
Page 1 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Networks
Mark Newman

Print publication date: 2010
Print ISBN-13: 9780199206650
Published to Oxford Scholarship Online: Sep-10
DOI: 10.1093/acprof:oso/9780199206650.001.0001

Matrix algorithms and graph partitioning

Abstract and Keywords

The preceding chapter discussed a variety of computer algorithms for calculating
quantities of interest on networks, including degrees, centralities, shortest paths, and
connectivity. This chapter continues the study of network algorithms with algorithms
based on matrix calculations and methods of linear algebra applied to the adjacency
matrix or other network matrices such as the graph Laplacian. It begins with a simple
example — the calculation of eigenvector centrality — which involves finding the
leading eigenvector of the adjacency matrix, and then moves on to some more advanced
examples, including Fiedler's spectral partitioning method and algorithms for network
community detection. Exercises are provided at the end of the chapter.

Keywords: network algorithms, network calculations, matrix calculations, linear algebra

M. E. J. Newman

DOI:10.1093/acprof:oso/9780199206650.003.0011

Abstract and Keywords
The preceding chapter discussed a variety of computer algorithms for calculating
quantities of interest on networks, including degrees, centralities, shortest paths, and
connectivity. This chapter continues the study of network algorithms with algorithms
based on matrix calculations and methods of linear algebra applied to the adjacency
matrix or other network matrices such as the graph Laplacian. It begins with a simple
example — the calculation of eigenvector centrality — which involves finding the
leading eigenvector of the adjacency matrix, and then moves on to some more advanced
examples, including Fiedler's spectral partitioning method and algorithms for network
community detection. Exercises are provided at the end of the chapter.

http://www.oxfordscholarship.com/page/privacy-policy

Page 2 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Keywords: network algorithms, network calculations, matrix calculations, linear
algebra

In the preceding chapter we discussed a variety of computer algorithms for calculating
quantities of interest on networks, including degrees, centralities, shortest paths,
and connectivity. We continue our study of network algorithms in this chapter with
algorithms based on matrix calculations and methods of linear algebra applied to the
adjacency matrix or other network matrices such as the graph Laplacian. We begin
with a simple example, the calculation of eigenvector centrality, which involves finding
the leading eigenvector of the adjacency matrix, and then we move on to some more
advanced examples, including Fiedler's spectral partitioning method and algorithms for
network community detection.

11.1 Leading Eigenvectors and Eigenvector Centrality

As discussed in Section 7.2 , the eigenvector centrality of a vertex i in a network is
defined to be the ith element of the leading eigenvector of the adjacency matrix,
meaning the eigenvector corresponding to the largest (most positive) eigenvalue.
Eigenvector centrality is an example of a quantity that can be calculated by a computer
in a number of different ways, but not all of them are equally efficient. One way to
calculate it would be to use a standard linear algebra method to calculate the complete
set of eigenvectors of the adjacency matrix, and then discard all of them except the one
corresponding to the largest eigenvalue. This, however, would be a wasteful approach,
since it involves calculating (p. 346) a lot of things that we don't need. A simpler and
faster method for calculating the eigenvector centrality is the power method.

If we start with essentially any initial vector x(0) and multiply it repeatedly by the
adjacency matrix A, we get (11.1)

and, as shown in Section 7.2 , x(t) will converge 1 to the required leading eigenvector
of A as t # infra. This is the power method, and, simple though it is, there is no faster
method known for calculating the eigenvector centrality (or the leading eigenvector of
any matrix). There are a few caveats, however:

1. The method will not work if the initial vector x(0) happens to be orthogonal
to the leading eigenvector. One simple way to avoid this problem is to
choose the initial vector to have all elements positive. This works because
all elements of the leading eigenvector of a real matrix with nonnegative
elements have the same sign,2 which means that any vector or (p. 347)

thogonal to the leading eigenvector must contain both positive and negative

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-46
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-46

Page 3 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

elements. Hence, if we choose all elements of our initial vector to be positive,
we are guaranteed that the vector cannot be orthogonal to the leading
eigenvector.
2. The elements of the vector have a tendency to grow on each iteration— they
get multiplied by approximately a factor of the leading eigenvalue (p. 348)

each time, which is usually greater than 1. Computers however cannot handle
arbitrarily large numbers. Eventually the variables storing the elements of the
vector will overflow their allowed range. To obviate this problem, we must
periodically renormalize the vector by dividing all the elements by the same
value, which we are allowed to do since an eigenvector divided throughout by
a constant is still an eigenvector. Any suitable divisor will do, but we might,
for instance, divide by the magnitude of the vector, thereby normalizing it so
that its new magnitude is 1.
3. How long do we need to go on multiplying by the adjacency matrix before
the result converges to the leading eigenvalue? This will depend on how
accurate an answer we require, but one simple way to gauge convergence is to
perform the calculation in parallel for two different initial vectors and watch
to see when they reach the same value, within some prescribed tolerance.
This scheme works best if, for the particular initial vectors chosen, at least
some elements of the vector converge to the final answer from opposite
directions for the two vectors, one from above and one from below. (We must
make the comparisons immediately after the renormalization of the vector
described in (2) above—if we compare unnormalized vectors, then most
likely all elements will increase on every iteration and no convergence will
be visible.) If we can find some elements that do this (and we usually can),
then it is a fairly safe bet that the difference between the two values for such
an element is greater than the difference of either from the true value of the
same element in the leading eigenvector.

The power method can also be used to calculate the leading eigenvalue κ1 of the
adjacency matrix. Once the algorithm has converged to the leading eigenvector, one
more multiplication by the adjacency matrix will multiply that vector by exactly a factor
of κ 1. Thus, we can take the ratio of the values of any element of the vector at two
successive iterations of the algorithm after convergence and that ratio should equal
κ 1. Or we could take the average of the ratios for several different elements to reduce
numerical errors. (We should however avoid elements whose values are very small, since
a small error in such an element could lead to a large fractional error in the ratio; our
accuracy will be better if we take the average of some of the larger elements.)

http://www.oxfordscholarship.com/page/privacy-policy

Page 4 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

11.1.1 Computational Complexity

How long does the power method take to run? The answer comes in two parts. First, we
need to know how long each multiplication by the adjacency matrix takes, and second
we need to know how many multiplications are needed to (p. 349) get a required degree
of accuracy in our answer.

If our network is stored in adjacency matrix form, then multiplying that matrix into a
given vector is straightforward. Exactly n 2 multiplications are needed for one matrix
multiplication—one for each element of the adjacency matrix. We can do better,
however, if our network is in adjacency list form. Elements of the adjacency matrix that
are zero contribute nothing to the matrix multiplication and so can be neglected. The
adjacency list allows us to skip the zero terms automatically, since it stores only the non-
zero ones anyway.

In an ordinary unweighted network each non-zero element of the adjacency matrix is
equal to 1. Let {uj }, j = 1 … ki be the set of neighbors of vertex i (where ki is the degree
of i). Then the ith element of Ax, which we denote [Ax] i , is given by

. The evaluation of this sum involves only ki operations, so one element of the matrix
multiplication can be completed in time proportional to ki and all elements can be
completed in time proportional to σ i ki = 2m, where m is the total number of edges in
the network, or in other words in O(m) time.

And how many such multiplications must we perform? Equation (7.4) tells us that after t
iterations our vector is equal to (11.2)

where v i is the normalized ith eigenvector, κ i is the corresponding eigenvalue, and
the ci are constants whose values depend on the choice of initial vector. Rearranging
slightly, we can write this as (11.3)

which gives us our estimate of the leading eigenvector v 1 plus the dominant
contribution to the error. Neglecting the smaller terms, the root-mean-square error on
the eigenvector is then (11.4)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-displayMaths-87

Page 5 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

and if we want this error to be at most # then we require (11.5)

Neither # nor the constants c 1 and c2 depend on the network size. All the variation in
the run time comes from the eigenvalues ?1 and ? 2. The eigenvalues (p. 350) range in
value from a maximum of κ1 to a minimum of κ n ≥ -|κ1| and hence have a mean spacing
of at most 2κ1/(n - 1). Thus an order-of-magnitude estimate for the second eigenvalue is
κ2 # κ1 - aκ1/n, where a is a constant of order unity, and hence (11.6)

Combining Eqs. (11.5) and (11.6) , we find that the number of steps required for
convergence of the power method is t = O(n) to leading order. 3

Overall therefore, the complete calculation of the eigenvector centralities of all n vertices
of the network takes O(n) multiplications which take O(m) time each, or O(mn) time
overall, for a network stored in adjacency list format. If our network is sparse with m #
n, a running time of O(mn) is equivalent to O(n 2). On the other hand, if the network is
dense, with m # n 2, then O(mn) is equivalent to O(n3).

Conversely, if our network is stored in adjacency matrix format the multiplications
take O(n 2) time, as noted above, so the complete calculation takes O(n3), regardless of
whether the network is sparse or dense. Thus for the common case of a sparse matrix
the adjacency list is the representation of choice for this calculation.

11.1.2 Calculating Other Eigenvalues and Eigenvectors

The power method of the previous section calculates the largest eigenvalue of a
matrix and the corresponding eigenvector. This is probably the most common type
of eigenvector calculation encountered in the study of networks, but there are cases
where we wish to know other eigenvectors or eigenvalues as well. One example is the
calculation of the so-called algebraic connectivity, which is the second smallest (or
second most negative) eigenvalue of the graph Laplacian. As we saw in Section 6.13.3

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-221
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-222
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div2-21

Page 6 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

, the algebraic connectivity is non-zero if and only if a network is connected (i.e., has
just a single component). The algebraic connectivity also appears in Section 11.5 as a
measure of how easily a network can be bisected into two sets of vertices such that only
a small number of edges run between the sets. Moreover, as we will see the elements
of the corresponding eigenvector of the Laplacian tell us exactly how that bisection (p.

351) should be performed. Thus it will be useful to us to have a method for calculating
eigenvalues beyond the largest one and their accompanying eigenvectors.

There are a number of techniques that can be used to find non-leading eigenvalues and
eigenvectors of matrices. For instance, we can calculate the eigenvector corresponding
to the most negative eigenvalue by shifting all the eigenvalues by a constant amount
so that the most negative one becomes the eigenvalue of largest magnitude. The
eigenvalues of the graph Laplacian L, for instance, are all non-negative. If we number
them in ascending order as in Section 6.13.2 , so that λ1 ≤hellip; λ2 … ≤ λ n , with v 1, v 2,
…, v n being the corresponding eigenvectors, then (11.7)

and hence v i is an eigenvector of λ n I?L with eigenvalue λ n -λi. These eigenvalues are
still all non-negative, but their order is reversed from those of the original Laplacian,
so that the former smallest has become the new largest.Now we can calculate the
eigenvector corresponding to the smallest eigenvalue of the Laplacian by finding the
leading eigenvector of λ n I - L using the technique described in Section 11.1 . We can
also find the eigenvalue λ1 by taking the measured value of λ n - λ1, subtracting λ n , and
reversing the sign. (Performing these calculations does require that we know the value of
λ n , so the complete calculation would be a two-stage process consisting of first finding
the largest eigenvalue of L, then using that to find the smallest. 4)

In this particular case, it would not in fact be very useful to calculate the smallest
eigenvalue or its associated eigenvector since, as we saw in Section 6.13.2 , the smallest
eigenvalue of the Laplacian is always zero and the eigenvector is (1, 1, 1,…). However, if
we can find the second-largest eigenvalue of a matrix we can use the same subtraction
method also to find the second-smallest. And the second-smallest eigenvalue of the
Laplacian is, as we have said, definitely of interest.

We can find the second-largest eigenvalue (and the corresponding eigenvector) using
the following trick. Let v 1 be the normalized eigenvector corresponding to the largest
eigenvalue of a matrix A, as found, for instance, by the power method of Section 11.1 .
Then we choose any starting vector x as before (p. 352) and define (11.8)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-91
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div2-20
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-87
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div2-20
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-87

Page 7 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

This vector has the property that (11.9)

where v i is again the ith eigenvector of A and δ ij is the Kronecker delta. In other
words it is equal to x along the direction of every eigenvector of A except the leading
eigenvector, in whose direction it has no component at all. This means that the
expansion of y in terms of the eigenvectors of A, which is given by

with

, has no termin v 1, since

Thus (11.10)

with the sum starting at i = 2.

Now we use this vector y as the starting vector for repeated multiplication by A, as
before. After multiplying y by A a total of t times, we have (11.11)

The ratio κ i /κ2 is less than 1 for all i > 2 (assuming only a single eigenvalue of value κ2)
and hence in the limit of large t all terms in the sum disappear except the first so that
y(t) tends to a multiple of v 2 as t # #. Normalizing this vector, we then have our result
for v 2.

This method has the same caveats as the original power method for the leading
eigenvector, as well as one additional one: it is in practice possible for the vector y, Eq.
(11.8) , to have a very small component in the direction of v 1. This can happen as a
result of numerical error in the subtraction, or because our value for v 1 is not exactly
correct. If y does have a component in the direction of v 1, then although it may start
out small it will get magnified relative to the others when we multiply repeatedly by

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-224

Page 8 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

A and eventually it may come to dominate y(t), Eq. (11.11) , or at least to contribute
a sufficiently large term as to make the calculation of v 2 inaccurate. To prevent this
happening, we periodically perform a subtraction similar to that of Eq. (11.8) , removing
any component in the direction of v 1 from y(t), while leaving the components in all
other directions untouched. (The subtraction process is sometimes referred to as Gram–
Schmidt orthogonalization—a rather grand name for a simple (p. 353) procedure. The
repeated application of the process to prevent the growth of unwanted terms is called
reorthogonalization.)

We could in theory extend this method to find further eigenvectors and eigenvalues of
our matrix, but in practice the approach does not work well beyond the first couple of
eigenvectors because of cumulative numerical errors. Moreover it is also slow because
for each additional eigenvector we calculate we must carry out the entire repeated
multiplication process again. In practice, therefore, if we wish to calculate anything
beyond the first eigenvector or two, other methods are used.

11.1.3 Efficient Algorithms for Computing all Eigenvalues and Eigenvectors of
Matrices

If we wish to calculate all or many of the eigenvalues or eigenvectors of a matrix
A then specialized techniques are needed. The most widely used such techniques
involve finding an orthogonal matrix Q such that the similarity transform T = Q T AQ
gives either a tridiagonal matrix (if A is symmetric) or a Hessenberg matrix (if A is
asymmetric). If we can find such a transformation and if v i is an eigenvector of A with
eigenvalue κi, then, bearing in mind that for an orthogonal matrix Q -1 = Q T , we have
(11.12)

In other words, the vector w i = Q T v i is an eigenvector of T with eigenvalue κ

i . Thus if we can find the eigenvalues of T and the corresponding eigenvectors, we
automatically have the eigenvalues of A as well, and the eigenvectors of Aare simply v i
= Qw i . Luckily there exist efficient numerical methods for finding the eigenvalues and
eigenvectors of tridiagonal and Hessenberg matrices, such as the QL algorithm [273].
The QL algorithm takes time O(n) to reach an answer for an n × n tridiagonal matrix
and O(n 2) for a Hessenberg one.

The matrixQcan be found in various ways. For a general symmetric matrix the
Householder algorithm [273] can find Q in time O(n 3). More often, however, we are
concerned with sparse matrices, in which case there are faster methods. For a symmetric
matrix, the Lanczos algorithm [217] can find Q in time O(mn), where m is the number

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-227
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-224
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-273
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-273
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-217

Page 9 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

of network edges in an adjacency matrix, or more generally the number of non-zero
elements in the matrix. For sparse matrices withm # n this gives a running time of O(n
2), considerably better than the Householder method. A similar method, the Arnoldi
algorithm [217], can find Q for an asymmetric matrix.

Thus, combining the Lanczos and QL algorithms, we expect to be able to find all
eigenvalues and eigenvectors of a sparse symmetric matrix in time (p. 354) O(mn),
which is as good as the worst-case run time of our direct multiplication method for
finding just the leading eigenvector. (To be fair, the direct multiplication is much
simpler, so its overall run time will typically be better than that of the combined
Lanczos/QL algorithm, although the scaling with system size is the same.)

While there is certainly much to be gained by learning about the details of these
algorithms, one rarely implements them in practice. Their implementation is tricky
(particularly in the asymmetric case), and has besides already been done in a careful and
professional fashion by many software developers. In practice, therefore, if one wishes
to solve eigensystem problems for large networks, one typically turns to commercial or
freely available implementations in professionally written software packages. Examples
of such packages include Matlab, LAPACK, and Mathematica. We will not go into more
detail here about the operation of these algorithms.

11.2 Dividing Networks Into Clusters

We now turn to the topics that will occupy us for much of the rest of the chapter, graph
partitioning and community detection. 5 Both of these terms refer to the division of the
vertices of a network into groups, clusters, or communities according to the pattern of
edges in the network. Most commonly one divides the vertices so that the groups formed
are tightly knit with many edges inside groups and only a few edges between groups.

Consider Fig. 11.1 , for instance, which shows patterns of collaborations between
scientists in a university department. Each vertex in this network represents a scientist
and links between vertices indicate pairs of scientists who have coauthored one or
more papers together. As we can see from the figure, this network contains a number
of densely connected clusters of vertices, corresponding to groups of scientists who
have worked closely together. Readers familiar with the organization of university
departments will not be surprised to learn that in general these clusters correspond, at
least approximately, to formal research groups within the department.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-217

Page 10 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Figure 11.1: Network of coauthorships in a university department. The vertices
in this network represent scientists in a university department, and edges links pairs
of scientists who have coauthored scientific papers. The network has clear clusters or
“community structure,” presumably reflecting divisions of interests and research groups
within the department.

But suppose one did not know how university departments operate and wished to
study them. By constructing a network like that in Fig. 11.1 and then observing its
clustered structure, one would be able to deduce the existence of groups within the
larger department and by further investigation could probably (p. 355) quickly work
out how the department was organized. Thus the ability to discover groups or clusters in
a network can be a useful tool for revealing structure and organization within networks

http://www.oxfordscholarship.com/page/privacy-policy

Page 11 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

at a scale larger than that of a single vertex. In this particular case the network is
small enough and sparse enough that the groups are easily visible by eye. Many of the
networks that have engaged our interest in this book, however, are much larger or
denser networks for which visual inspection is not a useful tool. Finding clusters in such
networks is a task for computers and the algorithms that run on them. (p. 356)

11.2.1 Partitioning and Community Detection

There are a number of reasons why one might want to divide a network into groups
or clusters, but they separate into two general classes that lead in turn to two
corresponding types of computer algorithm. We will refer to these two types as graph
partitioning and community detection algorithms. They are distinguished from one
another by whether the number and size of the groups is fixed by the experimenter or
whether it is unspecified.

Partition of a network into two groups of equal sizes.

Graph partitioning is a classic problem in computer science, studied since the 1960s.
It is the problem of dividing the vertices of a network into a given number of non-
overlapping groups of given sizes such that the number of edges between groups is
minimized. The important point here is that the number and sizes of the groups are
fixed. Sometimes the sizes are only fixed roughly—within a certain range, for instance

http://www.oxfordscholarship.com/page/privacy-policy

Page 12 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

—but they are fixed nonetheless. For instance, a simple and prototypical example of
a graph partitioning problem is the problem of dividing a network into two groups of
equal size, such that the number of edges between them is minimized.

Graph partitioning problems arise in a variety of circumstances, particularly in
computer science, but also in pure and applied mathematics, physics, and of course
in the study of networks themselves. A typical example is the numerical solution of
network processes on a parallel computer. In the last part of this book (Chapters 16 to
19) we will study processes that take place on networks, such as diffusion processes
or the spread of diseases. These processes can be modeled mathematically by placing
variables on the vertices of a network and evolving them according to equations that
typically depend on the variables' current values and the values on neighboring vertices.
The solution of such equations is often a laborious computational task, but it can be
sped up by using a parallel computer, a computer with more than one processor or CPU.
Many modern personal computers have two or more processors and large research
organizations sometimes use parallel computers with very many processors. Solutions
of network equations can be spread across several processors by assigning to each
processor the task of solving the equations on a subset of the vertices. For instance, on a
two-processor desktop computer we might give a half of the vertices to each processor.

The catch is that, unless the network consists of totally unconnected components,
some vertices on one processor are always going to have neighbors that are on the
other processor and hence the solution of their equations involves variables whose
value is known only to the other processor. To complete the solution, therefore, those
values have to be transmitted from the one processor to the other at regular intervals
throughout the calculation and this is typically (p. 357) a slow process (or at least
it's slow compared to the dazzling speed of most other computer operations). The
time spent sending messages between processors can, in fact, be the primary factor
limiting the speed of calculations on parallel computers, so it is important to minimize
interprocessor communication as much as possible. One way that we do this is by
minimizing the number of pairs of neighboring vertices assigned to different processors.

Thus we want to divide up the vertices of the network into different groups, one for each
processor, such that the number of edges between groups is minimized. Most often we
want to assign an equal or roughly equal number of vertices to each processor so as to
balance the workload among them. This is precisely a graph partitioning problem of the
type described above.

The other type of cluster finding problem in networks is the problem we call community
detection. Community detection problems differ from graph partitioning in that the
number and size of the groups into which the network is divided are not specified by the
experimenter. Instead they are determined by the network itself: the goal of community

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-16#
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-19#

Page 13 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

detection is to find the natural fault lines along which a network separates. The sizes of
the groups are not merely unspecified but might in principle vary widely from one group
to another. A given networkmight divide into a few large groups, many small ones, or a
mixture of all different sizes.

The most common use for community detection is as a tool for the analysis and
understanding of network data. We saw in Fig. 11.1 an example of a network for which
a knowledge of the group structure might help us understand the organization of
the underlying system. Figure 7.10 on page 221 shows another example of clusters of
vertices, in a network of friendships between US high-school students. In this case the
network splits into two clear groups, which, as described in Section 7.13 , are primarily
dictated by students' ethnicity, and this structure and others like it can give us clues
about the nature of the social interactions within the community represented.

Community detection has uses in other types of networks as well. Clusters of nodes in a
web graph for instance might indicate groups of related web pages. Clusters of nodes in
a metabolic network might indicate functional units within the network.

Community detection is a less well-posed problem than graph partitioning. Loosely
stated, it is the problem of finding the natural divisions of a network into groups of
vertices such that there are many edges within groups and few edges between groups.
What exactly we mean by “many” or “few,” however, is debatable, and a wide variety of
different definitions have been proposed, leading to a correspondingly wide variety of
different algorithms for community detection. In this chapter we will focus mainly on
the most widely used (p. 358) formulation of the problem, the formulation in terms of
modularity optimization, but we will mention briefly a number of other approaches at
the end of the chapter.

In summary, the fundamental difference between graph partitioning and community
detection is that the number and size of the groups into which a network is divided is
specified in graph partitioning but unspecified in community detection. However, there
is also a difference between the goals of the two types of calculations. Graph partitioning
is typically performed as a way of dividing up a network into smaller more manageable
pieces, for example to perform numerical calculations. Community detection is more
often used as a tool for understanding the structure of a network, for shedding light
on largescale patterns of connection that may not be easily visible in the raw network
topology.

Notice also that in graph partitioning calculations the goal is usually to find the best
division of a network, subject to certain conditions, regardless of whether any good
division exists. If the performance of a calculation on a parallel computer, for example,
requires us to divide a network into pieces, then we had better divide it up. If there

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-figureGroup-87
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-59

Page 14 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

are no good divisions, then we must make do with the least bad one. With community
detection, on the other hand, where the goal is normally to understand the structure of
the network, there is no need to divide the network if no good division exists. Indeed if
a network has no good divisions then that in itself may be a useful piece of information,
and it would be perfectly reasonable for a community detection algorithm only to divide
up networks when good divisions exist and to leave them undivided the rest of the time.

11.3 Graph Partitioning

In the next few sections we consider the graph partitioning problem and look at two
well-known methods for graph partitioning. The first, the Kernighan-Lin algorithm, is
not based on matrix methods (and therefore doesn't strictly belong in this chapter) but it
provides a simple introduction to the partitioning problem and is worth spending a little
time on. In Section 11.5 we look at a more sophisticated partitioning method based on
the spectral properties of the graph Laplacian. This spectral partitioning method both is
important in its own right and will also provide a basis for our discussion of community
detection later in the chapter.

First, however, we address an important preliminary question: why does one need fancy
partitioning algorithms at all? Partitioning is an easy problem to state, so is it not just as
easy to solve? (p. 359)

11.3.1 Why Partitioning is Hard

The simplest graph partitioning problem is the division of a network into just two parts.
Division into two parts is sometimes called graph bisection. Most of the algorithms we
consider in this chapter are in fact algorithms for bisecting networks rather than for
dividing them into arbitrary numbers of parts. This may at first appear to be a drawback,
but in practice it is not, since if we can divide a network into two parts, then we can
divide it into more than two by further dividing one or both of those parts. This repeated
bisection is the commonest approach to the partitioning of networks into arbitrary
numbers of parts.

Formally the graph bisection problem is the problem of dividing the vertices of a
network into two non-overlapping groups of given sizes such that the number of edges
running between vertices in different groups is minimized. The number of edges
between groups is called the cut size. 6

Simple though it is to describe, this problem is not easy to solve. One might imagine
that one could bisect a network simply by looking through all possible divisions of the
network into two parts of the required sizes and choosing the one with the smallest cut

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-91

Page 15 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

size. For all but the smallest of networks, however, this so-called exhaustive search
turns out to be prohibitively costly in terms of computer time.

The number of ways of dividing a network of n vertices into two groups of n 1 and n

2 vertices respectively is n!/(n 1! n 2!). Approximating the factorials using Stirling's
formula

and making use of the fact that (11.13)

Thus, for instance, if we want to divide a network into two parts of equal size ½n the
number of different ways to do it is roughly (11.14)

So the amount of time required to look through all of these divisions will go up roughly
exponentially with the size of the network. Unfortunately, the exponential is a very
rapidly growing function of its argument, which means the (p. 360) partitioning task
quickly leaves the realm of the possible at quitemoderate values of n. Values up to about
n = 30 are feasible with current computers, but go much beyond that and the calculation
becomes intractable.

One might wonder whether it is possible to find a way around this problem. After all,
brute-force enumeration of all possible divisions of a network is not a very imaginative
way to solve the partitioning problem. Perhaps one could find a way to limit one's
search to only those divisions of the network that have a chance of being the best one?
Unfortunately, there are some fundamental results in computer science that tell us
that no such algorithm will ever be able to find the best division of the network in all
cases. Either an algorithm can be clever and run quickly, but will fail to find the optimal
answer in some (and perhaps most) cases, or it always finds the optimal answer but
takes an impractical length of time to do it. These are the only options. 7

This is not to say, however, that clever algorithms for partitioning networks do not exist
or that they don't give useful answers. Even algorithms that fail to find the very best
division of a network may still find a pretty good one, and for many practical purposes
pretty good is good enough. The goal of essentially all practical partitioning algorithms
is just to find a “pretty good” division in this sense. Algorithms that find approximate,
but acceptable, solutions to problems in this way are called heuristic algorithms or

http://www.oxfordscholarship.com/page/privacy-policy

Page 16 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

just heuristics. All the algorithms for graph partitioning discussed in this chapter are
heuristic algorithms.

11.4 The Kernighan-Lin Algorithm

The Kernighan-Lin algorithm, proposed by Brian Kernighan 8 and Shen Lin in 1970
[171], is one of the simplest and best known heuristic algorithms for the graph bisection
problem. The algorithm is illustrated in Fig. 11.2 .

Figure 11.2: The Kernighan-Lin algorithm. (a) The Kernighan-Lin algorithm
starts with any division of the vertices of a network into two groups (shaded) and then
searches for pairs of vertices, such as the pair highlighted here, whose interchange
would reduce the cut size between the groups. (b) The same network after interchange of
the two vertices.

We start by dividing the vertices of our network into two groups of the required sizes
in any way we like. For instance, we could divide the vertices randomly. Then, for each
pair (i, j) of vertices such that i lies in one of the groups (p. 361) and j in the other,
we calculate how much the cut size between the groups would change if we were to
interchange i and j, so that each was placed in the other group. Among all pairs (i, j) we
find the pair that reduces the cut size by the largest amount or, if no pair reduces it, we
find the pair that increases it by the smallest amount. Then we swap that pair of vertices.
Clearly this process preserves the sizes of the two groups of vertices, since one vertex
leaves each group and another joins. Thus the algorithm respects the requirement that
the groups take specified sizes.

The process is then repeated, but with the important restriction that each vertex in the
network can only be moved once. Once a vertex has been swapped with another it is
not swapped again (at least not in the current round of the algorithm–see below). Thus,
on the second step of the algorithm we consider all pairs of vertices excluding the two
vertices swapped on the first step.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-171

Page 17 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

And so the algorithm proceeds, swapping on each step that pair that most decreases,
or least increases, the number of edges between our two groups, until eventually there
are no pairs left to be swapped, at which point we stop. (If the sizes of the groups are
unequal then there will be vertices in the larger group that never get swapped, equal in
number to the difference between the sizes of the groups.)

When all swaps have been completed, we go back through every state that the network
passed through during the swapping procedure and choose among them the state in
which the cut size takes its smallest value. 9

(p. 362) Finally, this entire process is performed repeatedly, starting each time with
the best division of the network found on the last time around and continuing until no
improvement in the cut size occurs. The division with the best cut size on the last round
is the final division returned by the algorithm.

Once we can divide a network into two pieces of given size then, as we have said, we
can divide into more than two simply by repeating the process. For instance, if we
want to divide a network into three pieces of equal size, we would first divide into two
pieces, one twice the size of the other, and then further divide the larger one into two
equally sized halves. (Note, however, that even if the algorithm were able to find the
optimal division of the network in each of these two steps, there would be no guarantee
that we would end up with the optimal division of the network into three equal parts.
Nonetheless, we do typically find a reasonably good division, which, as we have said, is
often good enough. This point is discussed further in Section 11.9 .)

Note that if we choose the initial assignment of vertices to groups randomly, then the
Kernighan-Lin algorithm may not give the same answer if it is run twice on the same
network. Two different random starting states could (though needn't necessarily)
result in different divisions of the network. For this reason, people sometimes run the
algorithm more than once to see if the results vary. If they do vary then among the
divisions of the network returned on the different runs it makes sense to take the one
with the smallest cut size.

As an example of the use of the Kernighan-Lin algorithm, consider Fig. 11.3 , which
shows an application of the algorithm to amesh, a two-dimensional network of the
type often used in parallel finite-element computations. Suppose e want to divide this
network into two parts of equal size. Looking at the complete network in Fig. 11.3a there
is no obvious division—there is no easy cut or bottleneck where the network separates
naturally—but we must do the best we can. Figure 11.3b shows the best division found by
the Kernighan-Lin algorithm, which involves cutting 40 edges in the network. Though it
might not be the best possible division of the network, this is certainly good enough for
many practical purposes.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-95

Page 18 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Figure 11.3: Graph partitioning applied to a small mesh network. (a) A mesh
network of 547 vertices of the kind commonly used in finite element analysis. (b) The
edges removed indicate the best division of the network into parts of 273 and 274
vertices found by the Kernighan-Lin algorithm. (c) The best division found by spectral
partitioning. The network is from Bern et al. [35].

The primary disadvantage of the Kernighan-Lin algorithm is that it is quite slow. The
number of swaps performed during one round of the algorithm is (p. 363) equal to the
smaller of the sizes of the two groups, which lies between zero and ½n in a network of n
vertices. Thus there are O(n) swaps in the worst case. For each swap we have to examine
all pairs of vertices in different groups, of which there are, in the worst case, ½n × ½n
= ¼n 2 = O(n 2). And for each of these we need to determine the change in the cut size if
the pair is swapped.

When a vertex i moves from one group to the other any edges connecting it to vertices
in its current group become edges between groups after the swap. Let us suppose that
there are ksame i such edges. Similarly, any edges that i has to vertices in the other
group, of which there are say kother i, become withingroup edges after the swap, but
with one exception. If i is being swapped with vertex j and there is an edge between i and
j, then that edge lies between groups before the swap and still lies between groups after
the swap. Thus the change in the cut size due to the movement of i is

. A similar expression applies for vertex j also and the total change in cut size as a result
of the swap is (11.15)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-35

Page 19 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

For a network stored in adjacency list form, the evaluation of this expression (p. 364)

involves running through all the neighbors of i and j in turn, and hence takes time of
order the average degree in the network, or O(m/n), where m is, as usual, the total
number of edges in the network.

Thus the total time for one round of the algorithm is O(n × n 2 × m/n) = O(mn 2), which
is O(n 3) on a sparse network in which m # n or O(n 4) on a dense network. This in itself
would already be quite bad, but we are not yet done. This time must be multiplied by
the number of rounds the algorithm performs before the cut size stops decreasing. It
is not well understood how the number of rounds required varies with network size.
In typical applications the number is small, maybe five or ten for networks of up to a
few thousand vertices, and larger networks are currently not possible because of the
demands of the algorithm, so in practice the number of rounds is always small. Still, it
seems quite unlikely that the number of rounds would actually increase as network size
grows, and even if it remains constant the time complexity of the algorithm will still be
O(mn 2), which is relatively slow.

We can improve the running time of the algorithm a little by a couple of tricks. If we
initially calculate and store the number of neighbors,

and

, that each vertex has within and between groups and update it every time a vertex is
moved, then we save ourselves the time taken to recalculate these quantities on each
step of the algorithm. And if we store our network in adjacency matrix form then we can
tell whether two vertices are connected (and hence evaluate Aij) in time O(1). Together
these two changes allow us to calculate ? above in time O(1) and improve the overall
running time to O(n 3). For a sparse graph this is the same as O(mn 2), but for a dense
one it gives us an extra factor of n.

Overall, however, the algorithm is quite slow. Even with O(n 3) performance the
algorithm is suitable only for networks up to a few hundreds or thousands of vertices,
but not more.

11.5 Spectral Partitioning

So are there faster methods for partitioning networks? There are indeed, although
they are typically more complex than the simple Kernighan-Lin algorithm, and may be
correspondingly more laborious to implement. In this section we discuss one of the most
widely used methods, the spectral partitioning method of Fiedler [118, 271], which
makes use of the matrix properties of the graph Laplacian. We describe the spectral

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-118
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-271

Page 20 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

partitioning method as applied to the graph bisection problem, the problem of dividing
a graph into two parts of specified sizes. As discussed in the previous section, division
into more than two groups is typically achieved by repeated bisection, dividing and
subdividing (p. 365) the network to give groups of the desired number and size.

Consider a network of n vertices and m edges and a division of that network into two
groups, which we will call group 1 and group 2. We can write the cut size for the division,
i.e., the number of edges running between the two groups, as (11.16)

where the factor of ½ compensates for our counting each edge twice in the sum.

Let us define a set of quantities si , one for each vertex i, which represent the division of
the network thus: (11.17)

Then (11.18)

which allows us to rewrite Eq. (11.16) as (11.19)

with the sum now over all values of i and j. The first term in the sum is (11.20)

where ki is the degree of vertex i as usual, δ ij is the Kronecker delta, and we have made
use of the fact that Σ j Aij = ki (see Eq. (6.19)) and

(since si = ±1). Substituting back into Eq. (11.19) we then find that (11.21)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-232
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-displayMaths-19
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-235

Page 21 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

where Lij = ki δ ij - Aij is the ijth element of the graph Laplacian matrix—see Eq. (6.44) .

Equation (11.21) can be written in matrix form as (11.22)

where s is the vectorwith elements si . This expression gives us a matrix formulation
of the graph partitioning problem. The matrix L specifies the structure (p. 366) of our
network, the vector s defines a division of that network into groups, and our goal is to
find the vector s that minimizes the cut size (11.22) for given L.

You will probably not be surprised to learn that, in general, this minimization problem
is not an easy one. If it were easy then we would have a corresponding easy way to solve
the partitioning problem and, as discussed in Section 11.3.1 , there are good reasons to
believe that partitioning has no easy solutions.

What makes our matrix version of the problem hard in practice is that the si cannot take
just any values. They are restricted to the special values ±1. If they were allowed to take
any real values the problem would be much easier; we could just differentiate to the find
the optimum.

This suggests a possible approximate approach to the minimization problem. Suppose
we indeed allow the si to take any values (subject to a couple of basic constraints
discussed below) and then find the values that minimize R. These values will only
be approximately the correct ones, since they probably won't be ±1, but they may
nonetheless be good enough to give us a handle on the optimal partitioning. This idea
leads us to the so-called relaxation method, which is one of the standard methods
for the approximate solution of vector optimization problems such as this one. In the
present context it works as follows.

The allowed values of the si are actually subject to two constraints. First, as we have
said, each individual one is allowed to take only the values ±1. If we

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-displayMaths-45
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-237
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-238
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div2-50

Page 22 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

The relaxation of the constraint allows s to point to any position on a hypersphere
circumscribing the original hypercube, rather than just the corners of the hypercube.

regard s as a vector in a Euclidean space then this constraint means that the vector
always points to one of the 2 n corners of an n-dimensional hypercube centered on the
origin, and always has the same length, which is

. Let us relax the constraint on the vector's direction, so that it can point in any direction
in its n-dimensional space. We will however still keep its length the same. (It would not
make sense to allow the length to vary. If we did that then the minimization of R would
have the obvious trivial solution s = 0, which would tell us nothing.) So s will be allowed
to take any value, but subject to the constraint that

, or equivalently (11.23)

Another way of putting this is that s can now point to any location on the surface of a
hypersphere of radius

in our n-dimensional Euclidean space. The hypersphere includes the original allowed
values at the corners of the hypercube, but also includes other points in between.

http://www.oxfordscholarship.com/page/privacy-policy

Page 23 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

The second constraint on the si is that the numbers of them that are equal to + 1 and -1
respectively must equal the desired sizes of the two groups. If (p. 367) those two sizes
are n 1 and n 2, this second constraint can be written as (11.24)

or in vector notation (11.25)

where 1 is the vector (1, 1, 1,…) whose elements are all 1. We keep this second constraint
unchanged in our relaxed calculations, so that our partitioning problem, in its relaxed
form, is a problem of minimizing the cut size, Eq. (11.22) , subject to the two constraints
(11.23) and (11.24) .

This problem is now just a standard piece of algebra. We differentiate with respect to the
elements si , enforcing the constraints using two Lagrange multipliers, which we denote
λ and 2µ (the extra 2 being merely for notational convenience): (11.26)

Performing the derivatives, we then find that (11.27)

or, in matrix notation (11.28)

We can calculate the value of µ by recalling that 1 is an eigenvector of the Laplacian with
eigenvalue zero so that L · 1 = 0 (see Section 6.13.2). Multiplying (11.28) on the left by 1
T and making use of Eq. (11.25) , we then find that λ(n 1 - n 2) + µn = 0, or (11.29)

If we define the new vector (11.30)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-238
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-239
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-240
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div2-20
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-244
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-241

Page 24 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

then Eq. (11.28) tells us that (11.31)

where we have used L · 1 = 0 again.

In other words, x is an eigenvector of the Laplacian with eigenvalue λ. We are still free
to choose which eigenvector it is-any eigenvector will satisfy (p. 368) Eq. (11.31) —and
clearly we should choose the one that gives the smallest value of the cut size R. Notice,
however, that (11.32)

where we have used Eq. (11.25) . Thus x is orthogonal to 1, which means that, while it
should be an eigenvector of L, it cannot be the eigenvector (1, 1, 1, …) that has eigenvalue
zero.

So which eigenvector should we choose? To answer this question we note that (11.33)

But from Eq. (11.30) we have (11.34)

and hence (11.35)

Thus the cut size is proportional to the eigenvalue λ. Given that our goal is to minimize
R, this means we should choose x to be the eigenvector corresponding to the smallest
allowed eigenvalue of the Laplacian. All the eigenvalues of the Laplacian are non-
negative (see Section 6.13.2). The smallest one is the zero eigenvalue that corresponds
to the eigenvector (1, 1, 1, ….) but we have already ruled this one out—x has to be
orthogonal to this lowest eigenvector. Thus the best thing we can do is choose x

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-244
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-247
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-241
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-246
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div2-20

Page 25 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

proportional to the eigenvector v 2 corresponding to the second lowest eigenvalue λ2,
with its normalization fixed by Eq. (11.34) .

Finally, we recover the corresponding value of s from Eq. (11.30) thus: (11.36)

or equivalently (11.37)

This gives us the optimal relaxed value of s.

As we have said, however, the real vector s is subject to the additional constraints that
its elements take the values ±1 and moreover that exactly n 1 of (p. 369) them are +1
and the other n 2 are -1. Typically these constraints will prevent s from taking exactly
the value given by Eq. (11.37) . Let us, however, do the best we can and choose s to be as
close as possible to our ideal value subject to its constraints, which we do by making the
product (11.38)

as large as possible. The maximum of this expression is achieved by assigning si = +1 for
the vertices with the largest (i.e., most positive) values of xi +(n 1 - n 2)/n and si = -1 for
the remainder.

Note however that the most positive values of xi + (n 1 ?n 2)/n are also the most positive
values of xi, which are in turn also the most positive elements of the eigenvector v 2 (to
which, as we have said, x is proportional). So after this moderately lengthy derivation we
actually arrive at a very simple final prescription for dividing our network. We calculate
the eigenvector v 2, which has n elements, one for each vertex in the network, and place
the n 1 vertices with the most positive elements in group 1 and the rest in group 2.

There is one further small subtlety. It is arbitrary which group we call group 1 and
which we call group 2, and hence which one we assign to the more positive elements
of the eigenvector and which to the more negative. Thus, if the sizes of the two groups
are different there are two different ways of making the split—either the larger or
the smaller group could correspond to the more positive values. (In the geometrical
language of our vectors, this is equivalent to saying our eigenvector calculation might
find the vector x that we actually want, or minus that vector—both are good eigenvectors

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-250
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-246
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-253

Page 26 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

of the Laplacian.) To get around this problem, we simply compute the cut size for both
splits of the network and choose the one with the smaller value.

Thus our final algorithm is as follows:

1. Calculate the eigenvector v 2 corresponding to the second smallest
eigenvalue λ2 of the graph Laplacian.
2. Sort the elements of the eigenvector in order from largest to smallest.
3. Put the vertices corresponding to the n 1 largest elements in group 1, the
rest in group 2, and calculate the cut size.
4. Then put the vertices corresponding to the n 1 smallest elements in group 1,
the rest in group 2, and recalculate the cut size.
5. Between these two divisions of the network, choose the one that gives the
smaller cut size.

In Fig. 11.3c we show the result of the application of this method to the same mesh
network that we studied in conjunction with the Kernighan-Lin algorithm. In this case
the spectral method finds a division of the network (p. 370) very similar to that given
by the Kernighan-Lin algorithm, although the cut size is slightly worse—the spectral
method cuts 46 edges in this case, where the Kernighan-Lin algorithm cut only 40.
This is typical of the spectral method. It tends to find divisions of a network that have
the right general shape, but are not perhaps quite as good as those returned by other
methods.

An advantage of the spectral approach, however, is its speed. The timeconsuming part
of the algorithm is the calculation of the eigenvector v 2, which takes time O(mn) using
either the orthogonalization method or the Lanczos method (see Section 11.1.2), or O(n
2) on a sparse network having m # n. This is one factor of n better than the O(n 3) of the
Kernighan-Lin algorithm, which makes the algorithm feasible for much larger networks.
Spectral partitioning can be extended to networks of hundreds of thousands of vertices,
where the Kernighan-Lin algorithm is restricted to networks of a few thousand vertices
at most.

The second eigenvalue of the Laplacian has come up previously in this book in Section
6.13.3 , where we saw that it is non-zero if and only if a network is connected. The
second eigenvalue is for this reason sometimes called the algebraic connectivity of a
network. In this section we have seen it again in another context, that of partitioning.
What happens if a network is not connected and the second eigenvalue is zero? In that
case, the two lowest eigenvalues are the same, and the corresponding eigenvectors are
indeterminate—any mixture of two eigenvectors with the same eigenvalue is also an
eigenvector. This is not however a serious problem. If the network is not connected,

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div2-47
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div2-21

Page 27 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

having more than one component, then usually we are interested either in partitioning
one particular component, such as the largest component, or in partitioning all
components individually, and so we just treat the components separately as connected
networks according to the algorithm above.

The algebraic connectivity itself appears in our expression for the cut size, Eq. (11.35)
, and indeed is a direct measure of the cut size, being directly proportional to it,
at least within the “relaxed” approximation used to derive the equation. Thus the
algebraic connectivity is a measure of how easily a network can be divided. It is small
for networks that have good cuts and large for those that do not. This in a sense is
a generalization of our earlier result that the algebraic connectivity is non-zero for
connected networks and zero for unconnected ones—we now see that how non-zero it is
is ameasure of how connected the network is. (p. 371)

11.6 Community Detection

In the last few sections we looked at the problem of graph partitioning, the division of
network vertices into groups of given number and size, so as to minimize the number
of edges running between groups. A complementary problem,introduced in Section
11.2.1 , is that of community detection, the search for the naturally occurring groups
in a network regardless of their number or size, which is used primarily as a tool for
discovering and understanding the large-scale structure of networks.

The basic goal of community detection is similar to that of graph partitioning: we want
to separate the network into groups of vertices that have few connections between
them. The important difference is that the number or size of the groups is not fixed.
Let us focus to begin with on a very simple example of a community detection problem,
probably the simplest, which is analogous to the graph bisection problems we examined
in previous sections. We will consider the problem of dividing a network into just two
non-overlapping groups or communities, as previously, but now without any constraint
on the sizes of the groups, other than that the sum of the sizes should equal the size n of
the whole network. Thus, in this simple version of the problem, the number of groups
is still specified but their sizes are not, and we wish to find the “natural” division of
the network into two groups, the fault line (if any) along which the network inherently
divides, although we haven't yet said precisely what we mean by that, so that the
question we're asking is not yet well defined.

Our first guess at how to tackle this problem might be simply to find the division with
minimum cut size, as in the corresponding graph partitioning problem, but without
any constraint on the sizes of our groups. However, a moment's reflection reveals that
this will not work. If we divide a network into two groups with any number of vertices
allowed in the groups then the optimum division is simply to put all the vertices in one

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-251
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div2-49

Page 28 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

of the groups and none of them in the other. This trivial division insures that the cut size
between the two groups will be zero—there will be no edges between groups because one
of the groups contains no vertices! As an answer to our community detection problem,
however, it is clearly not useful.

One way to do better would be to impose loose constraints of some kind on the sizes
of the groups. That is, we could allow the sizes of the groups to vary, but not too much.
An example of this type of approach is ratio cut partitioning in which, instead of
minimizing the standard cut size R, we instead minimize the ratio R/(n 1 n 2), where n

1 and n 2 are the sizes of the two groups. The denominator n 1 n 2 has its largest value,
and hence reduces the ratio by the largest amount, when n 1 and n 2 are equal n 1 = n 2 =
½n. For unequal group (p. 372) sizes the denominator becomes smaller the greater the
inequality, and diverges when either group size becomes zero. This effectively eliminates
solutions in which all vertices are placed in the same group, since such solutions never
give the minimum value of the ratio, and biases the division towards those solutions in
which the groups are of roughly equal size.

As a tool for discovering the natural divisions in a network, however, the ratio cut is
not ideal. In particular, although it allows group sizes to vary it is still biased towards a
particular choice, that of equally sized groups. More importantly, there is no principled
rationale behind its definition. It works reasonably well in some circumstances, but
there's no fundamental reason to believe it will give sensible answers or that some other
approach will not give better ones.

An alternative strategy is to focus on a different measure of the quality of a division
other than the simple cut size or its variants. It has been argued that the cut size is not
itself a good measure because a good division of a network into communities is not
merely one in which there are few edges between communities. On the contrary, the
argument goes, a good division is one where there are fewer than expected such edges.
If we find a division of a network that has few edges between its groups, but nonetheless
the number of such edges is about what we would have expected were edges simply
placed at random in the network, then most people would say we haven't found anything
significant. It is not the total cut size that matters, but how that cut size compares with
what we expect to see.

In fact, in the conventional development of this idea one considers not the number
of edges between groups but the number within groups. The two approaches are
equivalent, however, since every edge that lies within a group necessarily does not
lie between groups, so one can calculate one number from the other given the total
number of edges in the network as whole. We will follow convention here and base our
calculations on the numbers of with in group edges.

http://www.oxfordscholarship.com/page/privacy-policy

Page 29 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Our goal therefore will be to find a measure that quantifies how many edges lie within
groups in our network relative to the number of such edges expected on the basis of
chance. This, however, is an idea we have encountered before. In Section 7.13.1 we
considered the phenomenon of assortative mixing in networks, in which vertices with
similar characteristics tend to be connected by edges. There we introduced the measure
of assortative mixing known as modularity, which has a high value when many more
edges in a network fall between vertices of the same type than one would expect by
chance. This is precisely the type of measure we need to solve our current community
detection problem. If we consider the vertices in our two groups to be vertices (p. 373)

of two types then good divisions of the network into communities are precisely those
that have high values of the corresponding modularity.

Thus one way to detect communities in networks is to look for the divisions that have
the highest modularity scores and in fact this is the most commonly used method for
community detection. Like graph partitioning, modularity maximization is a hard
problem (see Section 11.3.1). It is believed that, as with partitioning, the only algorithms
capable of always finding the division with maximum modularity take exponentially
long to run and hence are useless for all but the smallest of networks [54]. Instead,
therefore, we turn again to heuristic algorithms, algorithms that attempt to maximize
the modularity in an intelligent way that gives reasonably good results most of the time.

11.7 Simple Modularity Maximization

One straightforward algorithm for maximizing modularity is the analog of the
Kernighan-Lin algorithm [245]. This algorithm divides networks into two communities
starting from some initial division, such as a random division into equally sized groups.
The algorithm then considers each vertex in the network in turn and calculates how
much the modularity would change if that vertex were moved to the other group. It
then chooses among the vertices the one whose movement would most increase, or
least decrease, the modularity and moves it. Then it repeats the process, but with the
important constraint that a vertex once moved cannot be moved again, at least on this
round of the algorithm.

And so the algorithm proceeds, repeatedly moving the vertices that most increase or
least decrease the modularity. Notice that in this algorithm we are not swapping pairs
as we did in the Kernighan-Lin algorithm. In that algorithm we were required to keep
the sizes of the groups constant, so for every vertex removed from a group we also had to
add one. Now we no longer have such a constraint and so we can move single vertices on
each step.

When all vertices have been moved exactly once, we go back over the states through
which the network has passed and select the one with the highest modularity. We then

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div2-28
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div2-50
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-54
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-245

Page 30 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

use that state as the starting condition for another round of the same algorithm, and we
keep repeating the whole process until the modularity no longer improves.

Figure 11.4: Modularity maximization applied to the karate club network.
When we apply our vertex-moving modularity maximization algorithm to the karate
club network, the best division found is the one indicated here by the two shaded
regions, which split the network into two groups of 17 vertices each. This division
is very nearly the same as the actual split of the network in real life (open and solid
circles), following the dispute among the club's members. Just one vertex is classified
incorrectly.

Figure 11.4 shows an example application of this algorithm to the “karate club” network
of Zachary, which we encountered previously in Chapter 1 (see Fig. 1.2 on page 6).
This network represents the pattern of friendships between members of a karate club
at a North American university, as determined by direct observation of the club's
members by the experimenter over a period (p. 374) of about two years. The network
is interesting because during the period of observation a dispute arose among the
members of the club over whether to raise the club's fees and as a result the club
eventually split into two parts, of 18 and 16 members respectively, the latter departing
to form their own club. The colors of the vertices in Fig. 11.4 denote the members of the
two factions, while the shaded regions show the communities identified in the network
by our vertex-moving algorithm. As we can see from the figure, the communities
identified correspond almost perfectly to the known groups in the network. Just one
vertex on the border between the groups is incorrectly assigned. Thus in this case our

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-1#
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-1#acprof-9780199206650-figureGroup-3

Page 31 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

algorithm appears to have picked out structure of genuine sociological interest from
an analysis of network data alone. It is precisely for results of this kind, that shed light
on potentially important structural features of networks, that community detection
methods are of interest.

The vertex moving algorithm is also quite efficient. At each step of the algorithm we
have to evaluate the modularity change due to the movement of each of O(n) vertices,
and each such evaluation, like the corresponding ones for the Kernighan-Lin algorithm,
can be achieved in time O(m/n) if the network is stored as an adjacency list. Thus each
step takes time O(m) and there are n steps in one complete round of the algorithm for a
total time of O(mn). This is considerably better than the O(mn 2) of the Kernighan-Lin
algorithm, (p. 375) and the algorithm is in fact one of the better of the many proposed
algorithms for modularity maximization. 10 The fundamental reason for the algorithm's
speed is that when moving single vertices we only have to consider O(n) possible moves
at each step, by contrast with the O(n 2) possible swaps of vertex pairs that must be
consider in a step of the Kernighan-Lin algorithm.

11.8 Spectral Modularity Maximization

Having seen in the previous section an algorithm for modularity maximization
analogous to the Kernighan-Lin algorithm, it is natural to ask whether there also exists
an analog for community detection of the spectral graph partitioning algorithm of
Section 11.5 . The answer is yes, there is indeed such an algorithm, as we now describe.

In Section 7.13.1 we wrote an expression for the modularity of a division of a network as
follows (Eq. (7.69)): (11.39)

where ci is the group or community to which vertex i belongs, δ(m, n) is the Kronecker
delta, and (11.40)

Note that Bij has the property (11.41)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-91
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div2-28
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-displayMaths-156

Page 32 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

and similarly for sums over i. (We have made use of Eq. (6.20) in the second equality.)
This property will be important shortly.

Let us again consider the division of a network into just two parts (we will consider the
more general case later) and again represent such a division by the quantities (11.42)

(p. 376) We note that the quantity ½ (sisj + 1) is 1 if i and j are in the same group and
zero otherwise, so that (11.43)

Substituting this expression into Eq. (11.39) , we find (11.44)

where we have used Eq. (11.41) . In matrix terms we can write this as (11.45)

where s is, as before, the vector with elements si , and B is the n × n matrix with
elements Bij , also called the modularity matrix.

Equation (11.45) is similar in form to our expression, Eq. (11.22) , for the cut size of a
network in terms of the graph Laplacian. By exploiting this similarity we can derive a
spectral algorithm for community detection that is closely analogous to the spectral
partitioning method of Section 11.5 .

We wish to find the division of a given network that maximizes the modularity Q. That
is, we wish to find the value of s that maximizes Eq. (11.45) for a given modularity
matrix B. The elements of s are constrained to take values ±1, so that the vector always
points to one of the corners of an ndimensional hypercube, but otherwise there are no
constraints on the problem. In particular, the number of elements with value +1 or -1
is not fixed as it was in the corresponding graph partitioning problem—the sizes of our
communities are unconstrained.

As before, this optimization problem is a hard one, but it can be tackled approximately
—and effectively—by a relaxation method. We relax the constraint that s must point

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-displayMaths-20
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-255
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-257
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-261
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-238
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-91
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-261

Page 33 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

to a corner of the hypercube and allow it to point in any direction, though keeping its
length the same, meaning that it can take any real value subject only to the constraint
that (11.46)

The maximization is now a straightforward problem. We maximize Eq. (11.44) by
differentiating, imposing the constraint with a single Lagrange multiplier β: (11.47)

When we perform the derivatives, this gives us (11.48)

(p. 377) or in matrix notation (11.49)

In other words, s is one of the eigenvectors of the modularity matrix. Substituting
(11.49) back into Eq. (11.45) , we find that the modularity itself is given by (11.50)

where we have used Eq. (11.46) . For maximum modularity, therefore, we should choose
s to be the eigenvector u1 corresponding to the largest eigenvalue of the modularity
matrix.

As before, we typically cannot in fact choose s = u1, since the elements of s are subject to
the constraint si = ±1. But we do the best we can and choose it as close to u1 as possible,
which means maximizing the product (11.51)

where [u1] i is the ith element of u 1. The maximum is achieved when each term in the
sum is non-negative, i.e., when (11.52)

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-260
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-265
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-261
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-262

Page 34 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

In the unlikely event that a vector element is exactly zero, either value of si is equally
good and we can choose whichever we prefer.

And so we are led the following very simple algorithm. We calculate the eigenvector of
the modularity matrix corresponding to the largest (most positive) eigenvalue and then
assign vertices to communities according to the signs of the vector elements, positive
signs in one group and negative signs in the other.

In practice this method works very well. For example, when applied to the karate club
network of Fig. 11.4 it works perfectly, classifying every one of the 34 vertices into the
correct group.

One potential problem with the algorithm is that the matrix B is, unlike the Laplacian,
not sparse, and indeed usually has all elements non-zero. At first sight, this appears to
make the algorithm's complexity significantlyworse than that of the normal spectral
bisection algorithm; as discussed in Section 11.1.1 , finding the leading eigenvector of a
matrix takes time O(mn), which is equivalent to O(n 3) in a dense matrix, as opposed
to O(n 2) in a sparse one. In fact, however, by exploiting special properties of the
modularity matrix it is still possible to find the eigenvector in time O(n 2) on a sparse
network. The details can be found in [246].

(p. 378) Overall, this means that the spectral method is about as fast as, but not
significantly faster than, the vertex-moving algorithm of Section 11.7 . Both have time
complexity O(n 2) on sparse networks. 11 There is, however, merit to having both
algorithms. Given that all practical modularity maximizing algorithms are merely
heuristics—clever perhaps, but not by any means guaranteed to perform well in all cases
—having more than one fast algorithm in our toolkit is always a good thing.

11.9 Division Into More Than Two Groups

The community detection algorithms of the previous two sections both perform
a limited form of community detection, the division of a network into exactly two
communities, albeit of unspecified sizes. But “communities” are defined to be the
natural groupings of vertices in networks and there is noreason to suppose that
networks will in general have just two of them. They might have two, but they might
have more than two, and we would like to be able to find them whatever their number.
Moreover we don't, in general, want to have to specify the number of communities; that
number should be fixed by the structure of the network and not by the experimenter.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div2-46
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-246
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-93

Page 35 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

In principle, the modularity maximizationmethod can handle this problem perfectly
well. Instead of maximizing modularity over divisions of a network into two groups,
we should just maximize it over divisions into any number of groups. Modularity is
supposed to be largest for the best division of the network, no matter how many groups
that division possesses.

There are a number of community detection algorithms that take this “free
maximization” approach to determining community number, and we discuss some of
them in the following section. First, however, we discuss a simpler approach which is
a natural extension of the methods of previous sections and of our graph partitioning
algorithms, namely repeated bisection of a network. We start by dividing the network
first into two parts and then we further subdivide those parts in to smaller ones, and so
on.

One must be careful about how one does this, however. We cannot proceed as one can
in the graph partitioning case and simply treat the communities found in the initial
bisection of a network as smaller networks in their (p. 379) own right, applying our
bisection algorithm to those smaller networks. The modularity of the complete network
does not break up (as cut size does) into independent contributions from the separate
communities and the individual maximization of the modularities of those communities
treated as separate networks will not, in general, produce the maximum modularity for
the network as a whole.

Instead, we must consider explicitly the change δQ in themodularity of the entire
network upon further bisecting a community c of size nc . That change is given by (11.53)

where we have made use of

, and B(c) is the nc × nc matrix with elements (11.54)

http://www.oxfordscholarship.com/page/privacy-policy

Page 36 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Since Eq. (11.53) has the same general form as Eq. (11.45) we can now apply our spectral
approach to this generalized modularity matrix, just as before, to maximize δQ, finding
the leading eigenvector and dividing the network according to the signs of its elements.

In repeatedly subdividing a network in this way, an important question we need to
address is at what point to halt the subdivision process. The answer is quite simple.
Given that our goal is to maximize the modularity for the entire network, we should
only go on subdividing groups so long as doing so results in an increase in the overall
modularity. If we are unable to find any division of a community that results in a
positive change δQ in themodularity, then we should simply leave that community
undivided. The practical indicator of this situation is that our bisection algorithm will
put all vertices in one of its two groups and none in the other, effectively refusing to
subdivide the community rather than choose a division that actually decreases the
modularity. When we have subdivided our network to the point where all communities
are in this indivisible state, the algorithm is finished and we stop.

Figure 11.5: Division of a simple network by repeated maximization of the
modularity. (a) The optimal bisection of this network of eight vertices and seven edges
is straight down the middle. (b) The optimal division into an arbitrary number of groups
is this division into three.

This repeated bisection method works well in many situations, but it is by no means
perfect. A particular problem is that, as in the equivalent approach to graph partitioning,
there is no guarantee that the best division of a network (p. 380) into, say, three parts,
can be found by first finding the best division into two parts and then subdividing
one of the two. Consider for instance the simple network shown in Fig. 11.5 , which
consists of eight vertices joined together in a line. The bisection of this network with
highestmodularity is the one shown in Fig. 11.5a , down the middle of the network,
splitting it into two equally sized groups of four vertices each. The best modularity if
the number of groups is unconstrained, however, is that shown in Fig. 11.5b , with three

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-269
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-displayMaths-261

Page 37 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

groups of sizes 3, 2, and 3, respectively. A repeated optimal bisection algorithm would
never find the division in 11.5b because, having first made the bisection in 11.5a, there is
no further bisection that will get us to 11.5b.

As mentioned above, an alternative method for dividing networks into more than two
communities is to attempt to find directly the maximum modularity over divisions
into any number of groups. This approach can, in principle, find better divisions than
repeated bisection, but in practice is more complicated to implement and often runs
slower. A number of promising methods have been developed, however, some of which
are discussed in the next section.

11.10 Other Modularity Maximization Methods

There are a great variety of general algorithms for maximizing (orminimizing) functions
over sets of states, and in theory any one of them could be brought to bear on the
modularity maximization problem, thereby creating a new community detection
algorithm. We describe briefly here three approaches that have met with some success.
Each of these approaches attempts to maximize modularity over divisions into any
number of communities of any sizes and (p. 381) thus to determine both the number
and size of communities in the process.

One of the most widely used general optimization strategies is simulated annealing,
which proceeds by analogy with the physics of slow cooling or “annealing” of solids. It is
known that a hot system, such as a molten metal, will, if cooled sufficiently slowly to a
low enough temperature, eventually find its ground state, that state of the system that
has the lowest possible energy. Simulated annealing works by treating the quantity of
interest—modularity in this case—as an energy and then simulating the cooling process
until the system finds the state with the lowest energy. Since we are interested in finding
the highest modularity, not the lowest, we equate energy in our case with minus the
modularity, rather than with the modularity itself.

The details of the simulated annealing method are beyond the scope of this book, but
the application to modularity maximization is a straightforward one and it appears to
work very well [85, 150, 151, 215, 281]. For example, Danon et al. [85] performed an
extensive test in which they compared the performance of a large number of different
community detection algorithms on standardized tasks and found that the simulated
annealing method gave the best results of any method tested. The main disadvantage of
the approach is that it is slow, typically taking several times as long to reach an answer
as competing methods do.

Another general optimization method is the genetic algorithm, a method inspired by
the workings of biological evolution. Just as fitter biological species reproduce more

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-85
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-150
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-151
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-215
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-281
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-85

Page 38 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

and so pass on the genes that confer that fitness to future generations, so one can
consider a population of different divisions of the same network and assign to each a
“fitness” proportional to its modularity. Over a series of generations one simulates the
preferential “reproduction” of high modularity divisions, while those of low modularity
die out. Small changes or mutations are introduced into the offspring divisions, allowing
their modularity values either to improve or get worse and those that improve are
more likely to survive in the next generation while those that get worse are more likely
to be killed off. After many generations one has a population of divisions with good
modularity and the best of these is the final division returned by the algorithm. Like
simulated annealing the method appears to give results of high quality, but is slow,
which restricts its use to networks of a few hundred vertices or fewer [295].

A third method makes use of a so-called greedy algorithm. In this very simple approach
we start out with each vertex in our network in a one-vertex group of its own, and
then successively amalgamate groups in pairs, choosing at each step the pair whose
amalgamation gives the biggest increase in modularity, or the smallest decrease if no
choice gives an increase. Eventually (p. 382) all vertices are amalgamated into a single
large community and the algorithm ends. Then we go back over the states through
which the network passed during the course of the algorithm and select the one with
the highest value of the modularity. A naive implementation of this idea runs in time
O(n 2), but by making use of suitable data structures the run time can be improved to
O(n log2 n) on a sparse graph [71, 319]. Overall the algorithm works only moderately
well: it gives reasonable divisions of networks, but the modularity values achieved are
in general somewhat lower than those found by the other methods described here.
On the other hand, the running time of the method may be the best of any current
algorithm, and this is one of the few algorithms fast enough to work on the very largest
networks now being explored. Wakita and Tsurumi [319] have given one example of an
application to a network of more than five million vertices, something of a record for
studies of this kind.

11.11 Other Algorithms For Community Detection

As we have seen, the problem of detecting communities in networks is a less well-posed
one than the problem of graph partitioning. In graph partitioning the goal is clear: to
find the division of a network with the smallest possible cut size. There is, by contrast,
no universally agreed upon definition of what constitutes a good division of a network
into communities. In the previous sections we have looked at algorithms based one
particular definition in terms of the modularity function, but there are a number of
other definitions in common use that lead to different algorithms. In the following
sections we look briefly at a few of these other algorithms.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-295
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-71
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-319
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-319

Page 39 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

11.11.1 Betweenness-Based Methods

One alternative way of finding communities of vertices in a network is to look for the
edges that lie between communities. If we can find and remove these edges, we will be
left with just the isolated communities.

There is more than one way to quantify what we mean when we say an edge lies
“between communities,” but one common approach is to use between ness centrality.
As described in Section 7.7 , the betweenness centrality of a vertex in a network is the
number of geodesic (i.e., shortest) paths in the network that pass through that vertex.
Similarly, we can define an edge betweenness that counts the number of geodesic paths
that run along edges and, as shown in Fig. 11.6 , edges that lie between communities can
be expected to have high values of the edge betweenness.

Figure 11.6: Identification of between-group edges. This simple example network
is divided into two groups of vertices (denoted by the dotted lines), with only two edges
connecting the groups. Any path joining vertices in different groups (such as vertices u
and v) must necessarily pass along one of these two edges. Thus if we consider a set of
paths between all pairs of vertices (such as geodesic paths, for instance), we expect the
between-group edges to carry more paths than most. By counting the number of paths
that pass along each edge we can in this way identify the between-group edges.

(p. 383)

The calculation of edge betweenness is precisely analogous to the vertex case: we
consider the geodesic path or paths between every pair of vertices in the network (except
vertices in different components, for which no such path exists), and count how many
such paths go along each edge. Edge betweenness can be calculated for all edges in time
O(n(m + n)) using a slightly modified version of the algorithm described in Section
10.3.6 [250].

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-51
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-10#acprof-9780199206650-div2-40
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-250

Page 40 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

Our algorithm for detecting communities is then as follows. We calculate the
betweenness scores of all edges in our network and then search through them for the
edge with the highest score and remove it. In removing the edge we will change the
betweenness scores of some edges, because any shortest paths that previously traversed
the removed edge will now have to be rerouted another way. So we must recalculate
the betweenness scores following the removal. Then we search again for the edge with
the highest score and remove it, and so forth. As we remove one edge after another an
initially connected network will eventually split into two pieces, and then into three, and
so on.

Figure 11.7: A dendrogram. The results of the edge betweenness algorithm
can be represented as a tree or “dendrogram” in which the vertices are depicted
(conventionally) at the bottom of the tree and the “root” at the top represent the whole
network. The progressive fragmentation of the network as edges are removed one by
one is represented by the successive branching of the tree as we move down the figure
and the identities of the vertices in a connected subset at any point in the procedure
can be found by following the lines of the tree down to the bottom of the picture. Each
intermediate division of the network through which the algorithm passes corresponds
to a horizontal cut through the dendrogram. For instance, the cut denoted by the dotted
line in this dendrogram splits the network into four groups of 6, 1, 2, and 3 vertices
respectively.

The progress of the algorithm can be represented using a tree or dendrogram like
that depicted in Fig. 11.7 . At the bottom of the figure we have the “leaves” of the tree,
which each represent one of the vertices of the network, and as we move up the tree,
the leaves join together first in pairs and then in larger groups, until at the top of the

http://www.oxfordscholarship.com/page/privacy-policy

Page 41 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

tree all are joined together to form a single whole. Our algorithm in fact generates the
dendrogram from the top, rather than the bottom, starting with a single connected
network and splitting it repeatedly (p. 384) until we get to the level of single vertices.
Individual intermediate configurations of the network during the run of the algorithm
correspond to horizontal cuts through the dendrogram, as indicated by the dotted line in
the figure. Each branch of the tree that intersects this dotted line represents one group
of vertices, whose membership we can determine by following the branch down to its
leaves at the bottom of the figure. Thus the dendrogram captures in a single diagram
the configuration of groups in the network at every stage from start to finish of the
algorithm.

This algorithm is somewhat different from previous ones, therefore, in that it doesn't
give a single decomposition of a network into communities, but a selection of different
possibilities, ranging from coarse divisions into just a few large communities (at the top
of the dendrogram) to fine divisions into many small communities (at the bottom). It
is up to the user to decide which of the many divisions represented is most useful for
their purposes. One could in principle use a measure such as modularity to quantify the
quality of the different divisions and select the one with the highest quality in this sense.
This, however, somewhat misses the point. If high modularity is what you (p. 385) care
about, then you are better off simply using a modularity maximization algorithm in the
first place. It is more appropriate simply to think of this betweenness-based algorithm as
producing a different kind of output, one that has its own advantages and disadvantages
but that can undoubtedly tell us interesting things about network structure.

The betweenness-based algorithm is, unfortunately, quite slow. Aswe have said the
calculation of betweenness for all edges takes time of order O(n(m + n)) and we have
to perform this calculation before the removal of each of the m edges, so the entire
algorithm takes time O(mn(m + n)), or O(n 3) on a sparse graph with m # n. This makes
this algorithm one of the slower algorithms considered in this chapter. The algorithm
gives quite good results in practice [138, 250], but has mostly been superseded by the
faster modularity maximization methods of previous sections.

Nonetheless, the ability of the algorithm to return an entire dendrogram, rather
than just a single division of a network, could be useful in some cases. The divisions
represented in the dendrogram form a hierarchical decomposition in which the
communities at one level are completely contained within the larger communities at all
higher levels. There has been some interest in hierarchical structure in networks and
hierarchical decompositions that might capture it. We look at another algorithm for
hierarchical decomposition in Section 11.11.2 .

An interesting variation on the betweenness algorithm has been proposed by Radicchi
et al. [276]. Their idea revolves around the same basic principle of identifying the

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-138
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-250
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div2-52
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-276

Page 42 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

edges between communities and removing them, but the measure used to perform
the identification is different. Radicchi et al. observe that the edges that fall between
otherwise poorly connected communities are unlikely to belong to short loops of edges,
since doing so would require that there be two nearby edges joining the same groups
—see Fig. 11.8 . Thus one way to identify the edges between communities would be to
look for edges that belong to an unusually small number of short loops. Radicchi et al.
found that loops of length three and four gave the best results. By repeatedly removing
edges that belong to small numbers of such loops they were able to accurately uncover
communities in a number of example networks.

An attractive feature of this method is its speed. The calculation of the number of short
loops to which an edge belongs is a local calculation and can be performed for all edges
in time that goes like the total size of the network. Thus, in the worst case, the running
time of the algorithm will only go as O(n 2) on a sparse graph, which is one order of
system size faster than the betweenness-based algorithm and as fast as the earlier
methods based on modularity maximization.

Figure 11.8: The algorithm of Radicchi et al. The algorithm of Radicchi et al. uses a
different measure to identify between-group edges, looking for the edges that belong to
the fewest short loops. In many networks, edges within groups typically belong to many
short loops, such as the loops of length three and four labeled “1” and “2.” But edges
between groups, such as the edge labeled “3” here, often do not belong to such loops,
because to do so would require there to be a return path along another between group
edge, of which there are, by definition, few.

(p. 386)

On the other hand, the algorithm of Radicchi et al. has the disadvantage that it only
works on networks that have a significant number of short loops in the first place. This
restricts the method primarily to social networks, which indeed have large numbers

http://www.oxfordscholarship.com/page/privacy-policy

Page 43 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

of short loops (see Section 7.9). Other types of network, such as technological and
biological networks, tend to have smaller numbers of short loops, and hence there is
little to distinguish between-group edges from within-group ones.

11.11.2 Hierarchical Clustering

The algorithms of the previous section differ somewhat from the other community
detection algorithms in this chapter in that they produce a hierarchical decomposition
of a network into a set of nested communities, visualized in the form of a dendrogram as
in Fig. 11.7 , rather than just a single division into a unique set of communities. In this
section we look at another algorithm that also produces a hierarchical decomposition,
one of the oldest of community detection methods, the method of hierarchical
clustering. 12

Hierarchical clustering is not so much a single algorithm as an entire class (p. 387)

of algorithms, with many variations and alternatives. Hierarchical clustering is an
agglomerative technique in which we start with the individual vertices of a network
and join them together to form groups. This contrasts with most of the other methods
we have looked at for community detection and graph partitioning, which were divisive
methods that took a complete network and split it apart. (One earlier algorithm, the
greedy modularity maximization algorithm of Section 11.10 , was an agglomerative
method.)

The basic idea behind hierarchical clustering is to define a measure of similarity or
connection strength between vertices, based on the network structure, and then join
together the closest or most similar vertices to form groups. We discussed measures
of vertex similarity in networks at some length in Section 7.12 . Any of the measures
of structural equivalence introduced there would be suitable as a starting point
for hierarchical clustering, including cosine similarity (Section 7.12.1), correlation
coefficients between rows of the adjacency matrix (Section 7.12.2), or the so-called
Euclidean distance (Section 7.12.3). The regular equivalence measures of Section 7.12.4
might also be good choices, although the author is not aware of them having been used
in this context.

That there are many choices for similarity measures is both a strength and a weakness
of the hierarchical clustering method. It gives the method flexibility and allows it to be
tailored to specific problems, but it also means that the method gives different answers
depending on which measure we choose, and in many cases there is no way to know if
one measure is more correct or will yield more useful information than another. Most
often the choice of measure is determined more by experience or experiment than by
argument from first principles.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-53
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-96
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-56
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div2-26
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div2-27
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-57
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-58

Page 44 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

If the connections (A,B) and (B,C) are strong but (A,C) is weak, should A and C be in the
same group or not?

Once a similarity measure is chosen we calculate it for all pairs of vertices in the
network. Then we want to group together those vertices having the highest similarities.
This, however, leads to a further problem: the similarities can give conflicting messages
about which vertices should be grouped. Suppose vertices A and B have high similarity,
as do vertices B and C. One might A C therefore argue that A, B, and C should all be in
a group together. But suppose that A and C have low similarity. Now we are left with a
dilemma. Should A and C be in the same group or not?

The basic strategy adopted by the hierarchical clustering method is to start by joining
together those pairs of vertices with the highest similarities, forming a group or groups
of size two. For these there is no ambiguity, since each pair only has one similarity
value. Then we further join together the groups that are most similar to form larger
groups, and so on. When viewed in terms of agglomeration of groups like this, the
problem above can be stated in a new and (p. 388) useful way. Our process requires
for its operation a measure of the similarity between groups, so that we can join
the most similar ones together. But what we actually have is a measure of similarity
between individual vertices, so we need to combine these vertex similarities somehow
to create similarities for the groups. If we can do this, then the rest of the algorithm is
straightforward and the ambiguity is resolved.

There are three common ways of combining vertex similarities to give similarity scores
for groups. They are called single-, complete-, and average-linkage clustering. Consider
two groups of vertices, group 1 and group 2, containing n 1 and n 2 vertices respectively.
There are then n 1 n 2 pairs of vertices such that one vertex is in group 1 and the other in
group 2. In the single-linkage clustering method, the similarity between the two groups
is defined to be the similarity of the most similar of these n 1 n 2 pairs of vertices. Thus if
the values of the similarities of the vertex pairs range from 1 to 100, the similarity of the
two groups is 100. This is a very lenient definition of similarity: only a single vertex pair
need have high similarity for the groups themselves to be considered similar. (This is the

http://www.oxfordscholarship.com/page/privacy-policy

Page 45 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

origin of the name “single-linkage clustering”—similarity between groups is a function of
the similarity between only the single most similar pair of vertices.)

At the other extreme, complete-linkage clustering defines the similarity between two
groups to be the similarity of the least similar pair of vertices. If the similarities range
from 1 to 100 then the similarity of the groups is 1. By contrast with single-linkage
clustering this is a very stringent definition of group similarity: every single vertex
pair must have high similarity for the groups to have high similarity (hence the name
“complete-linkage clustering”).

In between these two extremes lies average-linkage clustering, in which the similarity
of two groups is defined to be the mean similarity of all pairs of vertices. Average-linkage
clustering is probably the most satisfactory choice of the three, being a moderate one—
not extreme in either direction—and depending on the similarity of all vertex pairs and
not just of the most or least similar pair. It is, however, relatively rarely used, for reasons
that are not entirely clear.

The full hierarchical clustering method is as follows:

1. Choose a similarity measure and evaluate it for all vertex pairs.
2. Assign each vertex to a group of its own, consisting of just that one vertex.
The initial similarities of the groups are simply the similarities of the vertices.
3. Find the pair of groups with the highest similarity and join them together
into a single group.
4. Calculate the similarity between the new composite group and all others
using one of the three methods above (single-, complete-, or average- (p. 389)

linkage clustering).
5. Repeat from step 3 until all vertices have been joined into a single group.

In practice, the calculation of the new similarities is relatively straightforward. Let us
consider the three cases separately. For single-linkage clustering the similarity of two
groups is equal to the similarity of their most similar pair of vertices. In this case, when
we join groups 1 and 2 together, the similarity of the composite group to another group
3, is the greater of the similarities of 1 with 3 and 2 with 3, which can be found in O(1)
time.

For complete-linkage clustering the similarity of the composite group is the smaller of
the similarities of 1 with 3 and 2 with 3, which can also be found in O(1) time.

The average-linkage case is only slightly more complicated. Suppose as before that the
groups 1 and 2 that are to be joined have n 1 and n 2 vertices respectively. Then if the

http://www.oxfordscholarship.com/page/privacy-policy

Page 46 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

similarities of 1 with 3 and 2 with 3 were previously σ13 and σ23, the similarity of the
composite group with another group 3 is given by the weighted average (11.55)

Again this can be calculated in O(1) time.

On each step of the algorithm we have to calculate similarities in this way for
the composite group with every other group, of which there are O(n). Hence the
recalculation of similarities will takeO(n) time on each step. Anaive search through the
similarities to find the greatest one, on the other hand, takes time O(n 2), since there
are O(n 2) pairs of groups to check, so this will be the most time-consuming step in the
algorithm. We can speed things up, however, by storing the similarities in a binary heap
(see Section 9.7 13), which allows us to add and remove entries in time O(log n) and find
the greatest one in time O(1). This slows the recalculation of the similarities to O(n log
n) but speeds the search for the largest to O(1).

Figure 11.9: Partitioning of the karate club network by average linkage
hierarchical clustering. This dendrogram is the result of applying the hierarchical
clustering method described in the text to the karate club network of Fig. 11.4 , using
cosine similarity as our measure of vertex similarity. The shapes of the nodes represent
the two known factions in the network, as in the two previous figures.

Then the whole process of joining groups has to be repeated n - 1 times until all vertices
have been joined into a single group. (To see this, simply consider that the number of
groups goes down by one every time two groups are joined, so it takes n - 1 joins to go

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-9#acprof-9780199206650-div1-77

Page 47 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

from n initial groups to just a single one (p. 390) at the end.) Thus the total running
time of the algorithm is O(n 3) in the naive implementation or O(n 2 log n) if we use a
heap. 14

And how well does it work in practice? The answer depends on which similarity measure
one chooses and which linkage method, but a typical application, again to the karate
club network, is shown in Fig. 11.9 . This figure shows what happens when we apply
average-linkage clustering to the karate network using cosine similarity as our similarity
measure. The figure shows the dendrogram that results from such a calculation and
we see that there is a clear division of the dendrogram into two communities that
correspond perfectly to the two known groups in the network.

Hierarchical clustering does not always work as well as this, however. In particular,
though it is often good at picking out the cores of groups, where the vertices are strongly
similar to one another, it tends to be less good at assigning peripheral vertices to
appropriate groups. Such vertices may not be strongly similar to any others and so
tend to get left out of the agglomerative (p. 391) clustering process until the very
end. A common result of hierarchical clustering is therefore a set of tightly knit cores
surrounded by a loose collection of single vertices or smaller groups. Such a result
may nonetheless contain a lot of valuable information about the underlying network
structure.

Many other methods have been proposed for community detection and there is not
room in this book to describe them all. For the reader interested in pursuing the topic
further the review articles by Fortunato [124] and Schaeffer [291] provide useful
overviews.

Problems

11.1 Show that the inverse of a symmetric matrix M is given by M -1 = UDU
T where U is the orthogonal matrix whose columns are the normalized
eigenvectors of M and D is the diagonal matrix whose elements are the
reciprocals of the eigenvalues of M. Hence argue that the time complexity of
the best algorithm for inverting a symmetric matrix can be no worse than the
time complexity of finding all of its eigenvalues and eigenvectors. (In fact they
are the same—both are O(n) for an n × n matrix.)
11.2 Consider a general n × n matrix M with eigenvalues µ i where i = 1 … n.

1. a) Show that the matrix M - a I has the same eigenvectors as M and eigenvalues µi µ
a.

2. b) Suppose that the matrix's two eigenvalues of largest magnitude are both positive.
Show that the time taken to find the leading eigenvector of the matrix using the

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-124
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-291

Page 48 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

power method of Section 11.1 can be improved by performing the calculation instead
for the matrix M — a I, where a is positive.

3. c) What stops us from increasing the constant a arbitrarily until the calculation takes
no time at all?

11.3 Consider a “line graph” consisting of n vertices in a line like this:

1. a) Show that if we divide the network into two parts by cutting any single edge, such
that one part has r vertices and the other has n-r, the modularity, Eq. (7.76) , takes
the value

• (p. 392)
2. b) Hence show that when n is even the optimal such division, in terms of modularity,

is the division that splits the network exactly down the middle.
11.4 Using your favorite numerical software for finding eigenvectors of
matrices, construct the Laplacian and the modularity matrix for this small
network:

1. a) Find the eigenvector of the Laplacian corresponding to the second smallest
eigenvalue and hence perform a spectral bisection of the network into two equally
sized parts.

2. b) Find the eigenvector of the modularity matrix corresponding to the largest
eigenvalue and hence divide the network into two communities.You should find that
the division of the network generated by the two methods is, in this case, the same.

11.5 Consider this small network with five vertices:

1. a) Calculate the cosine similarity for each of the

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-11#acprof-9780199206650-div1-87
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-displayMaths-163

Page 49 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

pairs of vertices.
2. b) Using the values of the ten similarities construct the dendrogram for the single-

linkage hierarchical clustering of the network according to cosine similarity.

(p. 393) (p. 394)

Notes:

(1) Technically the power method finds the eigenvector corresponding to the eigenvalue
of largest absolute magnitude and hence the method would fail to find the eigenvector
we want if the largest absolute magnitude belongs to a negative eigenvalue. For a matrix
with all elements non-negative, however, such as the adjacency matrix, it turns out
this can never happen. Here is a proof of this result for an undirected network where
A is symmetric; the general case is covered, for example, in Ref. [217]. Let µ be the
most negative eigenvalue of a real symmetric matrix A and let w be the corresponding
eigenvector, with elements wi . Then, given that

,

, where x is the vector with components |wi |. The inequality here follows from the
so-called triangle inequality |a+b| ≤ |a|+|b|, which is true for all real numbers a, b.
Rearranging, we now find that

, where we have made use of

. Now we write x as a linear combination of the normalized eigenvectors v i of A thus:
x = σ i ci v i, where the ci are real coefficients whose exact values are not important for
this proof. Then, if κi is the eigenvalue corresponding to v i and κ1 is the most positive
eigenvalue, we have

, where we have made use of the orthogonality property

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-217

Page 50 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

. (The inequality is an exact equality if and only if x is an eigenvector with eigenvalue
κ1.) Putting these results together, we find that |µ| ≤ κ1 and hence the most negative
eigenvalue never has a magnitude greater than that of the most positive eigenvalue
(although if we are unlucky the two magnitudes could be equal). The result proved
here is one part of the Perron-Frobenius theorem. The other part, that the leading
eigenvector has all elements non-negative, is proved in the following footnote.

(2) This result, like that in footnote 1, is a part of the Perron–Frobenius theorem. To
prove it—at least for the case of symmetric A—let κ1 be the most positive eigenvalue of A
and let v be a corresponding eigenvector. (We will allow, for the moment, the possibility
that there is more than one eigenvector with eigenvalue κ1, though we show below that
in fact this cannot happen in a connected network.) Note that κ1 ≥ 0 since the sum of the
eigenvalues of A is given by Tr A ≥ 0, and hence at least one eigenvalue must be non-
negative. Then, given that

and all elements of A are non-negative, we have

, where x is the vector with elements |vi |. Rearranging this result, we find

, where we have made use of x T x = σi |vi |2 = v T v. As demonstrated in footnote 1 on
page 346, for any vector x we have

, with the equality being achieved only when x is an eigenvector corresponding to
eigenvalue κ 1. The only way to reconcile the two inequalities above is if they are in fact
equalities in this case, implying that x must indeed be an eigenvector with eigenvalue
κ 1. But x has all elements nonnegative, and hence there exists an eigenvector with
eigenvalue κ 1 and all elements non-negative.

It is still possible that there might be more than one eigenvector with eigenvalue κ 1,
and that one of the others might have negative elements. This, however, we can rule
out as follows. Recall that eigenvectors with same eigenvalue can always be chosen

http://www.oxfordscholarship.com/page/privacy-policy

Page 51 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

orthogonal, and any eigenvector v that is orthogonal to the eigenvector with all elements
non-negative would have to have both positive and negative elements in order that
the product of the two vectors equal zero. Thus there is only one eigenvector with all
elements non-negative.

Then, for eigenvector v, by the results above, the vector x with elements |vi | is
necessarily equal to the unique eigenvector with all elements non-negative. Thus if vi is
one of the positive elements of v then vi = xi and

, or, equivalently, σ j Aij (|vj | - vj) = 0. But |vj | - vj ≥ 0 so this last result can only be
true if for all j we have either Aij = 0 or vj - |vj | = 0, meaning that vj = |vj | ≥ 0. Thus
if vi > 0 then vj > 0 whenever Aij ≠ 0. In network terms, if vi > 0 then vj > 0 for every
neighbor of i. But then we can start at i and work outwards, moving from neighbor
to neighbor and so demonstrate that vj > 0 for every vertex and hence v = x and the
leading eigenvector is unique.

The only exception to this last result is when the network has more than component, so
that some vertices are not reachable from an initial vertex i. In that case, it is possible
for the elements of the leading eigenvector corresponding to vertices in different
components to have different signs. This, however, causes no problems for any of the
results presented here.

(3) In fact, this estimate usually errs on the pessimistic side, since the spacing of the
highest eigenvalues tends to be wider than the mean spacing, so that in practice the
algorithm may be faster than the estimate would suggest.

(4) If we wish to bemore sophisticated, we can note that it is sufficient to shift the
eigenvalues by any amount greater than or equal to λ n . Anderson and Morley [18] have
shown that λ n ≤ 2k max where k max is the largest degree in the network, which we can
find in time O(n), considerably faster than we can find λ n itself. Thus a quicker way to
find the smallest eigenvalue would be to find the largest eigenvalue of 2k max I - L.

(5) Community detection is sometimes also called “clustering,” although we largely
avoid this term to prevent confusion with the other, and quite different, use of the word
clustering introduced in Section 7.9 .

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-18
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-53

Page 52 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

(6) The problem is somewhat similar to the minimum cut problem of Section 6.12 , but
we are now searching for the minimum cut over all possible bisections of a network,
rather than just between a given pair of vertices.

(7) Technically, this statement has not actually been proved. Its truth hinges on the
assumption that two fundamental classes of computational problem, called P and NP,
are not the same. Although this assumption is universally believed to be true—the world
would pretty much fall apart if it weren't—no one has yet proved it, nor even has any
idea about where to start. Readers interested in the fascinating branch of theoretical
computer science that deals with problems of this kind are encouraged to look, for
example, at the book by Moore and Mertens [227].

(8) Some readers may be familiar with Kernighan's name. He was one of the authors
of the original book describing the C programming language [172]. “Kernighan” is
pronounced “Kernihan”—the “g” is silent.

(9) One might imagine that an equivalent procedure would be to go on swapping vertex
pairs until no swap can be found that decreases the cut size. This, however, turns out
to be wrong. It is perfectly possible for the cut size to decrease for a few steps of the
algorithm, then increase, then decrease again. If we halt the algorithm the first time we
see the cut size increasing, we run the risk of missing a later state with smaller cut size.
Thus the correct algorithm is the one described here, with two separate processes, one of
vertex swapping, and one of checking the states so generated to see which is optimal.

(10) If the network is stored in adjacency matrix form then the total run time can be
improved further to O(n 2), although for the common case of a sparse network this
makes relatively little difference, and the adjacency matrix is costly in terms of memory
space.

(11) Note, however, that the vertex moving algorithm takes time O(n 2) for each round
of the algorithm, but we have not calculated, and do not in fact know, how many rounds
are needed in general. As with the Kernighan-Lin algorithm, it is reasonable to suppose
that the number of rounds needed might increase, at least slowly, with network size,
which would make the time complexity of the vertex moving algorithm poorer than that
of the spectral algorithm.

(12) The word “clustering” as used here just refers to community detection. We have
mostly stayed away from using this word in this chapter, to avoid confusion with the
other use of the word clustering introduced in Section 7.9 (see footnote 5 on page 354),
but the name “hierarchical clustering” is a well established and traditional one, and we
use it here in deference to convention.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-6#acprof-9780199206650-div1-40
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-227
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-bibliographyGroup-1#acprof-9780199206650-bibItem-172
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-7#acprof-9780199206650-div1-53

Page 53 of 53 Matrix algorithms and graph partitioning
PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2011.
All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: University
of Central Florida; date: 13 February 2012

(13) The heap must be modified slightly from the one described in Section 9.7 . First,
the partial ordering must be inverted so that the largest, not the smallest, element of the
heap is at its root. Second, we need to be able to remove arbitrary items from the heap,
not just the root item, which we do by deleting the relevant item and then moving the
last item in the heap to fill the vacated space. Then we have to sift the moved item both
up and down the heap, since it might be either too large or too small for the position in
which it finds itself.

(14) For the special case of single-linkage clustering, there is a slightly faster way to
implement the algorithm that makes use of a so-called union/find technique and runs
in time O(n 2). In practice the performance difference is not very large but the union/
find method is considerably simpler to program. It is perhaps for this reason that single-
linkage is more often used than complete- or average-linkage clustering.

http://www.oxfordscholarship.com/page/privacy-policy
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650-chapter-9#acprof-9780199206650-div1-77

