Large Graph Mining -Patterns, Explanations and Cascade Analysis

Christos Faloutsos CMU

Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
- Conclusions
- [Extra: ebay fraud; tensors; spikes]

Graphs - why should we care?

>\$10B revenue >0.5B users

Food Web [Martinez '91]

Internet Map [lumeta.com]

ASONAM

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

NETFLIX

• Many-to-many db relationship -> graph

. . . .

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Static graphs
 - Time-evolving graphs
 - Why so many power-laws?
 - Part#2: Cascade analysis
 - Conclusions

Part 1: Patterns & Laws

ASONAM

Laws and patterns

• Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- Q2: why 'no good cuts'?
- A2: <self-similarity stay tuned>
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

ASONAM

(c) 2013, C. Faloutsos

11

ASONAM

(c) 2013, C. Faloutsos

12

(c) 2013, C. Faloutsos

ASONAM

Solution# S.2: Eigen Exponent E

ASONAM

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Time evolving graphs
- Problem#2: Tools

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles ?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) – O(d_{max}²)
Q: Can we do that quickly?
A:

But: triangles are expensive to compute $(3\text{-way join; several approx. algos}) - O(d_{max}^2)$ Q: Can we do that quickly? A: Yes! $A = \lambda x$

#triangles = 1/6 Sum (λ_i^3) (and, because of skewness (S2), we only need the top few eigenvalues! - O(E)

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11] **ASONAM** (c) 2013, C. Faloutsos

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11] **ASONAM** 23

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

ASONAM

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

ASONAM

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Static graphs

- Power law degrees; eigenvalues; triangles
- Anti-pattern: NO good cuts!
- Time-evolving graphs
- •
- Conclusions

Background: Graph cut problem

- Given a graph, and k
- Break it into k (disjoint) communities

ASONAM

Graph cut problem

- Given a graph, and k
- Break it into k (disjoint) communities
- (assume: block diagonal = 'cavemen' graph)

Many algo's for graph partitioning

• METIS [Karypis, Kumar +]

- 2nd eigenvector of Laplacian
- Modularity-based [Girwan+Newman]
- Max flow [Flake+]

ASONAM

Strange behavior of min cuts

- Subtle details: next
 - Preliminaries: min-cut plots of 'usual' graphs

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. WWW 2008.

• Do min-cuts recursively.

• Do min-cuts recursively.

• Do min-cuts recursively.

ASONAM

Experiments

- Datasets:
 - Google Web Graph: 916,428 nodes and 5,105,039 edges
 - Lucent Router Graph: Undirected graph of network routers from <u>www.isi.edu/scan/mercator/maps.html</u>; 112,969 nodes and 181,639 edges
 - User → Website Clickstream Graph: 222,704
 nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

• What does it look like for a real-world graph?

Experiments

log (# edges)

• Used the METIS algorithm [Karypis, Kumar,

- Google Web graph
- Values along the yaxis are averaged
- "lip" for large # edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

Experiments

log (# edges)

• Used the METIS algorithm [Karypis, Kumar,

- Google Web graph
- Values along the yaxis are averaged
- "lip" for large # edges

• Slope of -0.4, corresponds to a 2.5dimensional grid!

Experiments

• Same results for other graphs too...

Lucent Router graph

Clickstream graph

(c) 2013, C. Faloutsos

Why no good cuts?

• Answer: self-similarity (few foils later)

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Static graphs
 - Time-evolving graphs
 - Why so many power-laws?
- Part#2: Cascade analysis
- Conclusions

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

• and Jon Kleinberg (Cornell – sabb. @ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: *Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations*, KDD 2005

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter \sim O(N^{1/3})]
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$

• What is happening in real data?

diameter

ASONAM

(c) 2013, C. Faloutsos

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - [diameter $\sim O(N^{1/3})$]
 - diameter $\sim ((log N))$
 - diameter $\sim O(\log \log N)$

- What is happening in real data?
- Diameter **shrinks** over time

T.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

(c) 2013, C. Faloutsos

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

Say, k friends on average

• Q: what is your guess for E(t+1) =? 2 * E(t)

T.2 Temporal Evolution of the Graphs

- $N(t) \dots$ nodes at time t Gaussian trap
- E(t) ... edges at time t
- Suppose that N(t+1) = 2 * N(t)

- Q: what is your guess for E(t+1) = ?? * E(t)
- A: over-doubled! $\sim 3x$

- But obeying the ``Densification Power Law'' ASONAM (c) 2013, C. Faloutsos

T.2 Temporal Evolution of the Graphs

- $N(t) \dots$ nodes at time t Gaussian trap
- E(t) ... edges at time t
- Suppose that N(t+1) = 2 * N(t)

log

lin

lin 1

- Q: what is your guess for E(t+1) * E(t)
- A: over-doubled! $\sim 3x$

loq

T.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - 2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

(c) 2013, C. Faloutsos

MORE Graph Patterns

		Unweighted	Weighted	
טומוור	C+>+i>	 L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]	
		L05 . Densification Power Law (DPL) [Leskovec et al. `05] L06 . Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07 . Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08 . Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09 . Bursty/self-similar edge/weight additions [Gomez and Santonia `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]	
RTG: A Recursive Realistic Graph Generator using Random				
Typing Leman Akoglu and Christos Faloutsos. PKDD'09.				

R

MORE Graph Patterns

	Unweighted	Weighted		
Static	 Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Triangle Power Law (TPL) [Tsourakakis '08] Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]		
Dynamic	 5. Densification Power Law (DPL) [Leskovec et al. `05] 12. Small and shrinking diameter [Albert and Barabási 99, Leskovec et al. `05] 107. Constant size 2nd and 3rd connected components [McGlohon et al. `08] 108. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] 109. Bursty/self-similar edge/weight additions [Gomez and Santonia `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]		
RTG: A Recursive Realistic Graph Generator using Random				
yping Leman Akoglu and Christos Faloutsos. PKDD'09.				

Unweighted Weighted 101. Power-law degree distribution [Faloutsos et al. '99, Chakrabarti et al. '04, Newman '04) Li0. Snapshot Power Law (SPL) [McGlohon et al.

L11. Weight Power Law

(WPL) [McGlohon et al

• Mary McGlohon, Leman Akoglu, Christos Faloutsos. *Statistical Properties of Social Networks.* in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

 Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u>Oct.
 2012, Morgan Claypool.

Carnegie Mellon

Static

Dynamic

Newman '02]

`081

'99, Leskovec et al. '05]

[McGlohon et al. '08]

L02. Triangle Power Law (TPL) [Tsourakakis `08] L03. Eigenvalue Power Law (EPL) [Siganos et al. `03] L04. Community structure [Flake et al. `02, Girvan and

L05. Densification Power Law (DPL) [Leskovec et al. `05]

106. Small and shrinking diameter [Albert and Barabási

L07. Constant size 2nd and 3rd connected components

LO8. Principal Eigenvalue Power Law $(\lambda_1 PL)$ [Akoglu et al.

L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and Bestavros `99, McGlohon et al. `08]

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Why so many power-laws?
 - Why no 'good cuts'?
- Part#2: Cascade analysis
- Conclusions

2 Questions, one answer

- Q1: why so many power laws
- Q2: why no 'good cuts'?

possible 2 Questions, one answer

- Q1: why so many power laws
- Q2: why no 'good cuts'?
- A: Self-similarity = fractals = 'RMAT' ~
 'Kronecker graphs'

- Remove the middle triangle; repeat
- -> Sierpinski triangle
- (Bonus question dimensionality?
 - ->1 (inf. perimeter $-(4/3)^{\infty}$)
 - -<2 (zero area $-(3/4)^{\infty}$)

erpinski.ou

Self-similarity -> no char. scale
-> power laws, eg:
2x the radius,
3x the #neighbors nn(r)
 nn(r) = C r log3/log2


```
Self-similarity -> no char. scale
-> power laws, eg:
2x the radius,
3x the #neighbors nn(r)
    nn(r) = C r <sup>log3/log2</sup>
```


Self-similarity -> no char. scale -> power laws, eg: 2x the radius, 3x the #neighbors nn = C r ^{log3/log2}

Reminder: Densification P.L. (2x nodes, ~3x edges)

Self-similarity -> no char. scale -> power laws, eg: 2x the radius, 3x the #neighbors nn = C r ^{log3/log2}

 2x the radius, 4x neighbors nn = C r \log^{4/\log^2} = C r ²

ASONAM

(c) 2013, C. Faloutsos

ASONAM

(c) 2013, C. Faloutsos

62

How does self-similarity help in graphs?

- A: RMAT/Kronecker generators
 - With self-similarity, we get all power-laws, automatically,
 - And small/shrinking diameter
 - And `no good cuts'

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, in PKDD 2005, Porto, Portugal

Graph gen.: Problem dfn

- Given a growing graph with count of nodes N₁, N₂, ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - S1 Power Law Degree Distribution
 - S2 Power Law eigenvalue and eigenvector distribution Small Diameter
 - Dynamic Patterns
 - T2 Growth Power Law (2x nodes; 3x edges)
 - T1 Shrinking/Stabilizing Diameters

Carnegie Mellon

Kronecker Graphs

Adjacency matrix

Intermediate stage

 G_1

Adjacency matrix

Intermediate stage

Adjacency matrix

 $G_2 = G_1 \otimes G_1$

Adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Holes within holes; Communities within communities

Properties:

- We can PROVE that
 - Degree distribution is multinomial ~ power law
- **new** Diameter: constant
 - Eigenvalue distribution: multinomial
 - First eigenvector: multinomial

Problem Definition

- Given a growing graph with nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First generator for which we can **prove** all these properties

ASONAM

Impact: Graph500

- Based on RMAT (= 2x2 Kronecker)
- Standard for graph benchmarks
- <u>http://www.graph500.org/</u>
- Competitions 2x year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

– Q1: Why so many power-laws? A: real graphs ->

- Q2: Why no 'good cuts'?
- Part#2: Cascade analysis
- self similar -> power laws

• Conclusions

Q2: Why 'no good cuts'?

- A: self-similarity
 - Communities within communities within communities

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Communities within communities within communities ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Communities within communities within communities

How many Communities? 3? 9? 27?

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Communities within communities within communities ...

 G_4 adjacency matrix

(c) 2013, C. Faloutsos

How many **Communities?** 3? 9? 27? A: one – but not a typical, block-like community... 80

ASONAM

(c) 2013, C. Faloutsos

Summary of Part#1

- *many* patterns in real graphs
 - Small & shrinking diameters
 - Power-laws everywhere
 - Gaussian trap
 - 'no good cuts'
- Self-similarity (RMAT/Kronecker): good model

Part 2: Cascades & Immunization

ASONAM

(c) 2013, C. Faloutsos

Why do we care?

- Information Diffusion
- Viral Marketing
- Epidemiology and Public Health
- Cyber Security
- Human mobility
- Games and Virtual Worlds
- Ecology

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - Epidemic thresholds
- Conclusions

Fractional Immunization of Networks B. Aditya Prakash, Lada Adamic, Theodore Iwashyna (M.D.), Hanghang Tong, Christos Faloutsos

SDM 2013, Austin, TX

Whom to immunize?

• Dynamical Processes over networks

- Each circle is a hospital
- ~3,000 hospitals
- More than 30,000 patients transferred

[US-MEDICARE NETWORK 2005]

ASONAM

Problem: Given *k* units of disinfectant, whom to immunize? (c) 2013, C. Faloutsos 88

Carnegie Mellon

CURRENT PRACTICE

OUR METHOD

Hospital-acquired inf. : 99K+ lives, \$5B+ per year

Drug-resistant Bacteria (like XDR-TB)

Hospital

(c) 2013, C. Faloutsos

Another Hospital

ASONAM

Problem:

Given k units of disinfectant, distribute them

to maximize hospitals saved

Hospital

ASONAM

Another Hospital

Problem:

Given k units of disinfectant, distribute them

to maximize hospitals saved @ 365 days

Another Hospital

ASONAM

Hospital

94

- 1. Distribute resources
- 2. 'infect' a few nodes

- 3. Simulate evolution of spreading
 - (10x, take avg)
- 4. Tweak, and repeat step 1

- 1. Distribute resources
- 2. 'infect' a few nodes

- 3. Simulate evolution of spreading
 - (10x, take avg)
- 4. Tweak, and repeat step 1

- 1. Distribute resources
- 2. 'infect' a few nodes
- 3. Simulate evolution of spreading
 - (10x, take avg)
- 4. Tweak, and repeat step 1

- 1. Distribute resources
- 2. 'infect' a few nodes
- 3. Simulate evolution of spreading
 - (10x, take avg)
- ➡ 4. Tweak, and repeat step 1

Experiments

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

- Avg degree? Max degree?
- Std degree / avg degree ?
- Diameter?
- Modularity?
- 'Conductance' (~min cut size)?
- Some combination of above?

ASONAM

(c) 2013, C. Faloutsos

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

A: first eigenvalue of adjacency matrix

Q1: why?? (Q2: dfn & intuition of eigenvalue ?) Avg degree Max degree Diameter Modularity 'Conductance'

Why eigenvalue? A1: 'G2' theorem and '**eigen-drop**':

- For (almost) any type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ₁) of *adjacency* matrix

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks, B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, Christos Faloutsos, ICDM 2011, Vancouver, Canada

Why eigenvalue? A1: 'G2' theorem and '**eigen-drop**':

- For (almost) any type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ₁) of *adjacency* matrix
- Heuristic: for immunization, try to min λ_1
- The smaller λ_1 , the closer to extinction. ASONAM (c) 2013, C. Faloutsos

G2 theorem

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks
B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler,
Christos Faloutsos
IEEE ICDM 2011, Vancouver

extended version, in arxiv http://arxiv.org/abs/1004.0060

~10 pages proof

Our thresholds for some models

- *s* = *effective strength*
- s < 1 : below threshold

Our thresholds for some models

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - intuition behind λ_1
- Conclusions

Intuition for λ

"Official" definitions:

• Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of A [det(A - xI)].

• Also:
$$A = \lambda x$$

Neither gives much intuition!

"Un-official" Intuition

• For 'homogeneous' graphs, $\lambda == degree$

done right, for skewed degree distributions

Largest Eigenvalue (λ)

better connectivity \rightarrow higher λ

Largest Eigenvalue (λ)

Examples: Simulations – SIR (mumps)

(a) Infection profile (b) "Take-off" plot PORTLAND graph: synthetic population, 31 <u>million</u> links, 6 <u>million</u> nodes

Examples: Simulations – SIRS (pertusis)

(a) Infection profile (b) "Take-off" plot PORTLAND graph: synthetic population, 31 <u>million</u> links, 6 <u>million</u> nodes

Immunization - conclusion

In (almost any) immunization setting,

- Allocate resources, such that to
- Minimize λ_1
- (regardless of virus specifics)
- Conversely, in a market penetration setting
 - Allocate resources to
 - Maximize λ_1

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - Epidemic thresholds
- What next?
 - Acks & Conclusions
 - [Tools: ebay fraud; tensors; spikes]

Challenge #1: 'Connectome' – brain wiring

- Which neurons get activated by 'bee'
- How wiring evolves
- Modeling epilepsy

Tom MitchellGeorge KarypisN. SidiropoulosV. Papalexakis

Challenge#2: Time evolving networks / tensors

- Periodicities? Burstiness?
- What is 'typical' behavior of a node, over time
- Heterogeneous graphs (= nodes w/ attributes)

ASONAM

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - Epidemic thresholds
- Acks & Conclusions
 - [Tools: ebay fraud; tensors; spikes]

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

www.cs.cmu.edu/~pegasus

Results on large graphs: with Pegasus + hadoop + M45 Apache license

Code, papers, manual, video

Prof. U Kang

Prof. Polo Chau

ASONAM

Akoglu, Leman

Chau, Polo

McGlohon, Mary Prakash, Aditya Papalexakis, Vagelis

Tong, Hanghang

ASONAM

(c) 2013, C. Faloutsos

121

CONCLUSION#1 – Big data

• Large datasets reveal patterns/outliers that are invisible otherwise

ASONAM

CONCLUSION#2 – self-similarity

- powerful tool / viewpoint
 - Power laws; shrinking diameters
 - Gaussian trap (eg., F.O.F.)
 - 'no good cuts'
 - RMAT graph500 generator

Full graph
 Post '85 subgraph
 Post '85 subgraph

CONCLUSION#3 – eigen-drop

• Cascades & immunization: G2 theorem & eigenvalue

References

- D. Chakrabarti, C. Faloutsos: Graph Mining Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

&C	MORGAN & CLAYPOOL PUBLISHERS
	aph Mining Tools, and Case Studies
	van Chakrabarti 95 Faloutsos
Synthe Data M	sis Lectures on ining and Knowledge Discovery
Jiawei Han, Lii	e Getoor, Wei Wang, Johannes Gehrke, Robert Grossman, <i>Series Editors</i>

TAKE HOME MESSAGE:

Cross-disciplinarity

ASONAM

QUESTIONS?

Cross-disciplinarity

ASONAM