Large Graph Mining Patterns, Explanations and Cascade Analysis

Christos Faloutsos
CMU

Roadmap

- Introduction - Motivation
- Why study (big) graphs?

- Part\#1: Patterns in graphs
- Part\#2: Cascade analysis
- Conclusions
- [Extra: ebay fraud; tensors; spikes]

Graphs - why should we care?

©! ! inacall

Food Web
[Martinez '91]

Internet Map
[lumeta.com]

Graphs - why should we care?

- web-log ('blog') news propagation FAㅍㅇㅇ BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems
- Many-to-many db relationship -> graph

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Static graphs
- Time-evolving graphs
- Why so many power-laws?
- Part\#2: Cascade analysis
- Conclusions

Part 1:

 Patterns \& Laws

 Patterns \& Laws}

Laws and patterns

- Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- Q2: why 'no good cuts'?
- A2: <self-similarity - stay tuned>
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Q: So what?

internet domains

Solution\# S. 1

- Q: So what? friends of friends (F.O.F.)
- A1: \# of two-step-away pairs: internet domains

Gaussian trap

Solution\# S. 1

- Q: So what? friends of friends (F.O.F.) = friends of friends (F.O.F.)
- A1: \# of two-step-away pairs: O(d_max $\left.{ }^{\wedge} 2\right) \sim 10 M^{\wedge} 2$ internet domains

Gaussian trap

Solution\# S. 1

- Q: So what?

Solution\# S.2: Eigen Exponent E

Eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- Triangles
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?
$-2 x$ the friends, 2 x the triangles?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

X-axis: degree Y-axis: mean \# triangles n friends -> $\sim n^{1.6}$ triangles

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) - $\mathrm{O}\left(\mathrm{d}_{\text {max }}{ }^{2}\right)$
Q : Can we do that quickly?
A:

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) - $\mathrm{O}\left(\mathrm{d}_{\max }{ }^{2}\right)$
Q : Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~}\left(\lambda_{i}{ }^{3}\right)$
(and, because of skewness (S2),
we only need the top few eigenvalues! - $\mathrm{O}(\mathrm{E})$

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD’11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
(c) 2013, C. Faloutsos

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Static graphs
- Power law degrees; eigenvalues; triangles
- Anti-pattern: NO good cuts!
- Time-evolving graphs
- Conclusions

Background: Graph cut problem

- Given a graph, and k
- Break it into k (disjoint) communities

Graph cut problem

- Given a graph, and k
- Break it into k (disjoint) communities
- (assume: block diagonal = 'cavemen' graph)

$$
k=2
$$

Many algo's for graph partitioning

- METIS [Karypis, Kumar +]
- $2^{\text {nd }}$ eigenvector of Laplacian

- Modularity-based [Girwan+Newman]
- Max flow [Flake+]

- ...
- . . .

Strange behavior of min cuts

- Subtle details: next
- Preliminaries: min-cut plots of 'usual' graphs

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. WWW 2008.

"Min-cut" plot

- Do min-cuts recursively.

N nodes

"Min-cut" plot

- Do min-cuts recursively.

N nodes

"Min-cut" plot

- Do min-cuts recursively.

log (mincut-size / \#edges)

N nodes

"Min-cut" plot

log (mincut-size / \#edges)
log (mincut-size / \#edges)

\log (\# edges)
For a d-dimensional grid, the slope is $-1 / d$

For a random graph (and clique), the slope is 0

Experiments

- Datasets:
- Google Web Graph: 916,428 nodes and 5,105,039 edges
- Lucent Router Graph: Undirected graph of network routers from www.isi.edu/scan/mercator/maps.html; 112,969 nodes and 181,639 edges
- User $\boldsymbol{\rightarrow}$ Website Clickstream Graph: 222,704 nodes and 952,580 edges
NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

"Min-cut" plot

- What does it look like for a real-world graph?

Experiments

- Used the METIS algorithm [Karypis, Kumar,

- Google Web graph
- Values along the y axis are averaged
- "lip" for large \# edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

Experiments

- Used the METIS algorithm [Karypis, Kumar,

- Google Web graph
- Values along the y axis are averaged
- "lip" for large \# edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

Experiments

- Same results for other graphs too...

Lucent Router graph
Clickstream graph

Why no good cuts?

- Answer: self-similarity (few foils later)

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Static graphs
- Time-evolving graphs
- Why so many power-laws?
- Part\#2: Cascade analysis
- Conclusions

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- [diameter $\sim \mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$]
- diameter $\sim \mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- [diameter $\left.\sim \mathrm{O}^{\left(\mathbf{N}^{2} / 3\right)}\right]$
- diameter $\sim($ (lo. I$)$
- diameter $\sim \mathrm{O}(\operatorname{rog} \log \mathrm{N})$

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
- @1999
- 2.9 M nodes
- 16.5 M edges

(c) 2013, C. Faloutsos

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t}) \ldots$ nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

Say, k friends on average

- Q: what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})
$$

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t}) \ldots$ nodes at time t

Gaussian trap

- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

Say, k friends or

- Q : what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=0 \mathrm{E}(\mathrm{t})
$$

- A: over-doubled! ~3x
- But obeying the "'Densification Power Law"

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t}) \ldots$ nodes at time t

Gaussian trap

- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

Say, k friends or

- Q : what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=0 \mathrm{E}(\mathrm{t})
$$

- A: over-doubled! ~3x

- But obeying the "Densification Power Law"

T. 2 Densification - Patent Citations

- Citations among

MORE Graph Patterns

$\left.\begin{array}{l|l|l|} & \text { Unweighted } & \text { Weighted } \\ \hline \text { L01. Power-law degree distribution [Faloutsos et al. `99, } & \begin{array}{l}\text { L10. Snapshot Power Law } \\ \text { (SPL) [McGlohon et al. }\end{array} \\ \hline \text { Kleinberg et al. `99, Chakrabarti et al. `04, Newman `04] } \\ \text { LO2. Triangle Power Law (TPL) [Tsourakakis `08] } \\ \text { L03. Eigenvalue Power Law (EPL) [Siganos et al. `03] } \\ \text { L04. Community structure [Flake et al. `02, Girvan and } \\ \text { Newman `02] }\end{array}\right)$

MORE Graph Patterns

	Unweighted	Weighted
	. Power-law degree distribution [Faloutsos et al. `99, Kleinberg et al. `99, Chakrabarti et al. `04, Newman `04] Triangle Power Law (TPL) [Tsourakakis `08] \\ Eigenvalue Power Law (EPL) [Siganos et al. `03] L04. Community structure [Flake et al. `02, Girvan and Newman `02]	L10. Snapshot Power Law (SPL) [McGlohon et al. '08]
2	. Densification Power Law (DPL) [Leskovec et al. `05] \\ . Small and shrinking diameter [Albert and Barabási \\ 99, Leskovec et al. `05] L07. Constant size $2^{\text {nd }}$ and $3^{\text {rd }}$ connected components [McGlohonet al. `08] \\ L08. Principal Eigenvalue Power Law (\(\lambda_{1} \mathrm{PL}\)) [Akoglu et al. \\ -08] \\ L09. Bursty/self-similar edge/weight additions [Gomez and Santonia `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. -08]
RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.		

MORE Graph Patterns

- Mary McGlohon, Leman Akoglu, Christos Faloutsos. Statistical Properties of Social

Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

- Deepayan Chakrabarti and Christos Faloutsos, Graph Mining: Laws, Tools, and Case Studies Oct. 2012, Morgan Claypool.

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Why so many power-laws?
- Why no ‘good cuts'?
- Part\#2: Cascade analysis
- Conclusions

2 Questions, one answer

- Q1: why so many power laws
- Q2: why no 'good cuts'?

possible
 2 Questions, one answer

- Q1: why so many power laws
- Q2: why no 'good cuts'?
- A: Self-similarity = fractals = 'RMAT' ~ 'Kronecker graphs'

20' ${ }^{\prime}$ intro to fractals

- Remove the middle triangle; repeat
- -> Sierpinski triangle
- (Bonus question - dimensionality?
$->1$ (inf. perimeter - $(4 / 3)^{\infty}$)
$-<2\left(\right.$ zero area $\left.-(3 / 4)^{\infty}\right)$

20'ㅇ intro to fractals

Self-similarity -> no char. scale

-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors $n n(r)$

$$
n n(r)=C r^{\log 3 / \log 2}
$$

20'ㅇ intro to fractals

Self-similarity -> no char. scale
-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors $n n(r)$

$$
n n(r)=C r^{\log 3 / \log 2}
$$

20'ㅇ intro to fractals

Self-similarity -> no char. scale

-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors

$$
n n=C r^{\log 3 / l o g 2}
$$

Reminder:
 Densification P.L.
 ($2 x$ nodes, $\sim 3 x$ edges)

20'ㅇ intro to fractals

Self-similarity -> no char. scale
-> power laws, eg:
$2 x$ the radius, $3 x$ the \#neighbors

$$
\mathrm{nn}=\mathrm{C} \mathrm{r}^{\log 3 / \log 2}
$$

20'ㅇ intro to fractals

Self-similarity -> no char. scale
-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors
$2 x$ the radius,
$4 x$ neighbors
$\mathrm{nn}=\mathrm{C} \mathrm{r}^{\log 3 / \log 2} \quad=1.58$

$$
\mathrm{nn}=\mathrm{C} r^{\log 4 / \log 2}=\mathrm{Cr} r^{2}
$$

Fractal dim.

20'' intro to fractals

Self-similarity
 -> power laws

How does self-similarity help in graphs?

- A: RMAT/Kronecker generators
- With self-similarity, we get all power-laws, automatically,
- And small/shrinking diameter
- And 'no good cuts’

> R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, in PKDD 2005, Porto, Portugal

Graph gen.: Problem dfn

- Given a growing graph with count of nodes N_{l}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Static Patterns

S1 Power Law Degree Distribution
S2 Power Law eigenvalue and eigenvector distribution

Small Diameter

- Dynamic Patterns

T2 Growth Power Law (2x nodes; 3x edges)
T1 Shrinking/Stabilizing Diameters

Kronecker Graphs

1	1	0
1	1	1
0	1	1
G_{1}		

Adjacency matrix

Kronecker Graphs

Intermediate stage

1	1	0
1	1	1
0	1	1
G_{1}		

Adjacency matrix

Kronecker Graphs

Intermediate stage

1	1	0
1	1	1
0	1	1
G_{1}		

$$
\begin{aligned}
& \begin{array}{|c|c|l|}
\hline \mathrm{G}_{1} & \mathrm{G}_{1} & 0 \\
\hline \mathrm{G}_{1} & \mathrm{G}_{1} & \mathrm{G}_{1} \\
\hline 0 & \mathrm{G}_{1} & \mathrm{G}_{1} \\
\hline
\end{array} \\
& G_{2}=G_{1} \otimes G_{1}
\end{aligned}
$$

Adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and SO On ...

Holes within holes; Communities within communities

G_{4} adjacency matrix (c) 2013, C. Faloutsos

Self-similarity -> power laws

Properties:

- We can PROVE that
- Degree distribution is multinomial ~ power law
new - Diameter: constant
- Eigenvalue distribution: multinomial
- First eigenvector: multinomial

Problem Definition

- Given a growing graph with nodes N_{1}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Static Patterns
\checkmark Power Law Degree Distribution
\checkmark Power Law eigenvalue and eigenvector distribution
\checkmark Small Diameter
- Dynamic Patterns
\checkmark Growth Power Law
\checkmark Shrinking/Stabilizing Diameters
- First generator for which we can prove all these properties

Impact: Graph500

- Based on RMAT ($=2 \times 2$ Kronecker)
- Standard for graph benchmarks
- http://www.graph500.org/
- Competitions $2 x$ year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...
To iterate is human, to recurse is devine

> R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Q1: Why so many power-laws? A: real graphs ->
- Q2: Why no 'good cuts'? self similar ->
- Part\#2: Cascade analysis
- Conclusions

Q2: Why 'no good cuts'?

- A: self-similarity
- Communities within communities within communities ...

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and SO On ...

Communities within communities within communities ...

G_{4} adjacency matrix (c) 2013, C. Faloutsos

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and SO On ...

Communities within communities within communities ...

How many Communities?
3 ?
9?
27?
G_{4} adjacency matrix

Kronecker Product - a Graph

- Continuing multiplying with G_{l} we obtain G_{4} and SO On ...

Communities within communities within communities ...

G_{4} adjacency matrix (c) 2013, C. Faloutsos

How many Communities? 3? 9?
27?
A: one - but not a typical, block-like community...

age
Wrong questions to ask!

Summary of Part\#1

- *many* patterns in real graphs
- Small \& shrinking diameters
- Power-laws everywhere
- Gaussian trap
- 'no good cuts'
- Self-similarity (RMAT/Kronecker): good model

Part 2: Cascades \& Immunization

Why do we care?

- Information Diffusion
- Viral Marketing
- Epidemiology and Public Health
- Cyber Security
- Human mobility
- Games and Virtual Worlds
- Ecology
amazon

Sprint
选 Lifity
4

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Part\#2: Cascade analysis
- (Fractional) Immunization
- Epidemic thresholds
- Conclusions

Fractional Immunization of Networks
B. Aditya Prakash, Lada Adamic, Theodore Iwashyna (M.D.), Hanghang Tong, Christos Faloutsos

SDM 2013, Austin, TX

Whom to immunize?

- Dynamical Processes over networks
- Each circle is a hospital
- ~3,000 hospitals
- More than 30,000 patients transferred
[US-MEDICARE
NETWORK 2005]
ASONAM

Problem: Given k units of disinfectant, whom to immunize?
(c) 2013, C. Faloutsos88

Whom to immunize?

CURRENT PRACTICE
OUR METHOD

Hospital-acquired inf. : 99K+ lives, \$5B+ per year

Fractional Asymmetric Immunization

Hospital

Another Hospital

Fractional Asymmetric Immunization

Fractional Asymmetric Immunization

Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant, distribute them
to maximize hospitals saved

Hospital

Another Hospital

Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant, distribute them
to maximize hospitals saved @ 365 days

Hospital

Straightforward solution:

Simulation:
1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading
- (10x, take avg)
4. Tweak, and repeat step 1

Straightforward solution:

Simulation:
1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading
- (10x, take avg)
4. Tweak, and repeat step 1

Straightforward solution:

Simulation:
1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading
- (10x, take avg)
4. Tweak, and repeat step 1

Straightforward solution:

Simulation:

1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading

- (10x, take avg)
\Rightarrow 4. Tweak, and repeat step 1

Experiments

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

- Avg degree? Max degree?
- Std degree / avg degree ?
- Diameter?
- Modularity?
- 'Conductance’ (\sim min cut size)?
- Some combination of above?

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?
A: first eigenvalue of adjacency matrix

Q1: why??
Avg degree Max degree
Diameter Modularity 'Conductance’
(Q2: dfn \& intuition of eigenvalue ?)

Why eigenvalue?

A1: 'G2' theorem and 'eigen-drop':

- For (almost) any type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue $\left(\lambda_{1}\right)$ of adjacency matrix

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks, B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, Christos Faloutsos, ICDM 2011, Vancouver, Canada

Why eigenvalue?

A1: 'G2' theorem and 'eigen-drop':

- For (almost) any type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ_{1}) of adjacency matrix
- Heuristic: for immunization, try to $\min \lambda_{1}$
- The smaller λ_{1}, the closer to extinction.

G2 theorem

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, Christos Faloutsos
IEEE ICDM 2011, Vancouver
extended version, in arxiv
http://arxiv.org/abs/1004.0060
~10 pages proof

Our thresholds for some models

- $s=$ effective strength
- $s<1$: below threshold

Models	Effective Strength (s)	Threshold (tipping point)
SIS, SIR, SIRS, SEIR	$\mathrm{s}=\lambda)\left(\frac{\beta}{\delta}\right)$	
SIV, SEIV	$\mathrm{s}=\lambda \cdot \mathrm{f} \cdot\left(\frac{\beta \gamma}{\delta(\gamma+\theta)}\right)$	$\mathrm{S}=1$
$\mathrm{SI}_{1} \mathrm{I}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2}$ (H.I.V.)	$\mathrm{s}=\lambda \cdot\left(\frac{\beta_{1} v_{2}+\beta_{2} \varepsilon}{v_{2}\left(\varepsilon+v_{1}\right)}\right)$	

Our thresholds for some models

- $s=$ effective strength
- $s<1$: below threshold

No Temp.

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Part\#2: Cascade analysis
- (Fractional) Immunization
- intuition behind λ_{1}
- Conclusions

Intuition for $\boldsymbol{\lambda}$

"Official" definitions:

- Let \boldsymbol{A} be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of $\boldsymbol{A}[\operatorname{det}(\boldsymbol{A}-x \mathbf{I})]$.
- Also: $\mathbf{A x}=\lambda \mathbf{x}$

Neither gives much intuition!

Largest Eigenvalue ($\boldsymbol{\lambda}$)

better connectivity \longrightarrow higher λ

$N=1000$ nodes

Largest Eigenvalue (λ)

better connectivity \longrightarrow higher λ

$$
\lambda \approx 2
$$

(a)Chain
$\lambda \approx 2$
$\lambda=999$
$N=1000$ nodes
$\lambda=31.67$

$\lambda=\sqrt{N}$
(b)Star
(c) 2013, C. Faloutsos

Examples: Simulations - SIR (mumps)

(a) Infection profile

PORTLAND graph: synthetic population, 31 million links, 6 million nodes

(b) "Take-off" plot

Examples: Simulations - SIRS (pertusis)

(b) "Take-off" plot
(a) Infection profile PORTLAND graph: synthetic population, 31 million links, $6 \underline{\text { million nodes }}$

Immunization - conclusion

In (almost any) immunization setting,

- Allocate resources, such that to
- Minimize λ_{1}
- (regardless of virus specifics)
- Conversely, in a market penetration setting
- Allocate resources to
- Maximize λ_{I}

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Part\#2: Cascade analysis
- (Fractional) Immunization
- Epidemic thresholds
- What next?
- Acks \& Conclusions
- [Tools: ebay fraud; tensors; spikes]

Challenge \#1: 'Connectome' brain wiring

- Which neurons get activated by 'bee'
- How wiring evolves
- Modeling epilepsy

Challenge\#2: Time evolving networks / tensors

- Periodicities? Burstiness?
- What is 'typical' behavior of a node, over time
- Heterogeneous graphs (= nodes w/ attributes)

(c) 2013, C. Faloutsos

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Part\#2: Cascade analysis
- (Fractional) Immunization
- Epidemic thresholds
\Rightarrow • Acks \& Conclusions
Off line
- [Tools: ebay fraud; tensors; spikes]

Thanks

 Sprint

Microsoft

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

WWW.CS.cmu.edu/~pegasus
Results on large graphs: with Pegasus + hadoop + M45
Apache license
Code, papers, manual, video

Prof. U Kang
Prof. Polo Chau

Cast

Akoglu, Leman

McGlohon, Mary

Beutel, Alex

Prakash,
Aditya

Koutra, Danai

CONCLUSION\#1 - Big data

- Large datasets reveal patterns/outliers that are invisible otherwise

CONCLUSION\#2 - self-similarity

- powerful tool / viewpoint
- Power laws; shrinking diameters

- Gaussian trap (eg., F.O.F.)
- 'no good cuts'
- RMAT - graph500 generator

CONCLUSION\#3 - eigen-drop

- Cascades \& immunization: G2 theorem \& eigenvalue

References

- D. Chakrabarti, C. Faloutsos: Graph Mining - Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

\& morgan\&claypool publishers

Graph Mining

Laws, Tools, and Case Studies

TAKE HOME MESSAGE:

Cross-disciplinarity

TAFOO: BLOG

QUESTIONS?

Cross-disciplinarity

t

₹AसOO. BLOG

