
Estimating the Variance
of Return Sequences for Exploration

Zerong Xi
Department of Computer Science

University of Central Florida
Orlando, FL, USA

xizerong@gmail.com

Gita Sukthankar
Department of Computer Science

University of Central Florida
Orlando, FL, USA
gitars@eecs.ucf.edu

Abstract—This paper introduces a method for estimating
an upper bound for an exploration policy using either the
weighted variance of return sequences or the weighted temporal
difference (TD) error. We demonstrate that the variance of the
return sequence for a specific state-action pair is an important
information source that can be leveraged to guide exploration in
reinforcement learning. The intuition is that fluctuation in the
return sequence indicates greater uncertainty in the near future
returns. This divergence occurs because of the cyclic nature of
value-based reinforcement learning; improved estimates of the
value function result in policy changes which in turn modify the
value function. Although both variance and TD errors capture
different aspects of this uncertainty, our analysis shows that both
can be valuable to guide exploration. We propose a two-stream
network architecture to estimate weighted variance/TD errors
within DQN agents for our exploration method and show that it
outperforms the baseline on a wide range of Atari games.

Index Terms—exploration, reinforcement learning, DQN

I. INTRODUCTION

Having a good exploration policy is an essential component
of achieving sample efficient reinforcement learning. Most RL
applications use two heuristics, visitation counts and time, to
guide exploration. Count-based exploration [1] assumes that
it is worth allocating the exploration budget towards previ-
ously unexplored actions by awarding exploration bonuses
based on action counts. Time-based exploration [2] is usually
implemented using a Boltzmann distribution that reduces
exploration during later stages of the learning process. This
paper presents an analysis of the benefits and drawbacks
of weighted sequence variance for guiding exploration; we
contrast the performance of weighted variance with the more
familiar weighted temporal difference (TD) error.

Our intuition about the merits of weighted variance as
a heuristic to guide exploration is as follows. Imagine that
the returns are being summed in a potentially infinite series.
Weighted variance can be computed online in order to estimate
the convergence speed of the series for a specific state-action
pair. We estimate the upper bound using uncertainty, modeled
as the weighted standard deviation, as an exploration bonus to
guide action selection.

Fluctuation in the return sequence may foretell greater
uncertainty in the near future returns that should be rectified
through allocation of the exploration budget. Value-based RL

algorithms are particularly susceptible to divergence, since
improvements in the value function result in rapid policy
changes which in turn affect the value estimation. Unlike event
counts, weighted variance is more sensitive to the dynamics
of the return sequence; if multiple visitations yield consistent
reward, weighted variance will quickly prioritize a different
state-action sequence even if the total event counts are smaller.
We present an empirical analysis showing how weighted
variance reacts to the dynamics of raw, smoothed, and residual
return sequences.

Computing weighted variance within a deep reinforcement
learning framework is a challenging problem, due to the
instability of deep neural networks. Simply computing the
variance directly from the output of DQN risks overestimating
the error. The second contribution of the paper is introducing
a two-stream network architecture to estimate either weighted
variance or TD errors within DQN agents. Our new architec-
ture (Variance Deep Q Networks) uses a separate σ stream to
estimate a weighted standard deviation of the outputs from the
original stream.

II. RELATED WORK

Several groups have proposed strategies for balancing explo-
ration/exploitation in deep reinforcement learning including 1)
extensions on count-based methods [3]–[5]; 2) noise injection
techniques [6], [7]; 3) improving uncertainty estimation [8],
[9]; 4) driving exploration with intrinsic motivation [10], [11]
and 5) entropy-guided architectures [12], [13]. Our proposed
weighted-variance guided exploration technique is a compati-
ble addition to some of these other techniques (see Section VI
for further details).

Moving from tabular to deep reinforcement learning makes
the problem of estimating quantities such as counts and
variance more challenging. [4] showed how count-based tech-
niques could be generalized to neural networks by learning a
density model on state sequences; pseudocounts for states are
then derived from the density model’s recoding probability.
In contrast our model learns the weighted variance over the
return sequence rather than the state sequence.

Osband et al. [8] argue for the necessity of deep exploration
and design two environments, a MDP chain and Deep Sea,
to illustrate it. The immediate rewards direct the agent away

from reaching the goal, and an uninformed search can expect
to take O(|A|N) time to explore the goal, where A is the set of
actions. However, the goals in those environments are designed
to be achieved with consistent action preferences since action
outcomes are deterministic. Therefore, the expected search
time reduces to O(|A|) among agents who have diverse
but consistent preferences on actions. Bootstrapped DQN [8]
and Randomized Value Function [14] achieve this effect by
sampling a value function or an agent and applying it through
a whole training episode. Though many other exploration
methods, including ours, perform poorly in these artificial
scenarios, they can be adjusted to achieve the goal by adding
a set of randomly sampled but fixed noise ε ∈ R|A| on top of
the value function over a training episode. This setting gives
the agents an action preference which remains consistent in a
single training episode and diverse across episodes.

The use of randomness or noise to drive exploration is
a common theme across many approaches. NoisyNets [6]
directly injects noise into the weights of the neural networks;
the parameters of the noise are learned in combination with
the network weights. Like NoisyNet, our uncertainty is learned
directly by the network, reducing the need for extra hyper-
parameters. Aleatoric uncertainty poses a common challenge
for all exploration methods built on bonuses of uncertainty
or curiosity. However these methods remain useful when the
aleatoric one doesn’t dominate the overall uncertainty.

III. BACKGROUND

Our aim is to learn an action policy for a stochastic world
modeled by a Markov Decision Process by balancing the
exploration of new actions and the exploitation of actions
known to have a high reward. This is done by learning a value
function (Q(s, a)) using the discounted return information
(G(s, a)) and learning rate (α):

Q(s, a) = Q(s, a) + α · (G(s, a)−Q(s, a)) (1)

Actions are selected using the learned value function. This
paper illustrates how our weighted variance exploration ap-
proach can be integrated into agents using deep Q-learning.

Deep Q Networks [15] utilize deep neural networks as
approximators for action-value functions in Q learning algo-
rithms. The updating procedure of the function is formulated
as an optimization problem on a loss function:

E(s,a,r,s′)∼D

[(
r + γ ·maxb∈AQ(s′, b; ζ−)−Q(s, a; ζ)

)2]
(2)

where ζ are the parameters of the network, A is a set of
valid actions and D is a distribution over a replay buffer
of previously observed transitions. A target network with
parameters ζ− is regularly synchronized with ζ and used to
estimate the action values of the successor states; the use of a
target network promotes estimation stability. Since the original
introduction of DQN, several improvements to the updating
procedure and network architecture have been proposed.

Double DQN [16] updates the network according to a
different rule in which the action for the successor state is
selected based on the target network rather than the updating
network. This change alleviates the overestimation problem
by disentangling the estimation and selection of action during
optimization steps. The loss function for Double DQN is:

E(s,a,r,s′)∼D

[(
r + γ ·Q(s′, argmaxb∈AQ(s′, b; ζ); ζ−)−Q(s, a; ζ)

)2]
.

(3)

IV. MEASURING VARIANCE FOR EXPLORATION

During Monte Carlo policy evaluation, the value function
Q(s, a) for a particular state-action pair is updated using a se-
quence of returns Gn(s, a) = G1(s, a), G2(s, a), ..., Gn(s, a).
This series can start diverging due to the cyclic nature of
value-based approaches; the changing value function results in
policy improvements which in turn modify the value function.
We believe that the agent should leverage information from
these variations to quantify uncertainty in order to explore non-
optimal, but still promising, actions. Specifically, agents can
follow a greedy exploration policy based on an upper bound:

π(s) = argmaxa∈AQ(s, a) + σ(s, a) · c, (4)

where σ is a measurement of uncertainty and c is a fixed
hyper-parameter which adjusts the extent of exploration.

To measure the uncertainty of returns for a specific state-
action pair, we propose 1) a weighted variance estimation
method for general RL, 2) a neural network architecture,
and 3) novel optimizing strategy which explicitly estimates
either weighted variance or weighted TD error in the DRL
configuration.

A. Reinforcement Learning with Variance Estimation

Although the vanilla form of sequence variance doesn’t re-
flect the higher importance of the recent returns, we define the
uncertainty as an exponentially decaying weighted standard
deviation

σn(s, a) =

√∑n
i=1(1− α)n−i(Gi(s, a)−Qn(s, a))2∑n

i=1(1− α)n−i
, (5)

where Qn(s, a) is the value function which is updated using
Gn(s, a) and α (the update step size) in Eq. 1.

The update formula for σ is as follows

σn+1(s, a) =

√√√√(1− α) ·
[
σ2
n(s, a) + (Qn+1(s, a)−Qn(s, a))

2]
+ α · (Gn+1(s, a)−Qn+1(s, a))

2
.

(6)

The first term inside the square root represents the ad-
justed estimation of variance on Gn(s, a) with the updated
Qn+1(s, a), and the second term is the estimation from the
incoming Gn+1(s, a). Instead of estimating the variance from

TD-errors [17], we deduce it from the mathematical definition
of weighted variance. That results in an additional adjustment
on the estimation of the previous variance with the updated Q
value.

When updates are performed using the above formula,
σ(s, a) is biased during the early stage, due to the undecidable
prior σ0(s, a) as well as the bias incipient to the usage of a
small n. We propose two strategies for initializing the σ func-
tion: 1) warming up with an ε-greedy method with ε decayed to
0 to ensure a gradual transition to our exploration policy, which
effectively starts with a larger n; 2) initializing σ0(s, a) as a
large positive value to encourage uniform exploration during
early stages, which is theoretically sound since the variance
of the value of a state-action pair is infinitely large if it has
never been visited.

B. Variance Deep Q Networks (V-DQN)

Our new algorithm, V-DQN, incorporates weighted variance
into the exploration process of training DQNs. Due to the
known instability of deep neural networks during the training
process, it is risky to calculate the weighted variance from
composing multiple estimations (e.g., the state-action values
before and after the optimization step).

Instead of computing the target variance as a byproduct,
we propose a two-stream neural network architecture along
with an novel loss function to allow end-to-end training while
estimating the weighted standard deviation.

It simplifies the optimization for variance by ignoring the
adjustment on the previous variance, which is closer to the
form in [17]. Since the deep neural networks with gradient
descent cannot strictly follow the above updating formula, we
believe it’s an acceptable compromise. Our empirical results
demonstrate the effectiveness of the simplification.

Variance DQN uses neural networks with a separate σ-
stream to estimate a weighted standard deviation of the outputs
from the original stream on moving targets, which is common
in the context of deep reinforcement learning where the value
function improves as the policy evolves. In practice, the σ-
stream shares lower layers, e.g. convolutional layers, with the
original stream to reduce computational demands.

The loss function for Variance DQN is a sum of mean
square error losses on the original stream, which is identical
to formula 2 (for DQN) or formula 3 (for Double DQN), and
the square of the σ-stream:

LV-DQN =
E(s,a,r,s′)∼D[
(G−Q(s, a; ζ))2

(
(G−Q(s, a; ζ))2 − σ2(s, a; ζ)

)2]
(7)

s.t. G =

{
r + γ ·maxb∈AQ(s′, b; ζ−) for DQN
r + γ ·Q(s′, argmaxb∈AQ(s′, b; ζ); ζ−) for DDQN

(8)

It is worth noting that the Q function used in the second
part of the loss function on the σ-stream doesn’t contribute
to gradients directly. Therefore, the optimization steps are in
effect unchanged for the original stream on the Q value, except
for the shared lower layers. While the sign of the σ-stream’s

Algorithm 1 Variance DQN (V-DQN)
Input: exploration parameter c; minibatch k; target net-

work update step τ ;
Input: initial network parameters ζ; initial target network

parameter ζ−;
Input: Boolean DOUBLE

1: Initialize replay memory H = ∅
2: Observe s0
3: for t ∈ {1, ..., T} do
4: Select an action a ←argmaxb∈AQ(s, b; ζ) +
|σ(s, b; ζ)| · c

5: Sample next state s ∼ P (·|s, a) and receive reward
r ← R(s, a)

6: Store transition (st−1, a, r, st) in H
7: for j ∈ {1, ..., k} do
8: Sample a transition (sj , aj , rj , s

′
j) ∼ D(H) . D

can be uniform or prioritised replay
9: if s′j is a terminal state then

10: G← rj
11: else if DOUBLE then
12: b∗(s′j) = argmaxb∈AQ(s′j , b; ζ)
13: G← rj + γQ(s′j , b

∗(s′j); ζ
−)

14: else
15: G← rj + γmaxb∈AQ(s′j , b; ζ

−)
16: end if
17: σ̂ ← G−Q(sj , a; ζ)
18: Do a gradient step with loss (G−Q(sj , a; ζ))

2 +
(σ̂2 − σ2(sj , a; ζ))

2

19: end for
20: if t ≡ 0 (mod τ) then
21: Update the target network ζ− ← ζ
22: end if
23: end for

output is eliminated in the loss function, we need to do the
same during the exploration process. The modified exploration
policy is

π(s) = argmaxa∈AQ(s, a) + |σ(s, a)| · c (9)

The full procedure is shown in Algorithm 1. We also
propose a variant of our method (TD-DQN) which updates
σ-stream with absolute temporal difference error. The loss
function for TD-DQN is

LTD-DQN =E(s,a,r,s′)∼D[
(G−Q(s, a; ζ))2 + (|G−Q(s, a; ζ)| − σ(s, a; ζ))2

]
(10)

where G is the same as Equation 8.
Both networks measure the uncertainty of the Q value

based on the return history in order to construct an upper
bound for exploration policy. The difference between the
approaches can be interpreted based on their implicit usage
of different distance metrics: Euclidean (Variance DQN) vs.

Manhattan (TD-DQN). Generally, V-DQN is more sensitive to
fluctuations in the return sequence, investing a greater amount
of the exploration budget to damp variations.

There may be applications in which it is is valuable to
estimate still higher order statistics, such as the skew or
kurtosis of the return sequence. However, this sensitivity can
also sabotage exploration by directing resources away from
promising areas of the state space that are slowly trending to-
wards convergence; overemphasizing the elimination of small
variations could ultimately result in longer training times.
While the c hyper-parameter in our exploration policy adjusts
the trade-off between exploration and exploitation, the choice
of the distance metrics used to measure sequence variation
determines the distribution of exploration time.

V. RESULTS

To illustrate how weighted variance improves exploration,
this paper first presents results on its usage in tabular Q-
learning for the Cartpole inverted pendulum problem. Then
we report the performance of our proposed techniques (V-
DQN and TD-DQN) on the Atari game benchmark. The results
show that our two stream architecture for guiding exploration
with weighted variance or weighted temporal difference out-
performs the standard DDQN benchmark.

A. Cartpole

To demonstrate the effectiveness of our Variance Estimation
(VE) method, we compare it with ε-greedy on Cartpole
balancing problem. For this experiment, we use the classic
Q-learning algorithm [18] with a tabular look-up Q-table.

The Cartpole environment has a 4-dimensional continuous
state space S = R4 and a discrete action space A ={Push
Left, Push Right, Do Nothing}. It provides a reward of 1 in
every time step. The episode terminates if any of the following
conditions is met: 1) the episode length is greater than 500, 2)
the pole falls below a threshold angle, 3) the cart drifts from
the center beyond a threshold distance. With this setting, the
maximum accumulated reward any policy can achieve is 500.
To apply the tabular Q-learning configuration, the continuous
state space is discretized into 18,432 discrete states by dividing
{Cart Position, Cart Velocity, Pole Angle, Pole Velocity} into
{12, 8, 16, 12} intervals.

With grid search, ε-greedy achieves the best performance
when the discounting factor γ = 1.0 and the exploration rate
ε decays from 1.0 to 0.01 in 5000 episodes.

For Variance Estimation, we experimented on both ini-
tialization methods as well as a combination of them. A
similar configuration is applied on warming up with the ε-
greedy method in which ε decays from 1.0 to 0.0 during
5000 episodes. The initial standard deviation is set to 5000 for
initializing the σ0 method to ensure sufficient early visits on
states. The combination method warms up with ε-greedy while
retaining the large initial standard deviation; it uses the same
hyper-parameters. The value of c is set to 1.5 for initializing
the σ0 method and 0.5 for the other two.

5 10 15 20 25 30
episode (thousand)

0

100

200

300

400

500

re
wa

rd

-greedy
-combined
-init_std
-warm_up

(a) Episode reward (εeval = 0)

5 10 15 20 25 30
episode (thousand)

0

100

200

300

400

500

re
wa

rd

-greedy
-combined
-init_std
-warm_up

(b) Episode reward (εeval = 0.05)

Fig. 1: Average episode rewards in the Cartpole balancing
problem. The curves and the shadowed areas represent the
means and the quartiles over 9 independent runs. The models
are evaluated for 10 evaluation episodes every 200 training
episodes.

To reduce the possibility of over-fitting, we evaluate the
models with an additional environment in which the agent
has a probability εeval = 0.05 of acting randomly. All of our
methods outperform ε-greedy consistently for both evaluation
settings. When the training time is prolonged, the baseline
method generally achieves similar scores to our methods, but
requires approximately 10 times the training episodes.

B. Atari Games

We evaluate our DQN-based algorithms on 55 Atari games
from the Arcade Learning Environment (ALE) [19], simulated
via the OpenAI Gym platform [20]. Defender and Surround
are excluded because they are unavailable in this platform. The
baseline method (denoted as DDQN) is DQN [15] with all the
standard improvements including Double DQN [16], Dueling
DQN [21] and Prioritized Replay [22].

Our network architecture has a similar structure to Dueling
DQN [21], but with an additional σ-stream among fully
connected layers. The 3 convolutional layers have 32 8×8
filters with stride 4, 64 4×4 filters with stride 2, 64 3×3
filters with stride 1 respectively. Then the network splits into
three streams of fully connected layers, which are value,
advantage and σ streams. Each of the streams has a hidden
fully connected layer with 512 units. For the output layers, the

Do
ub

le
Du

nk
At

la
nt

is
Tu

ta
nk

ha
m

Te
nn

is
Ti

m
eP

ilo
t

Ba
nk

He
ist

Sk
iin

g
Am

id
ar

He
ro

Be
rz

er
k

Po
ng

As
te

ro
id

s
Vi

de
oP

in
ba

ll
Pi

tfa
ll

Pr
iv

at
eE

ye
M

on
te

zu
m

aR
ev

en
ge

Bo
xi

ng
Ro

ad
Ru

nn
er

Fr
ee

wa
y

M
sP

ac
m

an
Na

m
eT

hi
sG

am
e

Qb
er

t
Ce

nt
ip

ed
e

Al
ie

n
Kr

ul
l

Gr
av

ita
r

Fr
os

tb
ite

Be
am

Ri
de

r
Fi

sh
in

gD
er

by
Ri

ve
rra

id
En

du
ro

Cr
az

yC
lim

be
r

Za
xx

on
Ba

ttl
eZ

on
e

Ve
nt

ur
e

Ya
rs

Re
ve

ng
e

Bo
wl

in
g

Ku
ng

Fu
M

as
te

r
So

la
ris

St
ar

Gu
nn

er
Ro

bo
ta

nk
Br

ea
ko

ut
Ice

Ho
ck

ey
Se

aq
ue

st
W

iza
rd

Of
W

or
Up

ND
ow

n
Ka

ng
ar

oo
Ch

op
pe

rC
om

m
an

d
Ja

m
es

bo
nd

Go
ph

er
Sp

ac
eI

nv
ad

er
s

Ph
oe

ni
x

As
te

rix
De

m
on

At
ta

ck
As

sa
ul

t

103

102

101

100
0

100

101

102

103

Fig. 2: Improvement in normalized scores of V-DQN over DDQN in 200M frames

Do
ub

le
Du

nk
St

ar
Gu

nn
er

Br
ea

ko
ut

Tu
ta

nk
ha

m
Ro

ad
Ru

nn
er

Te
nn

is
Al

ie
n

Ti
m

eP
ilo

t
Ba

ttl
eZ

on
e

Sk
iin

g
M

sP
ac

m
an

Be
rz

er
k

Am
id

ar
Po

ng
He

ro
As

te
ro

id
s

Pi
tfa

ll
Pr

iv
at

eE
ye

Vi
de

oP
in

ba
ll

M
on

te
zu

m
aR

ev
en

ge
Fr

ee
wa

y
Bo

xi
ng

Fr
os

tb
ite

Ba
nk

He
ist

Cr
az

yC
lim

be
r

Ce
nt

ip
ed

e
Bo

wl
in

g
Na

m
eT

hi
sG

am
e

Gr
av

ita
r

Be
am

Ri
de

r
Fi

sh
in

gD
er

by
En

du
ro

Qb
er

t
Ve

nt
ur

e
Ri

ve
rra

id
Kr

ul
l

Za
xx

on
Ya

rs
Re

ve
ng

e
W

iza
rd

Of
W

or
So

la
ris

Ro
bo

ta
nk

Ku
ng

Fu
M

as
te

r
Ch

op
pe

rC
om

m
an

d
Ice

Ho
ck

ey
Ja

m
es

bo
nd

Ka
ng

ar
oo

Se
aq

ue
st

At
la

nt
is

Up
ND

ow
n

Ph
oe

ni
x

Sp
ac

eI
nv

ad
er

s
As

sa
ul

t
Go

ph
er

As
te

rix
De

m
on

At
ta

ck

103

102

101

100
0

100

101

102

103

Fig. 3: Improvement in normalized scores of TD-DQN over DDQN in 200M frames

0 25 50 75 100 125 150 175 200
Frames (in millions)

0

50

100

150

200

250

300

No
rm

al
ize

d
sc

or
es

DDQN
V-DQN
TD-DQN

(a) Mean normalized scores of all Atari games over 200M frames.

0 25 50 75 100 125 150 175 200
Frames (in millions)

0

20

40

60

80

100

120

140

No
rm

al
ize

d
sc

or
es

DDQN
V-DQN
TD-DQN

(b) Median normalized scores of all Atari games over 200M frames.

Fig. 4: The mean and median of the normalized training curve
over all 55 Atari games

value stream has a single output while both advantage and σ
streams have the same number of outputs as the valid actions.

The random start no-op scheme in [15] is used here in
both training and evaluation episodes. The agent repeats no-op

actions for a randomly selected number of times between 1 to
30 in the beginning to provide diverse starting conditions to
alleviate over-fitting. Evaluation takes place after freezing the
network every 250K training steps (1M frames). The scores
are the averages of episode rewards over 125K steps (500K
frames) where episodes are truncated at 27K steps (108K
frames or 30 minutes of simulated play).

We use the Adam optimizer [23] with a learning rate of
6.25 × 10−5 and a value of 1.5 × 10−4 for Adam’s ε hyper-
parameter over all experiments. The network is optimized on a
mini-batch of 32 samples over prioritized replay buffer every 4
training steps. The target network is updated every 30K steps.

The exploration rate of DDQN decays from 1.0 to 0.01
in 250K steps (1M frames) and retains that value until the
training ends. Our methods do not rely on ε-greedy so that is
simply set to 0 for all the steps. Instead, the value of c impacts
the actual exploration rates of our methods, which are defined
here to be the proportion of actions different from the optimal
ones based on the current Q value function. Empirically, the
performance on Atari games does not vary significantly over a
wide range of c values, which is an unusual finding. A possible
explanation is that most of the actions in those games are not
critical. To keep the exploration policy from drifting too far
from the exploitation policy, we set c to be 0.1 for both V-
DQN and TD-DQN over all experiments to keep the average
exploration rates of the majority of the Atari games to reside
roughly between 0.01 and 0.1.

A summary of the results over all 55 Atari games is reported
in Table I. To compare the performance of agents over different
games, the scores are normalized with human scores

ScoreNormalized = 100×
ScoreAgent − ScoreRandom

ScoreHuman − ScoreRandom
(11)

where both the random and the human scores were taken from

[22].
The results clearly show that our proposed methods for

guiding exploration, V-DQN and TD-DQN, both improve on
the standard DDQN benchmark. Although there are small
differences in the ranking, both versions perform well in the
same games, and underperform the benchmark in a small
set of games. The mean and median statistics do not reveal
significant differences between V-DQN and TD-DQN. Our
intuition remains that V-DQN is likely to more sensitive to
fluctuations and will allocate more exploration budget to damp
them out.

DDQN V-DQN TD-DQN
Median 151% 164% 164%
Mean 468% 547% 533%

TABLE I: Summary of normalized scores

VI. CONCLUSION AND FUTURE WORK

This paper presents an analysis of the benefits and lim-
itations of weighted variance for guiding exploration. Both
weighted convergence and its close cousin, weighted temporal
difference, can be used to quantify the rate of convergence
of the return series for specific state-action pairs. The return
dynamics of value-based reinforcement learning is particularly
susceptible to diverging as value improvements beget policy
ones. This paper introduces a new two-stream network archi-
tecture to estimate both weighted variance/TD errors; both our
techniques (V-DQN and TD-DQN) outperform DDQN on the
Atari game benchmark.

While our methods capture the divergence of return se-
quences, they suffer from the “cold start” problem. It is
unlikely that they will perform well for either empty or short
sequences. To address this, we propose two simple initial-
ization methods for tabular configurations in this paper. This
issue is somewhat alleviated by the generalization capacity
inherent to function approximators like deep neural networks.
However, larger state spaces where most of the states will
never be visited still pose a problem.

Our method can further benefit from unification with other
exploration methods. Count-based upper confidence bound
(UCB) methods [4] balance visits among states during the
early phases of exploration; this effect decays gradually as vis-
its increase. This characteristic makes it a natural complement
for our sequence-based methods. Noisy DQN [6] is another
option that assigns greater randomness to less visited states.
Our method focuses on promising actions whereas Noisy DQN
chooses actions more randomly in those areas of the state
space. We ran some experiments on a rudimentary design
in which the linear layers of Q-value stream were replaced
with noisy ones; our preliminary results (not reported) show
an improvement by hybridizing the two architectures.

VII. ACKNOWLEDGMENTS

This research was supported with funding from Lockheed
Martin Corporation.

REFERENCES

[1] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
Machine Learning: ECML, vol. 2006, pp. 282–293, 09 2006.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[3] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Advances in Neural Information Processing Systems, 2016.

[4] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos, “Count-
based exploration with neural density models,” in Proceedings of the
International Conference on Machine Learning, 2017.

[5] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “#exploration: A study of
count-based exploration for deep reinforcement learning,” in Advances
in Neural Information Processing Systems, 2017.

[6] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell,
and S. Legg, “Noisy networks for exploration,” in International Confer-
ence on Learning Representations, 2018.

[7] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise for
exploration,” in International Conference on Learning Representations,
2018.

[8] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Advances in Neural Information Processing
Systems, 2016.

[9] N. Nikolov, J. Kirschner, F. Berkenkamp, and A. Krause, “Information-
directed exploration for deep reinforcement learning,” in International
Conference on Learning Representations, 2019.

[10] N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated
reinforcement learning,” in Advances in Neural Information Processing
Systems, 2005.

[11] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the Inter-
national Conference on Machine Learning, 2017.

[12] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in Proceedings of the International
Conference on Machine Learning, 2017.

[13] E. Hazan, S. Kakade, K. Singh, and A. V. Soest, “Provably efficient
maximum entropy exploration,” in International Conference on Learning
Representations, 2019.

[14] I. Osband, B. V. Roy, D. J. Russo, and Z. Wen, “Deep exploration via
randomized value functions,” Journal of Machine Learning Research,
2019.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, Feb 2015.

[16] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2016.

[17] C. Sherstan, D. R. Ashley, B. Bennett, K. Young, A. White, M. White,
and R. S. Sutton, “Comparing direct and indirect temporal-difference
methods for estimating the variance of the return,” in Proceeding of
Uncertainty in Artificial Intelligence, 2018.

[18] C. J. C. H. Watkins and P. Dayan, “Q-learning,” in Machine Learning,
1992.

[19] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, May 2013.

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[21] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Frcitas, “Dueling Network Architectures for Deep Reinforcement
Learning,” the International Conference on Machine Learning, 2016.

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience
Replay,” Proceedings of the International Conference on Learning
Representations, 2015.

[23] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015.

	Introduction
	Related Work
	Background
	Measuring Variance for Exploration
	Reinforcement Learning with Variance Estimation
	Variance Deep Q Networks (V-DQN)

	Results
	Cartpole
	Atari Games

	Conclusion and Future Work
	Acknowledgments
	References

