in the same minimal cost therefore we select any
one of those initial mappings for the respective quantum
program.

B. Pre-processing

Finding the minimal number of additional instructions
to ensure all instructions are physically executable is pri-
marily dependent on binary instructions, specifically the
CNOT instruction. Unary instructions do not affect the
cost of finding additional instructions to ensure CNOT
constraints are satisfied. Therefore to simplify the im-
plementation we sift out all unary instructions from our
quantum program and apply DSE on the remainder pro-
gram. Similarly, an integral part of our solution is based
on selecting shortest paths from the source to target
qubits. Therefore, we pre-calculate the shortest distances
using Floyd-Warshall algorithm [12] which finds all-pair
shortest distances between all physical qubits by using
the coupling map as the input graph. The coupling map
directions are not considered and all edges are assigned a
weight value equal to 1 - the cost for additional gates, due
to the fact that different directions are counted separately
when finding the total swap cost of each shortest path.

C. Deferred Swap Embedding

We propose a new technique called Deferred Swap Em-
bedding which explores for each CNOT instruction all pos-
sible swap sequences that satisfy the CNOT constraints.
A swap sequence is a special permutation of the short-
est path found between the source and target qubits in
which the source and the target qubits must be adja-
cent. Hence, the decision about which swap sequences to
consider is deferred till the total cost for all instructions



Fig. 4.: Overview of the proposed approach showing inputs and outputs of each module.

Fig. 5.: Adjacency matrix for the coupling map graph for
IBM QX4 architecture

is calculated. Inputs to the DSE algorithm are (1) ini-
tial mappings, minit, (2) quantum program instructions
programinit which include only CNOT instructions after
pre-processing is done, and (3) coupling map graph c map
represented as an adjacency matrix as seen in Figure 5.
The DSE algorithm will find as output an initial map-
ping which results in the minimal total cost for making
all CNOT instructions satisfy CNOT constraints. This
is achieved by insertion of additional elementary instruc-
tions i.e. the total minimal additional number of elemen-
tary gates required while satisfying the CNOT constraints
for each instruction.

The DSE algorithm comprises three important steps
which are iteratively executed for each initial mapping
and for each instruction of the program. These include
1) finding all shortest paths from source qubit to tar-
get qubit, 2) finding all swap sequences for each short-
est path, and 3) generating minimum cost mappings from
these swap sequences.

C.1 Finding all shortest paths from source to tar-
get qubits

For a particular mapping all shortest paths between the
physical qubits ps and pt are found for the current CNOT
instruction in programinit. Note that ps is the physical
qubit on which the logical source qubit ls is mapped i.e.
minit[ps] = ls. Similarly, pt is the physical qubit on which
the logical target qubit lt is mapped. We have already
pre-calculated the shortest distances in the pre-processing
module using the all-pair-shortest-path algorithm, Floyd-
Warshall [12]. Now we find all shortest paths between the
source and target qubits of the current instruction. Note
that the shortest paths are only found if shortest distance

d >= 2. The value of d = 1 implies that the source and
target qubits are adjacent in the coupling map and hence
no swaps are required. In general, the number of swap in-
structions required to make the current instruction com-
patible will be d− 1.

C.2 Generating all swap sequences from each
shortest path

For all shortest paths having d >= 2 we generate all
possible ways that can make the instruction compatible.
For instance, consider a trivial case of a shortest path
ps −→ p1 −→ pt where d = 2. In this case there are 2 ways
of making ps and pt adjacent: 1) swap ps and p1 to get
the sequence p1 −→ ps −→ pt, and 2) swap pt and p1 to
get the sequence ps −→ pt −→ p1. We call these swap se-
quences and each swap sequence is a result of d− 1 swap
instructions that need to be inserted before the current
incompatible CNOT instruction. Therefore, for a partic-
ular input mapping of an incompatible instruction we may
have multiple swap sequences which result in changes to
the input mapping in multiple ways.

C.3 Generating minimum cost mappings from
swap sequences

During the execution of the algorithm there can be
multiple mappings generated as a result of each swap
sequence. Hence the generated mapping which has
the minimal cost thus far for the particular current
instruction is selected as a candidate mapping for the
next instruction.

Example: Consider the instance of inputs shown in
Figure 6. The given initial mapping is one of the 5!
permutation mappings. DSE is executed to identify the
minimal mapping and the respective cost of adding ex-
tra required swap instructions. The input program has
4 CNOT instructions since the pre-processing step may
have removed any unary instructions from the original
program. The coupling map, c map, is illustrated as an
adjacency matrix having 1 in row i and column j if there
is a directed connection from physical qubits i and j in
the IBM QX4 architecture. Similarly, 0 refers to absence
of a direct physical connection whereas -1 denotes a di-
rected connection from j to i which requires the inclu-
sion of four additional Hadamard instructions to make the



CNOT compatible as shown in Figure 2 d). For instruc-
tion 1, DSE evaluates this instruction as being compati-
ble according to the current mapping as the correspond-
ing physical qubits have a 1 in c map resulting in cost =
0. The next instruction has the corresponding physical
qubits connected but with a reverse direction resulting in
a cost of 4 elementary gates. Therefore, thus far the cost
is 4. The logical qubits of instruction 3 are mapped onto
non-adjacent physical qubits for which DSE finds all pos-
sible swap sequences for the shortest path between Q3 and
Q1. The 2 swap sequences and their resulting mappings
are depicted in Figure 7. Since there was 1 swap required,
the cost increases by 7 as discussed in Figure 3 c). Since
there were multiple swap sequences, now DSE will defer
its decision and check which of the resulting mappings
results in the minimal cost for the next instruction. Map-
pingm1 results in additional cost of 7 as it requires 1 swap
to bring the logical qubits 0 and 2 adjacent, whereas m2
results in a 0 additional cost. Therefore, m2 is selected
as the next mapping. This ensures a total minimal cost
of 11 for this example instance.

Fig. 6.: Sample inputs for execution of DSE algorithm on
the 5-qubit IBM QX4 architecture.

Fig. 7.: Candidate input mappings based on possible swap
sequences for execution of instruction 3 of sample input
program shown in Figure 6.

D. Post-processing

Before the program is optimized, it must include all
unary instructions which were removed as part of the pre-
processing step. Therefore, each unary instruction that
was removed is inserted in its respective position. If ad-
ditional swap instructions are included due to constraint
satisfaction for a CNOT instruction, the unary gate that

preceded that instruction in the original program is in-
serted before all such swap instructions. Furthermore,
the optimization is performed using elementary instruc-
tions which only requires each of these swap instructions
to be replaced by 7 elementary instructions as shown in
Figure 3. This is also done in the post-processing step.

E. Optimization

The optimization module is performed as described by
[3] where we perform optimizations on unary gates and
binary gates separately.

V. Experimental Evaluation

This section provides an evaluation of the effectiveness
of DSE using a set of benchmarks for the IBM QX4 ar-
chitecture. We compare our proposed method against the
baseline solutions by Kole et al. [3] and Wille et al. [4].

A. Hardware Architecture

We have analyzed the benchmark results on the 5-
qubit IBM QX4 architecture with directed connections
for CNOT gates from the source physical qubit to the
target physical qubit as shown in Figure 1.

B. Programming and Execution Environment

The implementation of the proposed method has been
done using C++. The experiments were run on a system
with Intel Core i7 2.1 GHz CPU, 16 GB main memory,
and Ubuntu 18.04 operating system.

C. Benchmarks

We evaluated all benchmarks in [3] and [4] with up to
5 logical qubits.

D. Results

The comparison of results between our proposed
method, the DSE algorithm, and the other baseline ap-
proaches [4] and [3] is shown in Tables I and II, respec-
tively. The first three columns are the benchmark name,
number of logical qubits, and the total quantum gates in
the original program. In order to make sure each gate
satisfies the CNOT constraints additional swap gates are
inserted. Our proposed approach clearly performs better
than both baseline results as shown in the tables.

VI. Conclusion

This paper addresses the qubit mapping problem: in
order to satisfy the architectural constraints for a given
quantum program, for each instruction the aim is to intro-
duce minimal additional swap instructions. We introduce



Table I: Comparison of total gates of Wille et al. [4] vs.
proposed total gates

Benchmark n g g’ g” ∆g
Improvement

%

3 17 13 3 36 59 44 8 25.4

4gt11 82 5 27 62 51 24 17.7

4gt11 83 5 23 49 43 20 12.2

4gt11 84 4 18 34 26 8 23.5

4gt13 92 5 66 109 82 16 24.8

4mod5-v0 19 5 35 64 56 21 12.5

4mod5-v0 20 5 20 35 32 12 8.6

4mod5-v1 22 5 21 40 35 14 12.5

4mod5-v1 24 5 36 63 48 12 23.8

alu-v0 27 5 36 63 51 15 19.0

alu-v1 28 5 37 64 54 17 15.6

alu-v1 29 5 37 64 51 14 20.3

alu-v2 33 5 37 64 52 15 18.8

alu-v3 34 5 52 90 69 17 23.3

alu-v3 35 5 37 64 52 15 18.8

alu-v4 37 5 37 64 52 15 18.8

ex-1 166 3 19 31 23 4 25.8

ham3 102 3 20 36 26 6 27.8

miller 11 3 50 82 59 9 28.0

mod5d1 63 5 22 48 40 18 16.7

mod5mils 65 5 35 64 55 20 14.1

rd32-v0 66 4 34 63 54 20 14.3

rd32-v1 68 4 36 65 54 18 16.9

n: number of logical qubits; g: total gates in original program; g’:
total gates by [4]; g”: total gates by proposed method; ∆g: g” - g;

Improvement %: 100 * (g’-g”)/g’;

Table II: Comparison of total gates of Kole et al. [3] vs.
proposed total gates

Benchmark n g g’ g”
Improvement

%

01 5 51 64 59 7.8

17 4 43 79 78 1.3

07 5 60 88 87 1.1

4mod5-v0 18 5 69 138 126 8.7

n: number of logical qubits; g: total gates in original program; g’:
total gates by [4]; g”: total gates by proposed method;

Improvement %: 100 * (g’-g”)/g’;

the Deferred Swap Embedding (DSE) algorithm which
calculates all possible swap sequences and defers the deci-
sion to select the best sequence until the next instruction.
We evaluated our approach on the IBM QX4 architecture
and demonstrate that DSE outperforms the two baseline
approaches. Future work includes exploring the effective-
ness of DSE on larger architectures of IBM systems as
well as other architectures such as Google and Rigetti.
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