IAL

Intelligent Agents Lab


Creating Social Systems

Topics in Social Systems (Fall 2016)

Location: HEC-438
Time: 1:30 pm - 2:30 pm
Date Presenter Reading
Sep 08 Dr. Sukthankar
Semester introduction
Sep 15 Alireza
A Holistic Approach for Link Prediction in Multiplex Networks
(Hajibagheri et al.)

Abstract

Networks extracted from social media platforms frequently include multiple types of links that dynamically change over time; these links can be used to represent dyadic interactions such as economic transactions, communications, and shared activities. Organizing this data into a dynamic multiplex network, where each layer is composed of a single edge type linking the same underlying vertices, can reveal interesting cross-layer interaction patterns. In coevolving networks, links in one layer result in an increased probability of other types of links forming between the same node pair. Hence we believe that a holistic approach in which all the layers are simultaneously considered can outperform a factored approach in which link prediction is performed separately in each layer. This paper introduces a comprehensive framework, MLP (Multiplex Link Prediction), in which link existence likelihoods for the target layer are learned from the other network layers. These likelihoods are used to reweight the output of a single layer link prediction method that uses rank aggregation to combine a set of topological metrics. Our experiments show that our reweighting procedure outperforms other methods for fusing information across network layers.

Sep 22 No Meeting
Sep 29 Juncheng
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
(Bach et al.)

Abstract

A fundamental challenge in developing high-impact machine learning technologies is balancing the ability to model rich, structured domains with the ability to scale to big data. Many important problem areas are both richly structured and large scale, from social and biological networks, to knowledge graphs and the Web, to images, video, and natural language. In this paper, we introduce two new formalisms for modeling structured data, distinguished from previous approaches by their ability to both capture rich structure and scale to big data. The first, hinge-loss Markov random fields (HL-MRFs), is a new kind of probabilistic graphical model that generalizes different approaches to convex inference. We unite three approaches from the randomized algorithms, probabilistic graphical models, and fuzzy logic communities, showing that all three lead to the same inference objective. We then derive HL-MRFs by generalizing this unified objective. The second new formalism, probabilistic soft logic (PSL), is a probabilistic programming language that makes HL-MRFs easy to define using a syntax based on first-order logic. We next introduce an algorithm for inferring most-probable variable assignments (MAP inference) that is much more scalable than general-purpose convex optimization software, because it uses message passing to take advantage of sparse dependency structures. We then show how to learn the parameters of HL-MRFs. The learned HL-MRFs are as accurate as analogous discrete models, but much more scalable. Together, these algorithms enable HL-MRFs and PSL to model rich, structured data at scales not previously possible.

Oct 06 No Meeting
Oct 13 Alireza
Proposal Practice
Oct 20 No Meeting
Oct 27 No Meeting
Nov 03 Astrid
Tensorflow Tutorial

Useful Links

Nov 10 No Meeting
Nov 17 Saif
Monocular SLAM Supported Object Recognition
(Pillai and Leonard)

Abstract

In this work, we develop a monocular SLAMaware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through experiments, we illustrate the utility of using such a system to effectively detect and recognize objects, incorporating multiple object viewpoint detections into a unified prediction hypothesis. The performance of the proposed recognition system is evaluated on the UW RGB-D Dataset, showing strong recognition performance and scalable run-time performance compared to current state-of-the-art recognition systems.

Nov 24 No Meeting
Dec 01 Sahar
Generative Adversarial Nets
(Goodfellow et al.)

Abstract

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.