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Abstract— Object detection models based on convolutional
neural networks (CNNs) demonstrate impressive performance
when trained on large-scale labeled datasets. While a generic
object detector trained on such a dataset performs adequately
in applications where the input data is similar to user pho-
tographs, the detector performs poorly on small objects, par-
ticularly ones with limited training data or imaged from uncom-
mon viewpoints. Also, a specific room will have many objects
that are missed by standard object detectors, frustrating a robot
that continually operates in the same indoor environment.

This paper describes a system for rapidly creating customized
object detectors. Data is collected from a quadcopter that
is teleoperated with an interactive interface. Once an object
is selected, the quadcopter autonomously photographs the
object from multiple viewpoints to collect data to train DUNet
(Dense Upscaled Network), our proposed model for learning
customized object detectors from scratch given limited data.
Our experiments compare the performance of learning models
from scratch with DUNet vs. fine tuning existing state of the
art object detectors, both on our indoor robotics domain and
on standard datasets.

I. INTRODUCTION

Indoor mobile robots operate in spaces that are not as
rigorously controlled as manufacturing areas, nor as rich
with diversity as outdoor scenes. The open source release of
pre-trained object detection models such as the TensorFlow
Object Detection API [1] has been a boon to robotics, but
in indoor spaces, many objects, particularly small ones, are
omitted from the common object datasets. This is a hindrance
for creating indoor robots that can be tasked to find or
manipulate objects on tables, walls, and desks. Our aim
is to develop a system that can be used to rapidly create
customized detectors for vision-based robots that require
real-time object detection. This is related to the challenge
of using deep learning to perform visual SLAM [2] but with
the objective of tasking the robot to use the objects rather
than learning landmarks for visual navigation. This paper
addresses the following challenges:

1) Collecting and annotating images of novel relevant

objects with minimal human effort.

2) Developing a CNN architecture that trains with limited

data and performs real-time inference on videos.
Figure (1| shows our proposed system, which includes an
interactive user interface that enables the user to task a
quadcopter to autonomously collect images of target objects
from multiple viewpoints and label them without additional

1Saif Alabachi is with the Department of Computer Engineering, Uni-
versity of Central Florida, Orlando, FL and the University of Technology,
Baghdad, Iraq s .mohammed@knights.ucf.edu

2Gita Sukthankar is with the Department of Computer Science, University
of Central Florida, Orlando, FL gitars@eecs.ucf.edu

3Rahul Sukthankar is with Google Al sukthankar@google.com

Gita Sukthankar?

Rahul Sukthankar®

Data Collection Object Detector

——ahc Live camera DroSet (train/val)
) streaming

v

l Learning DUNet model
on DroSet

Interactive

object l

~——=ah - Live camera

streaming

selection

l ()
Generating frames,

object labels,
and annotation files

!

Instant dataset
augmentation

!

Image dataset
construction: DroSet

Fig. 1.  Our system consists of two parts: 1) a semi-autonomous data
collection system and 2) our neural network architecture for rapidly training
custom object detectors. The user teleoperates the quadcopter toward the
object using an interactive user interface. After the user selects the object, the
quadcopter autonomously captures multiple views of the object, which are
then augmented with synthetically filtered images. This dataset (DroSet) was
then used to train DUNet (Dense Upscaled Network). At the conclusion of
the procedure, the quadcopter can fly autonomously around the environment
rapidly and reliably detecting all objects initially specified by the user.

manual effort. Quadcopters as imaging platforms have be-
come ubiquitous in recent years in a wide variety of appli-
cations including surveillance [3], real-estate photography,
agricultural and industrial inspection [4].

To address the second challenge, we introduce a new
architecture, DUNet (Densely Upscaled Network), that is
inspired by the DenseNet [5] image classifier, the feature
pyramid network (FPN) [6], and the meta-architecture of
the SSD [7] object detector. By combining dense layers
and upscaling, DUNet can reliably detect small objects and
requires fewer classification layers to achieve the desired
speed-quality balance.

Our data collection platform was used to collect a dataset
(DroSet) of ten real-world objects along with labeling and



bounding box annotations. It includes both images cap-
tured at different viewpoints and ranges, along with aug-
mented data created by applying filters to create contrast,
background, and brightness variations. A standard approach
would be to use DroSet to fine tune an existing network
trained on a large dataset such as PascalVOC [8]. Fine-
tuning can be used to reduce the training time and improve
convergence; if the new objects do not share sufficient feature
representations with the original dataset then fine tuning
performs poorly. In contrast, the dense layers of DUNet
promote convergence on small customized datasets. Both our
DUNet frameworkﬂ and dataset are publicly available.

Our experimental results demonstrate that the DUNet
architecture can be trained from scratch on a small dataset,
achieves higher accuracy on small-sized objects and achieves
frame-rate object detection on image streams. DUNet is also
practical as a generic object detector, achieving competitive
performance on standardized object detection datasets as
state of the art models.

II. RELATED WORK

Object recognition has a long history in computer vi-
sion [9]. The field saw major advances due to the resur-
gence of neural networks, specifically deep convolutional
networks, initially for the task of image labeling [10] and
subsequently for detection [11]. The image labeling task
(e.g., ImageNet [12]) is most relevant to information retrieval
and requires assigning to each input (image), a class label
corresponding to the dominant semantic category visible in
that image. By contrast, object detection or localization,
consists of drawing a bounding box around each object (from
a set of relevant categories) in the image, along with its
semantic label — and is thus of direct relevance to robotics.
We briefly cover both the approaches and relevant datasets
below.

Image datasets are typically sourced from the Internet but
there is also a growing trend of datasets, particularly for
robotics applications, collected directly from the real world.
For instance, the KITTI dataset [13] consists of roadway
images taken from a car driving in an urban environment.
There has also been significant recent progress in efficiently
collecting large quantities of visual data using robots, includ-
ing smart user interfaces for semi-automated data collection
using drones (e.g., [14]) and indoor mobile robots (e.g., [15]).

Convolutional neural networks (CNNs) [16] were initially
applied to handwritten digit recognition but were shown to
outperform traditional techniques such as deformable part
models [17] on image labeling in AlexNet [10]. Since then,
there have been consistent improvements to the state-of-the-
art based on extensions to CNN-based architectures, such as
VGG [18], GoogLeNet [19] and DenseNet [5].

CNNs were also instrumental to recent progress on object
localization, starting with MultiBox [11]. Inspired by classi-
fication models, R-CNN [20] used cropped boxes from the

'Download DUNet from https://github.com/cyberphantom/
Customizing-Object-Detectors—-for-Indoor-Robots

original image as input to a neural network classifier. Un-
fortunately, R-CNN was computationally expensive since it
repeatedly processed the same pixels whenever they appeared
in different overlapping regions. Fast R-CNN [21] addressed
this defect by first pushing the entire image through a feature
extractor, thus amortizing the computation across the set of
anchor boxes. This set of ideas has culminated in Faster R-
CNN [22], where region proposals are efficiently generated
using a fully convolutional network. While Faster R-CNN
can process several images per second, it is typically still too
slow for most mobile or robotics applications that demand
real-time performance on compute-constrained platforms.
This has motivated a series of object detection models,
such as SSD [7] and YOLO [23] that aim for high quality
detections at near real-time speed.

Our work is informed by the comprehensive experiments
on object detection speed/accuracy trade-offs conducted by
Huang et al. [1], where SSD + MobileNet emerges as
a very strong baseline for our application. However, we
saw opportunities for improving customized object detectors,
drawing inspiration from recent work on feature extraction
in DenseNet [5], fully-convolutional approaches to seman-
tic segmentation such as Tiramisu [24] and recent multi-
scale approaches for object detection, such as FPN [6] and
TDM [25].

The standard approach to customizing an object detector
is via domain transfer — e.g., replacing the final layer in a
strong pre-trained model and fine-tuning it on the new data.
However, we see significant advantages to training custom
object detectors from scratch, such as DSOD [26], which
demonstrates competitive performance, albeit not in real-
time.

Thus, our proposed approach for customizing real-time
object detectors, termed Dense Upscaled Network (DUNet),
is an architecture inspired by SSD, DSOD, FPN, TDM and
is trained from scratch on data collected semi-autonomously
by an indoor UAV.

III. DENSE UPSCALED NETWORK (DUNET)

A typical modern Deep CNN-based object detection sys-
tem consists of a feature extraction stage combined with an
approach for generating bounding box proposals, followed by
appropriate classification and regression layers and strategies
for non-maxima suppression. For example, an object detec-
tor built using the SSD [7] meta-architecture may employ
VGG16 [18] as a feature extraction network, followed by
six convolutional classification layers, with four localization
points for regressing the ground truth proposals for each
class.

The meta-architecture for our model, Dense Upscaled
Network (DUNet) is summarized in Fig. 2] At a high level,
DUNet consists of a sequence of dense blocks that process
the input image at different scales, connected to a sequence
of prediction layers, each of which independently generate
detection results. The two sequences are connected both
laterally (at appropriate scales) and vertically (through max


https://github.com/cyberphantom/Customizing-Object-Detectors-for-Indoor-Robots
https://github.com/cyberphantom/Customizing-Object-Detectors-for-Indoor-Robots

DUNET

<
X
3
B TL=256
o) \J PL4: Conv 3x3x(66C+24Loc)
] L=7 E 2 -
S Conv 3x3x256 (10x10)
D -
Max pooling Upscale (2x)
™ »>(+
¢
(&)
o] TL=256 c
< _, PL3: Conv 3x3x(66C+24Loc) 2
1) = > (%2}
CIC.) Conv 3x3x256 (20x20) v
la S =
ax pooling Upscale (2x) v:)
o~ =
X S
3 TL= 256 =
o PL2: Conv 3x3x(66C+24Loc) <
L=7 > 2
3 = Conv 3x3x256 (40x40) =
< c
3 o
Max pooling Upscale (2x) =
-
S
g_03 TL= 256 PL1: Conv 3x3x(66C+24Loc) .
o =5 g Conv 3x3x256 (80x80)
i =
o
o) C: Classification layer

Avg. pooling - S2
Conv 3x3x128 - S1
Conv 3x3x64 - S1
Conv 3x3x64 - S2

F: Filter

L: Dense block layer
GR: Growth rate

PL: Prediction layer
Loc: Location layer

Il Pooling layer

I Transition layer(TL)
1 Convolution layer

Fig. 2. DUNet architecture

pooling and upscaling). We detail each of these aspects
below.

A. Feature Extraction

As discussed above, many object detectors employ a base
network for feature extraction; for instance, SSD uses the
VGG16 network (pre-trained on ImageNet) for this purpose.
In DUNet, we eliminate the use of VGG16 and instead start
with a fully convolutional “initial layer” sequence followed
by average pooling that serves as our feature extractor; this
is not pre-trained using ImageNet but is simply randomly
initialized and jointly trained from scratch. We employ batch
normalization [27] before every convolution in DUNet.

DUNet then processes these initial features using a

bottom-up pathway of four dense blocks, rather than the
ResNet architecture employed by SSD. Like ResNet, dense
blocks enable us to avoid the problem of vanishing gradients
and we are able to train these for a customized detector from
scratch on a relatively small dataset.

The first dense block consists of five layers, while the
remaining dense blocks use seven layers each with 64 filters
and a growth rate of 32. Each layer of a dense block
includes normalization, ReLU and convolution layers, and
each layer’s input consists of the concatenated outputs of
every feature-map from each of the preceding layers.

The top-down pathway (inspired by feature pyramid net-
works [6] and top-down modulation [25]) consists of predic-
tion layers interspersed with 2x upscaling operations. The



intuition is that this configuration improves detection of small
objects based on their context because each of the prediction
layers can exploit both high-resolution features and top-down
context. Additionally, the lateral connections serve as skip
connections that create short pathways from input to output.
To the best of our knowledge, DUNet is the first archi-
tecture to exploit both DenseNet-style concatenation (via
dense blocks) in the bottom-up pathway and ResNet-style
summation (via the upscaling) in the top-down pathway.

B. Meta Architecture Design Choices

As described above, many aspects of DUNet’s design, such
as the use of top-down pathway, are motivated by our desire
to improve performance on objects that occupy only a small
portion of the image. Reliably finding such “small objects”
is critical for robotics tasks, particularly when navigating a
robot towards a semantic landmark that is farther away (e.g.,
“go to the fire alarm”).

A straightforward approach towards this goal would have
been to add more classification layers to SSD or consider
more aspect ratios/scales. However, such an approach would
come at significant computational cost. Instead, in DUNet,
we are able to reduce the number of classification layers
from six (SSD) to four, while achieving better performance
on small object detection in streaming video.

The trade-off relationship between detection speed and
accuracy limits the input size. For instance, in SSD [7], the
authors demonstrate the difference between two implemented
versions of SSD network, SSD300 with 300x300 input size
resolution and SSD512 with 512x512. On PascalVOC2007
test, SSD300 has mAP=74.3 and 59 fps, whereas SSD512
has mAP=76.8 and 22 fps, so SSD512 is only 2.5% bet-
ter accuracy than SSD300 sacrificing more than 62% of
SSD300 speed. Based on this observation, in DUNet we
chose 320x320 as the input size resolution. Our experiments
show that this input resolution achieves a good balance
between accuracy and speed, given our meta-architecture.
As detailed below, DUNet without any pre-training and with
random initialization outperforms the most recent state-of-
the-art object detection models trained on large datasets like
MSCOCO and ImageNet on object detection in streaming
video.

IV. SEMI-AUTONOMOUS VISUAL DATA COLLECTION

As discussed in the introduction, object detection for
indoor robotics imposes different challenges than those en-
countered in object detection for web imagery, such as the
requirements for near real-time processing of input video
streams, the importance of reliably detecting small-sized ob-
jects and the ability to customize the detector for new object
classes from limited labeled data. Fortunately, we can also
benefit from several features of indoor environments, such
as limited variability in terms of lighting, viewpoint, range
and background conditions. Here, we present an approach for
acquiring training data with minimal human labeling as well
as a public dataset (DroSet) for evaluating object detectors
on streaming video in such environments.

A. Background

Collecting labeled datasets for object detection (e.g., PAS-
CAL VOC [8], COCO [28]) is significantly more onerous
than labeling datasets for whole-image classification (e.g.,
ImageNet [12]). This is because each instance of a relevant
object in the image must be localized using a bounding box,
which can take several seconds per instance even for an
expert annotator.

When the input images consist of a video stream, manually
labeling each frame becomes impractical and it is important
to consider semi-automated schemes for labeling that exploit
temporal consistency.

B. Interactive Data Collection

We collect training and evaluation data using an indoor
drone and a semi-autonomous user interface (SUI) [14].
The user interactively selects objects of interest and the
tracking agent controls the drone to collect a stream of
images capturing the object from multiple viewpoints, by
tracking the object while flying in a variety of patterns. The
system minimizes annotator effort by exploiting temporal
consistency since the tracker automatically propagates the
bounding box around the object from frame to frame. This
data is then used to train DUNet and enables repeatable
object detection experiments.

C. Live Data Augmentation

Synthetic image augmentation [29] is performed on a
captured image using a series of 2D geometric transforms
(e.g., rotation, translations) and induced photometric vari-
ations (e.g., brightness, contrast and color shifts). The re-
sulting set of images for each object instance are much
richer than those that would be typically obtained from the
Internet since they include variations in appearance induced
by viewpoint changes as well as specular reflections from
changing lighting (relative to camera).

Given that there is significant redundancy across consecu-
tive images in the image stream, we choose a slightly differ-
ent data augmentation strategy than is commonly employed
on standard image datasets. Rather than applying all of the
augmentation filters on each image, our system captures a
fresh frame before applying each filter (to further introduce
slight variations). Thus, successively captured frames are
processed by each of the transformations.

We include all of the common geometric and photometric
transformations, such as brightness, contrast, rotation, flip-
ping, shadow, background, and color shift. The user can
interactively add or remove filters as desired during the
capture process, as well as selecting the rate at which each
filter is applied (e.g., if more rotations vs. contrast changes
are desired). Since each filter is applied to a freshly captured
frame, the data generator generates fewer ‘“near-duplicate”
instances in its dataset than traditional data augmentation
schemes that are forced to apply all filters on each original
image. We specify 500 ms as a minimum threshold between
consecutively captured images in order to allow sufficient
time for the drone to change its position (gaining more



variations in depth and angle view point). Our data collection
system records input at 640x360 resolution at a rate of
~30.6 frames/second.

D. DroSet: A Dataset of Indoor Objects

Following the procedure described above, we captured
footage of 10 object categories in indoor environments and
organized it into training (75%), validation (15%) and test
(10%) sets. This dataset, termed DroSet, has been released
publiclyﬂ to enable other researchers to evaluate their object
detection algorithms under our conditions.

DroSet consists of image streams for the following ten
categories of indoor objects: christmas toy, coffee machine,
potted plant, tissue box, robot, soccer ball, turtle bot, UAV,
fire alarm, and tennis racket. By design, three of these cate-
gories (e.g., potted plant) overlap with categories in COCO,
while the others are new. Some of the object categories
exhibit little visual variation (e.g., fire alarm), while others
(e.g., UAV) contain objects with very different appearances.
Our choice of categories should enable researchers to better
evaluate the extent to which transfer learning generalizes
from standard datasets to our dataset for both the overlapping
and new categories.

V. EXPERIMENTAL RESULTS

For indoor robotics applications, it is important that pro-
posed methods find a good balance between processing
speed and detection quality. Thus, our primary experimental
scenario (Sec. [V-A) evaluates methods on a 30fps input
stream of frames. However, it is valuable to confirm that our
proposed model is competitive on traditional object detection
metrics, so we also include a direct comparison of DUNet
against SSD on a standard dataset (Sec. [V-B).

DUNet is implemented using Keras with the Tensor-
Flow [30] back-end. We use the TensorFlow Object Detec-
tion API [1] implementations for all of the baseline models,
such as SSD-300. All of the experiments were conducted on
a machine with an NVIDIA GeForce GTX Titan X graphics
card.

A. Scenario I: Evaluation on Real-Time Robot Input Stream

We use the Robotics Operating System (ROS) [31] to
record frame streams captured by the quadcopter camera.
This enables us to create repeatable playback environments
for testing the different models under realistic robot condi-
tions. For this scenario, we create bag test files for each of
the ten DroSet categories (where exactly one instance of the
given object appears in each frame) to enable computation
of per-class results. These are available in the public DroSet
release.

Fig. [3] compares DUNet against a comprehensive array
of state-of-the-art models, both in terms of detection quality
(true positive, false negative and false positive rates) and
processing time. We observe that DUNet clearly outperforms
real-time baselines like SSD VGG16 ImageNet in terms
of detection quality, and is 2.5x faster than state-of-the-art

2The DroSet dataset is available at https://goo.gl/xE6Jkr
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Fig. 3. Scatterplot of detector quality (TP, FN, FP) on DroSet vs.
processing time (normalized to real-time) for each model. DUNet clearly
outperforms other models while processing input stream in real time.
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models like Faster R-CNN + ResNet 101, which are unable
to keep up with the input stream. These results on DroSet
are consistent with the speed/accuracy experiments reported
on standard datasets [1].

Fig. [ summarizes overall average precision, recall and
accuracy on DroSet for all of the models and DUNet is the
clear winner.

Fig. 5] presents a more detailed breakdown of each model
(shown as a column) on the subset of sequences featuring
a given DroSet category. The translucent bars correspond to
the number of frames processed by each model in steady
state. Most models either fail to process sufficient frames
or exhibit low detection rate. We also see that fine-tuning
standard pre-trained detectors on DroNet can vary widely:
e.g., SSD MobileNet V1 pre-trained on COCO and fine-
tuned on DroSet does well on tennis racket but terribly on
christmas toy. Interestingly, there is not a clear correlation
between the domain transfer performance for such baseline
models and categories that overlap with COCO vs. new
categories. DUNet (despite being trained from scratch) wins
on both metrics on almost all of the classes.
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TABLE I
DIRECT COMPARISON TO SSD ON PASCAL VOC (FOLLOWING PROTOCOL FOR TABLE 1 IN [7] WITH UNION OF PASCAL VOC 2007+2012
TRAIN/VAL) CONFIRMING THAT THE PROPOSED DUNET MODEL IS COMPETITIVE ON STANDARD OBJECT DETECTION BENCHMARKS.

Model ‘ mAP ‘ aero bike bird boat botle bus car cat chair cow table dog horse mbik persn plant sheep sofa train tv
SSD300 | 743 | 755 80.2 723 663 47.6 83.0 842 86.1 54.7 783 739 845 853 826 762 486 739 76.0 834 74.0
DUNet 743 | 83.0 823 695 625 37.7 850 88.0 842 562 76.1 73.6 804 87.8 825 798 46.1 763 750 849 754

B. Scenario II: Evaluating DUNet on Standard Benchmark

The second scenario evaluates DUNet under standard
object detection conditions on traditional object detection
benchmarks, against state-of-the-art models. This is primarily
to confirm that our proposed meta-architecture is indeed
competitive under such conditions and not overly specialized
for our use case.

For this evaluation, we trained a DUNet model from
scratch on PASCAL VOC [8], with the final layer replaced
with PASCAL VOC object categories. We chose SSD300 as
a strong baseline based on speed/accuracy results reported in
Huang et al. [1] and replicated the experimental methodology
described in the SSD paper [7].

Table [I] presents a direct comparison of SSD vs. DUNet.
The dataset was the union of PASCAL VOC07 and VOC12,
with results for SSD300 (first row) copied directly from the
SSD paper [7]. We see that DUNet trained from scratch
performs as well as SSD300, which includes a VGG16
feature extractor trained on ImageNet. Note that we did not
optimize the DUNet performance on VOC for this scenario
(e.g., through hyperparameter tuning).

In summary, our experiments show the effectiveness of
DUNet, both in its primary role as a strong meta-architecture
for training customized real-time object detectors for indoor
robots, as well as its competitiveness in standard conditions.

VI. CONCLUSION

The paper introduces DUNet, a novel meta-architecture
for real-time object detection. Our design choices focus on
reliable detection of small-sized objects through the use of
dense blocks and top-down context, as well as customization
of detectors for new object classes via training from scratch
on limited datasets. We have made the data used for our
evaluation publicly available—-DroSet, a dataset of indoor
objects, collected semi-autonomously using a drone. This
dataset consists of frame streams that can be played back
in a repeatable manner so as to evaluate object detectors in
robotics applications.

Our experiments confirm that DUNet outperforms cur-
rent state-of-the-art models on real-time object detection
for indoor robotics. Additionally, even when trained from
scratch, DUNet is competitive on standard object detection
benchmarks.

Our DUNet implementation and the DroSet dataset have
been made publicly available to encourage further research
in this area.
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